張 霞 胡露潔 周存宇 楊朝東
(長(zhǎng)江大學(xué)園藝園林學(xué)院,荊州 434025)
植物細(xì)胞壁組織化學(xué)定位染色方法和技術(shù)的比較研究
張 霞 胡露潔 周存宇 楊朝東*
(長(zhǎng)江大學(xué)園藝園林學(xué)院,荊州 434025)
利用光學(xué)和熒光顯微鏡比較研究幾種植物細(xì)胞壁組織化學(xué)定位染色方法和技術(shù),結(jié)果表明:(1)硫酸消化法和硫酸氫黃連素—苯胺蘭對(duì)染法研究凱氏帶,對(duì)取材時(shí)間和部位要求高,建議兩種方法配合使用,可相互印證是否具凱氏帶;(2)蘇丹7B染色法,藍(lán)色激發(fā)光下不染色和硫酸氫黃連素—苯胺蘭對(duì)染研究細(xì)胞壁栓質(zhì)層3種方法中,不染色藍(lán)色激發(fā)光下結(jié)果比蘇丹7B染色法敏感顯色,但蘇丹7B染色法在普通光學(xué)顯微鏡下觀察較為便捷;(3)木質(zhì)化細(xì)胞壁染色方法中硫酸氫黃連素—苯胺蘭對(duì)染法比間苯三酚—鹽酸染色法易顯色觀察;(4)甲苯胺蘭快速染色細(xì)胞壁取代常規(guī)蘇丹Ⅲ/Ⅳ法,細(xì)胞邊界和層次更清楚。
組織化學(xué);凱氏帶;栓質(zhì)層;木質(zhì)化
植物根表皮外擴(kuò)散狀栓質(zhì)層[1~5],內(nèi)、外皮層凱氏帶及栓質(zhì)化和木質(zhì)化次生壁[2~10],或皮下層‘φ’形木質(zhì)化增厚[11~12];胚軸、莖葉、花柄表面角質(zhì)層,內(nèi)、外皮層和維管束鞘細(xì)胞壁凱氏帶及栓質(zhì)化和木質(zhì)化次生壁[3~4,8~10,13~17],構(gòu)成植物體與環(huán)境之間的質(zhì)外體屏障結(jié)構(gòu)或稱為界面保護(hù)組織,能阻礙水、離子和氧氣,抵抗病蟲害等自由進(jìn)出植物體,具有保護(hù)植物體的重要生理功能[18~20]。近年來(lái)隨著植物細(xì)胞壁組織化學(xué)定位研究方法的改進(jìn)[3,6,8,20~22],高強(qiáng)度熒光顯微鏡的應(yīng)用及分子發(fā)育機(jī)理研究成就,促進(jìn)了植物界面生物學(xué)的迅速發(fā)展,如擬南芥不定根中內(nèi)皮層初生壁的凱氏帶由凱氏帶膜蛋白質(zhì)、先沉積木質(zhì)素后再有木栓質(zhì)沉積組成,次生壁組織化學(xué)顯示由木質(zhì)素和木栓質(zhì)沉積組成[23~28]。
目前研究植物細(xì)胞壁組織化學(xué)定位的方法主要有:植物凱氏帶經(jīng)硫酸氫黃連素—苯胺蘭對(duì)染在熒光顯微鏡下呈現(xiàn)生動(dòng)黃色(vivid yellow)[6,21];此外,凱氏帶經(jīng)75%硫酸消化在光學(xué)顯微鏡下呈現(xiàn)波浪線性(wave lines)[6,29]。凱氏帶的形態(tài)隨物種和存在的部位不同而有所差別,橫切面上呈點(diǎn)狀或條帶狀等[3,6,7,13~17,19]。細(xì)胞壁木質(zhì)素經(jīng)間苯三酚—鹽酸染色呈現(xiàn)櫻桃紅色(cherry red)[6,29];經(jīng)硫酸氫黃連素—苯胺蘭對(duì)染在熒光顯微鏡下呈現(xiàn)呆滯黃色(stagnant yellow)[6,21]。細(xì)胞壁木栓質(zhì)和角質(zhì)層經(jīng)蘇丹7B染色呈紅色[6,22];而栓質(zhì)層不經(jīng)過(guò)任何染色在藍(lán)色激發(fā)光下呈現(xiàn)棕色[3~4,6,30]。蘇丹7B染色木栓質(zhì)具有很強(qiáng)的組織特異性,而蘇丹Ⅲ或Ⅳ常將細(xì)胞內(nèi)的脂肪也染成紅色,特異性差,造成栓質(zhì)化胞壁不易識(shí)別,蘇丹Ⅲ或Ⅳ可作為常規(guī)細(xì)胞壁快速染色。在細(xì)胞壁快速染色中,TBO染色切片比蘇丹Ⅲ的效果更清晰顯示植物解剖結(jié)構(gòu)。
植物細(xì)胞壁經(jīng)凱氏帶、栓質(zhì)化和木質(zhì)化等修飾,形成植物表面及內(nèi)部保護(hù)組織,使植物個(gè)體在生長(zhǎng)發(fā)育過(guò)程中具有很強(qiáng)的抗逆性[18~19],因此胞壁組織化學(xué)特征及質(zhì)外體屏障結(jié)構(gòu)是作物抗性育種等生產(chǎn)實(shí)際中的重要解剖結(jié)構(gòu)指標(biāo)。近年來(lái),人們主要從分子機(jī)理角度研究植物抗逆性,而忽略了植物屏障結(jié)構(gòu)的保護(hù)作用[2~4,7~9],使得植物解剖學(xué)中胞壁組織化學(xué)研究方法和技術(shù)沒(méi)有得到足夠重視和應(yīng)用。本文旨在比較不同物種和組織的胞壁組織化學(xué)染色方法和技術(shù),為研究植物逆境生理的解剖結(jié)構(gòu)奠定基礎(chǔ)。
實(shí)驗(yàn)材料收集于2010~2014每年春夏季,取自湖北荊州長(zhǎng)江大學(xué)西校區(qū)附近野生濕地環(huán)境中,主要物種有虉草(Phalarisarundinacea)、水芹(Oenanthejavanica)、菰草(Zizanialatifolia)、藜蒿(Artemisiaselengensis)、水花生(Alternantheraphiloxeroides)、牛鞭草(Hemerthriaaltissima)、雙穗雀稗(Paspalumdistichum)、天胡荽(Hydrocotylesibthorpioides)。取完整不定根用FAA固定,根莖和直立莖用新鮮材料。
徒手切片方法的改進(jìn),結(jié)合立體解剖鏡的放大倍數(shù),可直接用雙面刀片在立體解剖鏡切片,與傳統(tǒng)方法比較可節(jié)約時(shí)間,而且可用新鮮材料,更真實(shí)表現(xiàn)活體研究結(jié)果,可切直徑大于100 μm根或者較堅(jiān)硬莖等材料。
1.1 初生壁凱氏帶或點(diǎn)檢測(cè)實(shí)驗(yàn)方法
1.1.1硫酸消化法[6,29]
75%硫酸配制:將高濃度硫酸配制為75%硫酸10 mL備用,一般現(xiàn)配現(xiàn)用,因硫酸易吸潮而濃度降低,一星期后需重配。
消化過(guò)程:75%硫酸處理縱切幼嫩組織(根尖、莖尖,維管束)切片,蓋上蓋玻片,5~10 min后,吸掉多余水分,凱氏帶呈現(xiàn)點(diǎn)狀或波浪線形。
1.1.2硫酸氫黃連素—苯胺蘭對(duì)染法[6,21]
0.1%(w/v)硫酸氫黃連素溶液的配制:稱取0.1 g硫酸氫黃連素溶于100 mL蒸餾水,震蕩混勻待用。0.5%(w/v)苯胺蘭溶液的配制:稱取0.5 g苯胺蘭溶于100 mL蒸餾水,震蕩混勻待用。FeCl3-甘油緩沖液的配制:0.1%(w/v) FeCl3的配制,稱取0.05 g FeCl3溶于50 mL蒸餾水,攪拌混勻過(guò)濾,后與甘油等體積混合,室溫保存待用。
染色過(guò)程:切片浸沒(méi)于0.1%(w/v)硫酸氫黃連素溶液1 h后,用蒸餾水洗凈,滴加0.5%(w/v)苯胺蘭溶液0.5 h后,用蒸餾水洗凈,后滴加一滴蒸餾水,蓋上蓋玻片。若等待長(zhǎng)時(shí)間后才能觀察,則滴加一滴FeCl3-甘油緩沖液。
1.2 細(xì)胞壁栓質(zhì)層檢測(cè)實(shí)驗(yàn)方法
1.2.1蘇丹7B染色法[6,22]
0.1%(w/v)蘇丹7B溶液配制:稱取50 mg蘇丹7B溶于25 mL PEG-300,后90℃水浴1 h并冷卻,加入等體積90%甘油,室溫保存待用。
染色過(guò)程:切片組織如有后含物用蒸餾水清洗切片,用吸水紙吸凈,后浸沒(méi)于0.1%(w/v)蘇丹7B溶液1 h或過(guò)夜。切片用蒸餾水洗幾次,用吸水紙吸凈,后滴加一滴蒸餾水,蓋上蓋玻片。
1.2.2藍(lán)色激發(fā)光檢測(cè)法或硫酸氫黃連素—苯胺蘭對(duì)染法[3~4,6,30]
藍(lán)色激發(fā)光檢測(cè)法:將切片滴加一滴蒸餾水,蓋上蓋玻片。
硫酸氫黃連素—苯胺蘭對(duì)染法同1.1.2。
1.3細(xì)胞壁木質(zhì)化檢測(cè)實(shí)驗(yàn)方法[3,6,21,29]
1.3.1 鹽酸—間苯三酚染色法
5%(w/v)間苯三酚溶液配制:取間苯三酚4~5 g,溶于100毫升95%酒精中,混勻即成間苯三酚—酒精液,現(xiàn)配現(xiàn)用(溶液黃褐色失效)。取10 mL濃鹽酸備用。
染色過(guò)程:先在材料上滴上1滴濃鹽酸,3~5 min后,(可以用吸水紙吸掉多余水分)然后滴上間苯三酚—酒精液1滴,木質(zhì)化的細(xì)胞壁就染上櫻紅或紫紅色。
1.3.2 硫酸氫黃連素—苯胺蘭對(duì)染法
硫酸氫黃連素—苯胺蘭對(duì)染法同1.1.2。
1.4 細(xì)胞壁快速染色方法
1.4.1蘇丹Ⅲ染色法[8]
0.5%(w/v)蘇丹Ⅲ染液配制:取0.1 g蘇丹Ⅲ,溶于20 mL 95%酒精中,即成0.5%蘇丹Ⅲ染液。
染色過(guò)程:切片浸沒(méi)于蘇丹Ⅲ溶液5~10 min,用50%酒精洗滌,去浮色,加上甘油后觀察。
1.4.2甲苯胺蘭(TBO)染色法[3]
0.05%(w/v)TBO染液配制:取0.05 g TBO,溶于100 mL蒸餾水,混勻即成0.05%TBO。
染色過(guò)程:切片浸沒(méi)于0.05% TBO中,染色3~5 min后,蒸餾水洗,蓋上蓋玻片。
其中,1.1.1硫酸消化法,1.2.1蘇丹7B染色法,1.3.1鹽酸—間苯三酚染色法,1.4.1蘇丹Ⅲ染色法和1.4.2甲苯胺蘭染色法在萊卡光學(xué)顯微鏡(Leica DME)下觀察,記錄實(shí)驗(yàn)結(jié)果。1.1.2硫酸氫黃連素—苯胺蘭對(duì)染法和1.2.2藍(lán)色激發(fā)光檢測(cè)法在熒光顯微鏡(Olympus IX71)藍(lán)色激發(fā)光下觀察,記錄實(shí)驗(yàn)結(jié)果。圖片主要用Photoshop 7.0軟件處理,加標(biāo)尺,調(diào)整圖片亮度和對(duì)比度,以及合成圖片等其他操作可參考有關(guān)文獻(xiàn)[3~5,8~10]。
2.1 初生壁凱氏帶的組織化學(xué)定位
選擇春季正在旺盛生長(zhǎng)的虉草植株,切取根莖尖第2節(jié)間用雙面刀片橫切,然后把其中一片縱切為多個(gè)小片,挑取1~2小片用硫酸處理,根莖內(nèi)皮層凱氏帶成波浪線形(圖1:A);若將根莖橫切片用硫酸氫黃連素—苯胺蘭對(duì)染,根莖內(nèi)皮層凱氏帶呈現(xiàn)生動(dòng)黃色(圖1:B)。虉草不定根橫切片(距根尖約5 cm)用硫酸氫黃連素—苯胺蘭對(duì)染,內(nèi)皮層已有馬蹄形木質(zhì)化增厚且凱氏帶呈生動(dòng)黃色,外皮層有2層細(xì)胞具帶狀凱氏帶(圖1:C)。水芹不定根(距根尖約10 cm)橫切,僅內(nèi)皮層具點(diǎn)狀凱氏帶(圖1:D)。這說(shuō)明相同物種不同組織器官以及不同物種間的凱氏帶形態(tài)有所差別。
圖1 初生壁中凱氏帶的顯微結(jié)構(gòu) A.虉草幼莖橫切,內(nèi)皮層凱氏帶(箭頭),SA;B.虉草幼莖橫切,內(nèi)皮層凱氏帶(箭頭),維管束,皮層,BAB;C.虉草不定根橫切,內(nèi)皮層凱氏帶(箭頭),外皮層凱氏帶(箭),皮層,BAB;D.水芹不定根橫切,內(nèi)皮層凱氏帶(箭頭),皮層氣腔周圍栓質(zhì)層(箭),皮層,BAB SA.濃硫酸消化;BAB.硫酸氫黃連素—苯胺蘭對(duì)染;co.皮層;vb.維管束Fig.1 Photomicrographs of Casparian bands in primary walls A.Transverse section of a young stolon of P.arundinacea,endodermis Casparian bands(arrowheads),SA; B.Transverse section of a young stolon of P.arundinacea,endodermis Casparian bands(arrowheads),BAB; C.Transverse section of an adventitious root of P.arundinacea,endodermis Casparian bands(arrowheads),exodermis Casparian bands(arrows),cortex,BAB; D.Transverse section of an adventitious root of O.javanica,endodermis Casparian bands(arrowheads),suberized lamellae around walls of aerenchyma,cortex,BAB SA.Concentrated sulphuric acid digestion; BAB.Berberine hemisulfate-aniline blue stained; co.Cortex; vb.Vascular bundle
圖2 次生壁中栓質(zhì)層的顯微結(jié)構(gòu) A.水芹不定根橫切,內(nèi)皮層栓質(zhì)層(箭頭),表皮細(xì)胞外擴(kuò)散狀栓質(zhì)層(箭),皮層,BAB;B.水芹不定根橫切,內(nèi)皮層栓質(zhì)層(箭頭),皮層,表皮細(xì)胞外擴(kuò)散狀栓質(zhì)層(箭),SR7B;C.菰草不定根橫切,內(nèi)皮層栓質(zhì)層(箭頭),皮層,外皮層栓質(zhì)層(箭),厚壁層,不染色;D.菰草不定根橫切,木質(zhì)化厚壁層,Pg;E.菰草不定根橫切,外皮層栓質(zhì)層(箭),SR7B;F.菰草幼莖橫切,周緣厚壁組織的栓質(zhì)層和表皮外角質(zhì)層(箭),不染色;G.菰草幼莖橫切,周緣厚壁組織的栓質(zhì)層和表皮外角質(zhì)層(箭),SR7B;H.藜蒿不定根橫切,內(nèi)皮層栓質(zhì)層(箭頭),皮層,外皮層栓質(zhì)層(箭),SR7B;I.藜蒿不定根橫切,皮層,皮層細(xì)胞(箭頭),外皮層細(xì)胞(箭),SRⅢ BAB.硫酸氫黃連素—苯胺蘭對(duì)染;Pg.鹽酸—間苯三酚染色;SR7B.蘇丹7B染色;SRⅢ.蘇丹Ⅲ染色;co.皮層;scr.厚壁層Fig.2 Photomicrographs of suberin lamellae in secondary walls A.Transverse section of an adventitious root of O.javanica,suberized endodermis(arrowheads),suberin lamellae out of epidermis(arrows),cortex,BAB; B.Transverse section of an adventitious root of O.javanica,suberized endodermis(arrowheads),suberin lamellae out of epidermis(arrows),cortex,SR7B; C.Transverse section of an adventitious root of Z.latifolia,suberized endodermis(arrowheads),cortex,suberized exodermis(arrows),sclerenchyma ring,non-stained; D.Transverse section of an adventitious root of Z.latifolia,lignified sclerenchyma ring,Pg; E.Transverse section of an adventitious root of Z.latifolia,suberized exodermis(arrows),SR7B; F.Transverse section of a young stem of Z.latifolia,suberized peripheral sclerenchyma ring and cuticles(arrows),non-stained; G.Transverse section of a young stem of Z.latifolia,suberized peripheral sclerenchyma ring and cuticles(arrows),SR7B; H.Transverse section of an adventitious root of A.selengensis,suberized endodermis(arrowheads),cortex,suberized exodermis(arrows),SR7B; I.Transverse section of an adventitious root of A.selengensis,cortex,cortical cell(arrowheads),exodermal cell(arrows),SRⅢ BAB.Berberine hemisulfate-aniline blue stained; Pg. Phloroglucinol-HCl; SR7B. Sudan red 7B stained; SRⅢ. Sudan Ⅲ stained; co. Cortex; scr. Sclerenchyma ring
圖3 次生壁木質(zhì)化的顯微結(jié)構(gòu) A.菰草不定根橫切,內(nèi)皮層木質(zhì)化(箭頭),初生木質(zhì)部,皮層,外皮層木質(zhì)化(箭頭),BAB; B.菰草不定根橫切,內(nèi)皮層木質(zhì)化(箭頭),初生木質(zhì)部,Pg; C.水芹不定根橫切,內(nèi)皮層凱氏帶(箭頭),皮層,皮下層木質(zhì)化(箭),BAB; D.水花生不定根橫切,內(nèi)皮層凱氏帶(箭頭),初生木質(zhì)部,皮層,BAB; E.牛鞭草老莖橫切,周緣厚壁層中黑色部分為含葉綠體的薄壁細(xì)胞,厚角組織部分木質(zhì)化(箭頭),周緣厚壁層(箭),維管束,Pg; F.牛鞭草老莖橫切,周緣厚壁層中黑色部分為含葉綠體的薄壁細(xì)胞,厚角組織(箭頭),周緣厚壁層(箭),維管束,BAB; G.雙穗雀稗老莖橫切,厚角組織(箭頭),周緣厚壁層(箭),厚壁層(中括號(hào)),維管束,BAB; H.天胡荽花梗橫切,內(nèi)皮層凱氏帶(箭頭),皮層,皮下層厚角組織(箭),BAB; I.藜蒿不定根橫切,次生木質(zhì)部,皮層,皮層細(xì)胞(箭頭),外皮層細(xì)胞(箭),TBO BAB.硫酸氫黃連素—苯胺蘭對(duì)染;Pg.鹽酸—間苯三酚染色;SR7B.蘇丹7B染色;TBO.甲苯胺蘭染色;co.皮層;px.初生木質(zhì)部;sx.次生木質(zhì)部;vb.維管束Fig.3 Photomicrographs of lignin in secondary walls A. Transverse section of an adventitious roots of Z.latifolia,lignified endodermis(arrowheads),cortex,lignified exodermis(arrows),BAB; B. Transverse section of an adventitious roots of Z.latifolia,lignified endodermis(arrowheads),primary xylem,Pg; C. Transverse section of an adventitious roots of O.javanica,endodermis Casparian bands(arrowheads),cortex,lignified hypodermis(arrows),BAB; D. Transverse section of an adventitious roots of A.philoxeroides,endodermis Casparian bands(arrowheads),primary xylem,cortex,BAB; E. Transverse section of an aged stem of H.altissima,The black part is choroplast in peripheral sclerenchyma ring,partly collenchymas lignified(arrowheads),peripheral sclerenchyma ring(arrows),vascular bundle,Pg; F. Transverse section of an aged stem of H.altissima,The black part is choroplast in peripheral sclerenchyma ring,collenchymas(arrowheads),peripheral sclerenchyma ring(arrows),vascular bundle,BAB; G. Transverse section of an aged stem of P.distichum,collenchymas(arrowheads),peripheral sclerenchyma ring(arrows),sclerenchyma ring(brackets),vascular bundle,BAB; H. Transverse section of a pedicel of H.sibthorpioides,endodermis Casparian bands(arrowheads),cortex,hypodermal collenchymas(arrows),BAB; I. Transverse section of an adventitious roots of A.selengensis,secondary xylem,cortex,cortical cell(arrowheads),exodermal cell(arrows),TBO BAB.Berberine hemisulfate-aniline blue stained; Pg.Phloroglucinol-HCl; SR7B.Sudan red 7B stained; TBO.toluidine blue O stained; co. Cortex; px. Primary xylem; sx. Secondary xylem; vb. Vascular bundle
2.2 細(xì)胞壁栓質(zhì)層的組織化學(xué)定位
水芹不定根(距根尖約1 cm)橫切片經(jīng)硫酸氫黃連素—苯胺蘭對(duì)染,在藍(lán)色激發(fā)光下內(nèi)皮層栓質(zhì)層,表皮細(xì)胞外擴(kuò)散狀栓質(zhì)層呈現(xiàn)棕色(圖2:A);而用蘇丹7B染色這些栓質(zhì)化細(xì)胞壁呈現(xiàn)紅色(圖2:B),皮層氣腔周圍細(xì)胞壁也具栓質(zhì)層(圖1:D)。菰草不定根(距根尖約5 cm)橫切不染色,在藍(lán)色激發(fā)光下內(nèi)皮層、外皮層栓質(zhì)層呈現(xiàn)棕色(圖2:C),厚壁層木質(zhì)化后有呆滯黃色(圖2:C~D),外皮層用蘇丹7B染色呈紅色(圖2:E)。菰草幼莖橫切不染色在藍(lán)色激發(fā)光下周緣厚壁組織的栓質(zhì)層和表皮外角質(zhì)層呈棕色(圖2:F),蘇丹7B染色這些結(jié)構(gòu)呈紅色(圖2:G)。藜蒿不定根橫切片經(jīng)蘇丹7B染色內(nèi)皮層、外皮層栓質(zhì)層呈紅色(圖2:H);而用常規(guī)蘇丹Ⅲ染色則不能僅將內(nèi)、外皮層栓質(zhì)層染成紅色,組織特異性差,常將細(xì)胞內(nèi)的脂肪也染成紅色,造成栓質(zhì)化胞壁不易識(shí)別(圖2:I)。
水芹不定根內(nèi)皮層栓質(zhì)層,表皮擴(kuò)散狀栓質(zhì)層,氣腔周圍栓質(zhì)層在沒(méi)有木質(zhì)化條件下,采用硫酸氫黃連素—苯胺蘭對(duì)染呈棕色。菰草不定根外皮層出現(xiàn)木質(zhì)化,即使不染色,在藍(lán)色激發(fā)光下有呆滯黃色出現(xiàn),若硫酸氫黃連素—苯胺蘭對(duì)染,木質(zhì)化胞壁表現(xiàn)出的黃色直接掩蓋栓質(zhì)層發(fā)出的棕色(圖3:A)。
2.3 細(xì)胞壁木質(zhì)化的組織化學(xué)定位
菰草不定根橫切片,初生木質(zhì)部、內(nèi)皮層、內(nèi)皮層外側(cè)一層細(xì)胞壁和外皮層木質(zhì)化呈櫻桃紅色或呆滯黃色(圖3:A~B)。水芹不定根橫切片皮下層木質(zhì)化(圖3:C),水花生不定根橫切片內(nèi)皮層具凱氏帶,皮層細(xì)胞壁顯淺黃色熒光(圖3:D),菰草、水芹和水花生不定根初生木質(zhì)部都木質(zhì)化(圖3:A~D)。牛鞭草老莖橫切片皮層厚角組織經(jīng)鹽酸—間苯三酚染色呈現(xiàn)櫻桃紅色(圖3:E),而硫酸氫黃連素—苯胺蘭對(duì)染皮層厚角組織顯淺黃色熒光(圖3:F),表皮下周緣厚壁層和維管束都木質(zhì)化;類似的雙穗雀稗老莖和天胡荽花梗中厚角組織顯淺黃色熒光(圖3:G~H),雙穗雀稗莖周緣厚壁層、厚壁層和維管束與天胡荽花梗木質(zhì)部也都木質(zhì)化(圖3:G~H)。提示經(jīng)過(guò)硫酸氫黃連素—苯胺蘭對(duì)染,水花生不定根皮層、牛鞭草和雙穗雀稗老莖和天胡荽花梗中厚角組織顯淺黃色熒光,這些細(xì)胞壁是否木質(zhì)化,以及其中所含化學(xué)成分尚待進(jìn)一步分析研究。
2.4 細(xì)胞壁快速染色
蘇丹Ⅲ或Ⅳ常將細(xì)胞壁、細(xì)胞內(nèi)的脂肪也染成紅色,組織特異性差,造成栓質(zhì)化胞壁不易識(shí)別;而甲苯胺蘭(TBO)染色結(jié)果細(xì)胞邊界更清晰,分生組織細(xì)胞層次清楚。藜蒿不定根橫切片蘇丹Ⅲ染色后,皮層細(xì)胞分裂邊界、外皮層細(xì)胞分裂邊界和根的各顯微結(jié)構(gòu)層次不太明朗(圖2:I);而甲苯胺蘭染色結(jié)果是皮層,皮層分生組織細(xì)胞,外皮層分生組織細(xì)胞層次清楚(圖3:I)。因此,現(xiàn)在一般用TBO染色方法取代蘇丹Ⅲ法。
根據(jù)Geldner等研究擬南芥不定根內(nèi)皮層凱氏帶分子發(fā)育機(jī)理報(bào)道,認(rèn)為初生壁凱氏帶由凱氏帶膜蛋白質(zhì)、先有木質(zhì)素或后有木栓質(zhì)沉積組成,次生壁組織化學(xué)沉積木質(zhì)素或木栓質(zhì)組成[23~28,31~32]。凱氏帶形成過(guò)程中,有凱氏帶膜蛋白家族(CASPs)參與指導(dǎo)木質(zhì)素和木栓質(zhì)在凱氏帶位置的積累,該凱氏帶膜蛋白在初生壁上也構(gòu)成類似于動(dòng)物上皮組織細(xì)胞間僅蛋白質(zhì)參與的緊密連接,具有保護(hù)作用[25,27]。凱氏帶的形成應(yīng)具備凱氏帶結(jié)構(gòu)、圍繞維管束的拓?fù)鋵W(xué)結(jié)構(gòu)和SCR基因的表達(dá)三大要素[26]。
凱氏帶經(jīng)典研究方法是在普通光學(xué)顯微鏡下觀察根內(nèi)皮層徑向壁增厚,栓質(zhì)化和木質(zhì)化?,F(xiàn)已明確凱氏帶是由凱氏帶膜蛋白質(zhì)、栓質(zhì)化和木質(zhì)化組成,并隨物種、所在組織器官不同具有多態(tài)性,除了常見(jiàn)于根內(nèi)、外皮層,也見(jiàn)于莖、花柄和葉柄[4,10,13~16,19],采用單一研究方法常遇到實(shí)驗(yàn)結(jié)果難以解釋的困擾。如本研究中虉草莖內(nèi)皮層的凱氏帶,以前未見(jiàn)類似報(bào)道,就需要硫酸消化法和硫酸氫黃連素—苯胺蘭對(duì)染二種方法確定具凱氏帶;此外,虉草不定根內(nèi)、外皮層凱氏帶之間以及與水芹不定根的凱氏帶形態(tài)有很大差別,如本文(圖1:A~D)。
采用硫酸消化法可在內(nèi)、外皮層還沒(méi)有形成次生壁之前,硫酸可將初生壁中纖維素消化,把凱氏帶暴露出來(lái),呈波浪形。凱氏帶經(jīng)硫酸氫黃連素—苯胺蘭對(duì)染在熒光顯微鏡下呈現(xiàn)生動(dòng)黃色,如果次生壁已形成,次生壁發(fā)出強(qiáng)烈黃色熒光常把凱氏帶的生動(dòng)黃色遮蓋,不能辨別,因此硫酸消化法和硫酸氫黃連素—苯胺蘭對(duì)染法都需要在次生壁形成之前易觀察到,因此取材時(shí)間和部位把握十分重要[3~6,8~10]。建議把硫酸消化法和硫酸氫黃連素—苯胺蘭對(duì)染法配合研究凱氏帶相互印證研究結(jié)果,判讀是否具凱氏帶更確切可靠。根據(jù)現(xiàn)有凱氏帶分子發(fā)育證據(jù),表明凱氏帶膜蛋白質(zhì)在這二種方法中扮演了重要的組織化學(xué)作用,推測(cè)硫酸不能消化凱氏帶膜蛋白而波浪狀存留下來(lái),凱氏帶膜蛋白能結(jié)合黃連素陽(yáng)離子和苯胺蘭陰離子而發(fā)出生動(dòng)黃色熒光,而木質(zhì)化細(xì)胞壁能大量結(jié)合黃連素離子發(fā)出強(qiáng)烈黃色熒光。
植物栓質(zhì)層主要分布在根表皮外呈擴(kuò)散狀,氣腔周圍細(xì)胞,內(nèi)、外皮層[1~5];莖、葉和花柄表皮外角質(zhì)層,內(nèi)、外皮層,周緣厚壁層和皮層內(nèi)側(cè)的厚壁層,維管束細(xì)胞[2~10,17~19,22]。栓質(zhì)常包含芳香族化合物,碳鏈長(zhǎng)16~30,為多聚脂肪族聚合物,化學(xué)單體為ω-羥基脂肪酸、α,ω-二羥基脂肪酸、脂肪醇、羥基多聚芳香族等[2,7,20,23,33~37]?,F(xiàn)在常用蘇丹7B染色細(xì)胞壁木栓質(zhì)和角質(zhì)層在普通光學(xué)顯微鏡下呈現(xiàn)紅色,具有很強(qiáng)的組織特異性,如菰草不定根外皮層,莖角質(zhì)層和周緣厚壁組織層,藜蒿不定根內(nèi)、外皮層(圖2:E,G~H);而蘇丹Ⅲ或Ⅳ常將細(xì)胞內(nèi)的脂肪也染成紅色,特異性差,造成藜蒿不定根內(nèi)、外皮層栓質(zhì)化胞壁與皮層沒(méi)有栓質(zhì)化胞壁不易識(shí)別(圖2:I)。不經(jīng)任何染色,栓質(zhì)層在藍(lán)色激發(fā)光下呈現(xiàn)棕色,如菰草不定根內(nèi)、外皮層和莖的周緣厚壁組織層(圖2:C,F)。水芹不定根經(jīng)硫酸氫黃連素—苯胺蘭對(duì)染,皮層氣腔胞壁、內(nèi)皮層和表皮細(xì)胞外側(cè)在藍(lán)色激發(fā)光下也呈現(xiàn)棕色(圖1:D,圖2:A)。在本研究中,經(jīng)硫酸氫黃連素—苯胺蘭對(duì)染或不染色,栓質(zhì)層在藍(lán)色激發(fā)光下呈棕色,比用蘇丹7B染色法更敏感易觀察到(圖2:A~B)。
細(xì)胞壁木質(zhì)素主要分布在根皮下層[11~12],內(nèi)、外皮層和木質(zhì)部[3,5~6,8~10,21,29];莖內(nèi)、外皮層,周緣厚壁層和皮層內(nèi)側(cè)的厚壁層,木質(zhì)部[3~4,6,8~10,21,29]。木質(zhì)素是以3種羥基肉桂醇異構(gòu)體(對(duì)—香豆醇、松柏醇和芥子醇)為單體的聚合過(guò)程[38]。水芹不定根皮下層僅木質(zhì)化(圖3:C)。經(jīng)過(guò)硫酸氫黃連素—苯胺蘭對(duì)染,水花生不定根皮層、牛鞭草和雙穗雀稗老莖和天胡荽花梗中厚角組織顯淺黃色熒光(圖3:D,F~H)[3,8],這些細(xì)胞壁是否是否木質(zhì)化,或者含有能結(jié)合黃連素的物質(zhì),其中所含化學(xué)成分尚待進(jìn)一步分離分析。
在本研究中,采用硫酸消化法和硫酸氫黃連素—苯胺蘭對(duì)染法研究凱氏帶,對(duì)取材時(shí)間和部位把握十分重要,若用單一方法沒(méi)有把握確定有無(wú)凱氏帶,建議今后把這兩種方法配合使用。蘇丹7B染色法,藍(lán)色激發(fā)光下不染色和硫酸氫黃連素—苯胺蘭對(duì)染研究細(xì)胞壁栓質(zhì)層3種方法中,若細(xì)胞壁也木質(zhì)化,硫酸氫黃連素—苯胺蘭對(duì)染法因木質(zhì)化胞壁發(fā)出的黃色熒光遮蓋栓質(zhì)層的棕色熒光而無(wú)法分辨失去作用。不染色藍(lán)色激發(fā)光下結(jié)果比蘇丹7B染色法敏感顯色易觀察。硫酸氫黃連素—苯胺蘭對(duì)染法比經(jīng)典間苯三酚—鹽酸染色厚角組織更敏感顯色,表明厚角組織增厚部分所含的化學(xué)成分需要以后分離分析,為研究細(xì)胞壁組織化學(xué)提供更多理論依據(jù)。
1.Schreiber L,Franke R B.Endodermis and exodermis in roots[R].Chichester:John Wiley and Sons Ltd,2011,doi:10.1002/9780470015902.a0002086.pub2.
2.Abiko T,Kotula L,Shiono K,et al.Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots ofZeanicaraguensiscontribute to its waterlogging tolerance as compared with maize(Zeamaysssp.mays)[J].Plant,Cell & Environment,2012,35(9):1618-1630.
3.Yang C D,Zhang X,Li J K,et al.Anatomy and histochemistry of roots and shoots in wild Rice(ZizanialatifoliaGriseb.)[J].Journal of Botany,2014:181727.
4.楊朝東,張霞.雙穗雀稗(Paspalumdistichum)通透性生理和莖解剖結(jié)構(gòu)補(bǔ)充研究[J].植物研究,2013,33(5):564-568.
Yang C D,Zhang X.Permeability and supplement structures of stems ofPaspalumdistichum[J].Bulletin of Botanical Research,2013,33(5):564-568.
5.張霞,楊朝東,寧國(guó)貴.狗牙根和雙穗雀稗根中質(zhì)外體屏障結(jié)構(gòu)發(fā)育過(guò)程的比較研究[J].湖北農(nóng)業(yè)科學(xué),2013,52(20):4991-4994.
Zhang X,Yang C D,Ning G G.The developmental comparison of apoplastic barriers inCynodondactylonandPaspalumdistichumroots[J].Hubei Agricultural Sciences,2013,52(20):4991-4994.
6.Seago J L Jr.,Peterson C A,Enstone D E,et al.Development of the endodermis and hypodermis ofTyphaglaucaGodr.andT.angustifoliaL. roots[J].Canadian Journal of Botany,1999,77(1):122-134.
7.Soukup A,Armstrong W,Schreiber L,et al.Apoplastic barriers to radial oxygen loss and solute penetration:a chemical and functional comparison of the exodermis of two wetland species,PhragmitesaustralisandGlyceriamaxima[J].New Phytologist,2007,173(2):264-278.
8.Yang C D,Zhang X,Zhou C Y,et al.Root and stem anatomy and histochemistry of four grasses from the Jianghan floodplain along the Yangtze River,China[J].Flora,2011,206(7):653-661.
9.楊朝東,李守峰,鄧仕明,等.白茅解剖結(jié)構(gòu)和屏障結(jié)構(gòu)特征研究[J].草業(yè)學(xué)報(bào),2015,24(3):213-218.
Yang C D,Li S F,Deng S M,et al.Study of the anatomy and apoplastic barrier characteristics ofImperatacylindrica[J].Acta Prataculturae Sinica,2015,24(3):213-218.
10.楊朝東,李守峰,姚蘭,等.天胡荽(Hydrocotylesibthorpioides)的解剖和屏障結(jié)構(gòu)特征研究[J].草業(yè)學(xué)報(bào),2015,24(7):139-145.
Yang C D,Li S F,Yao L,et al.A study of anatomical structure and apoplastic barrier characteristics ofHydrocotylesibthorpioides[J].Acta Prataculturae Sinica,2015,24(7):139-145.
11.López-pérez L,Fernández-garcía N,Olmos E,et al.The phi thickening in roots of broccoli plants:an acclimation mechanism to salinity[J].International Journal of Plant Sciences,2007,168(8):1141-1149.
12.Fernández-garcía N,López-pérez L,Hernandez M,et al.Role of phi cells and the endodermis under salt stress inBrassicaoleracea[J].New Phytologist,2009,181(2):347-360.
13.Meyer C J,Peterson C A.Casparian bands occur in the periderm ofPelargoniumhortorumstem and root[J].Annals of Botany,2011,107(4):591-598.
14.Mcmanus H A,Seago J L,Jr.,Marsh L C.Epifluorescent and histochemical aspects of shoot anatomy ofTyphalatifoliaL.,TyphaangustifoliaL. andTyphaglaucaGodr[J].Annals of Botany,2002,90(4):489-493.
15.Vecchia F D,Cuccato F,Rocca N L,et al.Endodermis-like sheaths in the submerged freshwater macrophyteRanunculustrichophyllusChaix[J].Annals of Botany,1999,83(1):93-97.
16.Watanabe H,Saigusa M,Morita S.Identification of Casparian bands in the mesocotyl and lower internodes of rice(OryzasativaL.) seedlings using fluorescence microscopy[J].Plant Production Science,2006,9(4):390-394.
17.Mertz R A,Brutnell T P.Bundle sheath suberization in grass leaves:multiple barriers to characterization[J].Journal of Experimental Botany,2014,65(13):3371-3380.
18.Enstone D E,Peterson C A,Ma F S.Root endodermis and exodermis:structure,function,and responses to the environment[J].Journal of Plant Growth Regulation,2002,21(4):335-351.
19.楊朝東,張霞,劉國(guó)鋒,等.植物根中質(zhì)外體屏障結(jié)構(gòu)和生理功能研究進(jìn)展[J].植物研究,2013,33(1):114-119.
Yang C D,Zhang X,Liu G F,et al.Progress on the structure and physiological functions of apoplastic barriers in root[J].Bulletin of Botanical Research,2013,33(1):114-119.
20.Fich E A,Segerson N A,Rose J K C.The plant polyester cutin:biosynthesis,structure,and biological roles[J].Annual Review of Plant Biology,2016,67(1):207-233.
21.Brundrett M C,Enstone D E,Peterson C A.A berberine-aniline blue fluorescent staining procedure for suberin,lignin,and callose in plant tissue[J].Protoplasma,1988,146(2):133-142.
22.Brundrett M C,Kendrick B,Peterson C A.Efficient lipid staining in plant material with Sudan red 7B or Fluoral yellow 088 in polyethylene glycol-glycerol[J].Biotechnic & Histochemistry,1991,66(3):111-116.
23.Pauluzzi G,Divol F,Puig J,et al.Surfing along the root ground tissue gene network[J].Developmental Biology,2012,365(1):14-22.
24.Naseer S,Lee Y,Lapierre C,et al.Casparian strip diffusion barrier inArabidopsisis made of a lignin polymer without suberin[J].Proceedings of the National Academy of Science of the United States of America,2012,109(25):10101-10106.
25.Alassimone J,Roppolo D,Geldner N,et al.The endodermis-development and differentiation of the plant’s inner skin[J].Protoplasma,2012,249(3):433-443.
26.Geldner N.The endodermis[J].Annual Review of Plant Biology,2013,64(1):531-558.
27.Roppolo D,De Rybel B,Tendon V D,et al.A novel protein family mediates Casparian strip formation in the endodermis[J].Nature,2011,473(7347):380-383.
28.Lee Y,Rubio M C,Alassimone J,et al.A mechanism for localized lignin deposition in the endodermis[J].Cell,2013,153(2):402-412.
29.Jensen W A.Botanical histochemistry:principles and practice[M].San Francisco,CA:W.H.Freeman,1962.
30.Meyer C J,Seago J L Jr.,Peterson C A.Environmental effects on the maturation of the endodermis and multiseriate exodermis ofIrisgermanicaroots[J].Annals of Botany,2009,103(5):687-702.
31.Roppolo D,Boeckmann B,Pfister A,et al.Functional and evolutionary analysis of the Casparian strip membrane domain protein family[J].Plant Physiology,2014,165(4):1709-1722.
32.Pfister A,Barberon M,Alassimone J,et al.A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects[J].eLIFE,2014,3:e03115.
33.Shiono K,Ogawa S,Yamazaki S,et al.Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J].Annals of Botany,2011,107(1):89-99.
34.Buschhaus C,Jetter R.Composition differences between epicuticular and intracuticular wax substructures:how do plants seal their epidermal surfaces[J]?Journal of Experimental Botany,2011,62(3):841-853.
35.Beisson F,Li-Beisson Y,Pollard M.Solving the puzzles of cutin and suberin polymer biosynthesis[J].Current Opinion in Plant Biology,2012,15(3):329-337.
36.Schreiber L.Transport barriers made of cutin,suberin and associated waxes[J].Trends in Plant Science,2010,15(10):546-553.
37.Watanabe K,Nishiuchi S,Kulichikhin K,et al.Does suberin accumulation in plant roots contribute to waterlogging tolerance[J]?Frontiers in Plant Science,2013,4(2):57-60.
38.張曉民.禾本科植物細(xì)胞壁的木質(zhì)化和阿魏?;痆J].中國(guó)野生植物資源,2011,30(6):7-13.
Zhang X M.Lignification and feruloylation in the cell wall of grass family[J].Chinese Wild Plant Resources,2011,30(6):7-13.
Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education opening fund(KF201603)
introduction:ZHANG Xia(1981—),female,master,Major in Botany Research.
date:2016-07-28
ComparativeStudyonStainingMethodsandTechniquesofCellWallHistochemistry
ZHANG Xia HU Lu-Jie ZHOU Cun-Yu YANG Chao-Dong*
(College of Gardening and Horticulture,Yangtze University,Jingzhou 434025)
We carried out the comparative studies on several methods and techniques for cell wall histochemistry under light and epifluorescence microscope. The results showed that: (1)To study Casparian bands using staining methods of sulphuric acid digestion and berberine hemisulfate-aniline, the requirements of material collecting time and part were high, therefore, it was recommended to use the two methods to mutual confirmation; (2)To study suberin lamellae using Sudan red 7B staining, and none staining and berberine hemisulfate-aniline blue staining under blue excited, none staining was more sensitive than Sudan red 7B, but Sudan red 7B staining is convenient under light microscope; (3)To study lignified walls, berberine hemisulfate-aniline staining was more sensitive than phloroglucinol-HCl; (4)Using TBO fast wall staining to replace Sudan Ⅲ/Ⅳ conventional staining, the wall borders and layers were clearer.
walls histochemistry;Casparian bands;suberin lamellae;lignified walls
濕地生態(tài)與農(nóng)業(yè)利用教育部工程研究中心開放基金(KF201603)
張霞(1981—),女,碩士,主要從事植物學(xué)研究。
* 通信作者:E-mail:chaodongyang@aliyun.com
2016-07-28
* Corresponding author:E-mail:chaodongyang@aliyun.com
Q93-333
A
10.7525/j.issn.1673-5102.2017.01.019