倪小健,張宏偉,朱 瑋
復(fù)旦大學(xué)附屬中山醫(yī)院普通外科,上海 200032
·論著·
miRNA-106b失活可通過上調(diào)MMP2表達(dá)參與乳腺癌骨轉(zhuǎn)移
倪小健,張宏偉,朱 瑋*
復(fù)旦大學(xué)附屬中山醫(yī)院普通外科,上海 200032
目的探討基質(zhì)金屬蛋白酶2(matrix metalloproteinase 2,MMP2)及其調(diào)控子has-miR-106b (miRNA-106b/miR-106b)在乳腺癌骨轉(zhuǎn)移中的作用及機(jī)制。方法采用定量PCR、免疫組織化學(xué)染色、Western 印跡法測(cè)定乳腺癌骨轉(zhuǎn)移患者M(jìn)MP2、 miR-106b的表達(dá),并分析MMP2與乳腺癌骨轉(zhuǎn)移患者臨床特征的關(guān)系。細(xì)胞遷移和侵襲實(shí)驗(yàn)觀察MMP2、miR-106b表達(dá)變化體外對(duì)乳腺癌細(xì)胞遷移和侵襲的影響。熒光素酶報(bào)告基因檢測(cè)MMP2和miR-106b的靶向關(guān)系。Western 印跡驗(yàn)證受調(diào)控的下游信號(hào)通路。結(jié)果MMP2在侵襲能力較強(qiáng)的細(xì)胞如SUM1315-bo中表達(dá)較高,在侵襲能力較弱的乳腺癌細(xì)胞如MCF-7中表達(dá)較低;而miR-106b的表達(dá)與之相反。與未發(fā)生骨轉(zhuǎn)移的乳腺癌患者相比,MMP2蛋白在乳腺癌骨轉(zhuǎn)移患者原位腫瘤標(biāo)本中表達(dá)較高;miR-106b的表達(dá)與之相反。MMP2促進(jìn)乳腺癌細(xì)胞的遷移和侵襲,miR-106b反之(P<0.05)。miR-106b可下調(diào) MMP2 的表達(dá),進(jìn)而影響下游調(diào)控因子p-ERK/ERK的表達(dá)(P<0.05)。 在SUM1315-bo中下調(diào) MMP2 基因后,其培養(yǎng)基培養(yǎng)的骨髓間充質(zhì)干細(xì)胞(human bone marrow-derived mesenchymal stem cell,HMSC)定向分化為成骨細(xì)胞過程中,細(xì)胞核因子 κB 受體活化因子配體(RANKL)/骨保護(hù)素(osteoprotegerin,OPG)軸失衡,即 OPG含量增加、 RANKL含量減少,導(dǎo)致破骨細(xì)胞分化減少(P<0.05)。結(jié)論MMP2過表達(dá)是乳腺癌骨轉(zhuǎn)移的危險(xiǎn)因素,這可能與miR-106b失活有關(guān);MMP2 可能通過調(diào)節(jié)ERK信號(hào)通路而促進(jìn)乳腺癌溶骨性骨轉(zhuǎn)移;miR-106b-MMP2-ERK信號(hào)通路是乳腺癌骨轉(zhuǎn)移潛在的預(yù)測(cè)因子及治療靶標(biāo)。
基質(zhì)金屬蛋白酶2; miR-106b; 骨轉(zhuǎn)移; 乳腺癌
乳腺癌在女性中發(fā)病率較高,達(dá)女性腫瘤總發(fā)病率的30%[1]。乳腺癌常轉(zhuǎn)移至骨[2],導(dǎo)致病理性骨折、神經(jīng)壓迫(包括脊髓壓迫)、高鈣血癥等[3],嚴(yán)重影響患者生活質(zhì)量。本研究前期在新型人源性乳腺癌骨轉(zhuǎn)移小鼠模型中發(fā)現(xiàn),人乳腺癌細(xì)胞株SUM1315可在新模型的移植骨中形成自發(fā)的骨轉(zhuǎn)移[4-5]。從SUM1315在模型移植物中形成的原位腫瘤和骨轉(zhuǎn)移瘤中分別分離、提取、純化了得到了相應(yīng)的原代細(xì)胞亞株(移植人乳腺來源SUM1315-br,移植人骨來源SUM1315-bo),并對(duì)這些亞株進(jìn)行基因表達(dá)譜、miRNA表達(dá)譜分析[6]。
基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)與腫瘤的侵襲和轉(zhuǎn)移相關(guān)[7]。其中,MMP2可以分解基膜的主要構(gòu)成成分Ⅳ型膠原酶和明膠[8]。MMP2在多種腫瘤中高表達(dá),且其表達(dá)與腫瘤的局部浸潤(rùn)、淋巴結(jié)轉(zhuǎn)移及患者生存率相關(guān)[9-12]。MMP2是乳腺微環(huán)境和腫瘤微環(huán)境的重要成分,其在人源性乳腺癌骨轉(zhuǎn)移小鼠模型中顯著上調(diào)[6]。乳腺癌患者血清中MMP2水平增加與其不良預(yù)后相關(guān)[13],但是目前缺乏其與乳腺癌骨轉(zhuǎn)移關(guān)系的相關(guān)研究。
微小RNA(microRNA,miRNA)與乳腺癌的發(fā)生、發(fā)展、侵襲及轉(zhuǎn)移密切相關(guān)[14-16]。本課題組通過TargetScan軟件發(fā)現(xiàn),miR-106b能調(diào)控MMP2的表達(dá)。miR-106b定位于染色體7q22的13號(hào)內(nèi)含子區(qū)域的miRs 93-25[17]。但miR-106b在乳腺癌中的作用目前鮮有報(bào)道。因此,本研究探討了MMP2、miR-106b在乳腺癌骨轉(zhuǎn)移過程中的表達(dá)及相關(guān)機(jī)制,以期為乳腺癌骨轉(zhuǎn)移潛在機(jī)制探討及治療靶點(diǎn)的篩選提供新思路。
1.1 乳腺癌細(xì)胞及來源 實(shí)驗(yàn)所用乳腺癌細(xì)胞MDA-MB-231、BT474、MCF-7、MDA-MB-468、HCC1937、T47D、和ZR-75-30均購自ATCC公司。乳腺癌細(xì)胞SUM1315由美國密歇根大學(xué)Stephen Ethier教授饋贈(zèng)。乳腺癌細(xì)胞SUM1315-br來源于移植人乳腺;SUM1315-bo來源于移植人骨。細(xì)胞均用含10%FBS的DMEM在37℃、5%CO2培養(yǎng)箱中培養(yǎng)。
1.2 乳腺腫瘤組織來源 選取在江蘇省人民醫(yī)院乳腺外科及復(fù)旦大學(xué)附屬中山醫(yī)院普通外科確診為乳腺腫瘤Ⅰ期、Ⅱ期、Ⅲ期患者的乳腺腫瘤組織。本研究通過醫(yī)院倫理委員會(huì)審核批準(zhǔn),患者或家屬知情同意并簽署知情同意書。
1.3 熒光定量PCR (qPCR)測(cè)定MMP2表達(dá) 106細(xì)胞或100 mg組織抽提RNA,反轉(zhuǎn)錄成cDNA,-20℃保存。β-actin引物為: 5′-CTC CAT CCT GGC CTC GCT TGT-3′(F);5′-GCT GTC ACC TTC ACC GTT CC-3′(R)。MMP2 引物為: 5′-GTG GAT GAT GCC TTT GCT C-3′(F); 5′-CAG GAG TCC GTCC TTA CC-3′(R)。引物序列均由Invitrogen公司合成,采用2-ΔΔCt法計(jì)算。
1.4 免疫組化染色測(cè)定乳腺癌患者原位腫瘤標(biāo)本中MMP2蛋白的表達(dá) 選取臨床分期Ⅰ、Ⅱ或Ⅲ期的50例乳腺癌患者的原位腫瘤組織進(jìn)行免疫組織化學(xué)(IHC)染色。染色程度定義為:陽性染色的腫瘤細(xì)胞占被檢組織區(qū)域的百分比。MMP2染色共分為 0~7級(jí):0~5級(jí)定義為低表達(dá);6~7級(jí)定義為高表達(dá)[14]。免疫組織化學(xué)染色切片由2位資深的病理學(xué)專家讀片。采用96%相同的讀片結(jié)果。意見不一致時(shí)請(qǐng)另一位病理學(xué)專家讀片,采用其中2位相同的讀片結(jié)果。用ImagePro Plus 6.0 (ImagePro, Bethesda, MD, U.S.)軟件分析。
1.5 細(xì)胞遷移和侵襲實(shí)驗(yàn)
1.5.1 細(xì)胞遷移 在Transwell培養(yǎng)板上層加入500 μL不含血清的DMEM培養(yǎng)液,下層加入1.5 mL含10%血清的DMEM培養(yǎng)液,于37℃、5%CO2細(xì)胞培養(yǎng)箱中孵育1 h。胰酶消化制成單細(xì)胞懸液,計(jì)數(shù)細(xì)胞,按105個(gè)/孔將細(xì)胞加入 Transwell板,分為實(shí)驗(yàn)組、無關(guān)干涉對(duì)照組和未處理組(每組設(shè)3個(gè)復(fù)孔)。將細(xì)胞于37℃、5%CO2培養(yǎng)箱中孵育12 h。取出濾膜,將附于濾膜上層的細(xì)胞用棉簽擦去,4%多聚甲醛固定15 min,PBS沖洗3次,蘇木精染色15 s,PBS沖洗4次;顯微鏡下計(jì)數(shù)遷移至濾膜外表面的細(xì)胞數(shù),每張濾膜隨機(jī)取5個(gè)視野(×200)。
1.5.2 細(xì)胞侵襲 用10 mg/L Matrigel 100 μL/孔包被 Transwell小室底部膜的上室面,在37℃、5%CO2細(xì)胞培養(yǎng)箱中干燥2~3 h; 制備細(xì)胞懸液,余步驟同細(xì)胞遷移。
1.6 熒光素酶報(bào)告基因?qū)嶒?yàn) 采用Dual-Luciferase?Reporter Assay System (Promega公司)檢測(cè)。培養(yǎng)SUM1315-bo細(xì)胞和MCF-7細(xì)胞,并分別接種于 24 孔板中(5.0×104/24孔培養(yǎng)板)。待細(xì)胞生長(zhǎng)至80%融合度時(shí),將microRNA及熒光素酶報(bào)告質(zhì)粒共轉(zhuǎn)染細(xì)胞。42 h后, 每孔加入500 μL PLB裂解細(xì)胞,將10 μL細(xì)胞裂解液和50 μL LAR Ⅱ混合,檢測(cè)螢火蟲熒光素酶(firefly luciferase, FL)的活力;將100 μL Stop &GloTM試劑加入熒光照度儀管中,湮滅螢火蟲熒光素酶反應(yīng),同時(shí)激活海腎熒光素酶反應(yīng),并立即檢測(cè)海腎熒光素酶(renilla luciferase, RL)的活力。12 s內(nèi)完成2次測(cè)試。結(jié)果判斷:FL/RL。
1.7 乳腺癌細(xì)胞SUM1315-bo對(duì)骨髓間充質(zhì)干細(xì)胞(human bone marrow-derived mesenchymal stem cell,HMSC)分化的影響 SUM1315-bo細(xì)胞生長(zhǎng)融合至70%~80%,在無血清的培養(yǎng)基DMEM中培養(yǎng)24 h,收集培養(yǎng)液,離心、濃縮、分裝,存儲(chǔ)在-20℃?zhèn)溆谩?/p>
HMSC(ScienCell公司)以(1.5~2)×105細(xì)胞/孔接種于T-75培養(yǎng)瓶中,用3 mL間充質(zhì)干細(xì)胞培養(yǎng)基(MSCM, Scien Cell公司)于37℃、5%CO2培養(yǎng)箱中常規(guī)培養(yǎng)。24~48 h首次換液,以后每隔3 d換液1次,共培養(yǎng)7~10 d。細(xì)胞融合近80%時(shí),胰酶消化,以5 000/孔接種于24孔板,用MSCM 培養(yǎng)24 h后, 棄MSCM培養(yǎng)液,加入成骨細(xì)胞培養(yǎng)基(OBM),誘導(dǎo)細(xì)胞向成骨細(xì)胞誘導(dǎo)分化。培養(yǎng)第7天,以1×106/孔接種于24孔板,加入按1∶1比例混合的基本培養(yǎng)基/條件培養(yǎng)基(腫瘤細(xì)胞在無血清培養(yǎng)基中培養(yǎng)24 h后收集培養(yǎng)液,過濾)。每2 d更換培養(yǎng)基。
2.1 乳腺癌細(xì)胞MMP2、miR-106b的表達(dá) 結(jié)果(圖1)表明:MMP2基因在侵襲能力較強(qiáng)的乳腺癌細(xì)胞SUM1315、MDA-MB-231中表達(dá)較高,在侵襲能力低的乳腺癌細(xì)胞MCF-7中表達(dá)較低。miR-106b的表達(dá)與MMP2的表達(dá)趨勢(shì)相反,即其在MCF-7中的表達(dá)最高,在MDA-MB-231、SUM1315中的表達(dá)較低。
圖1 乳腺癌細(xì)胞MMP2、miR-106b的表達(dá)
A:Western 印跡顯示,MMP2蛋白在SUM1315-bo中表達(dá)最高;B:熒光定量PCR顯示,miR-106b在乳腺癌原代細(xì)胞SUM1315-bo中表達(dá)最低;C:熒光定量PCR顯示,MMP2 mRNA在各種乳腺癌細(xì)胞中的表達(dá);D:Western印跡顯示,MMP2蛋白在各種乳腺癌細(xì)胞中的表達(dá);E:熒光定量PCR顯示,miR-106b在各種乳腺癌細(xì)胞中的表達(dá)
2.2 乳腺癌骨轉(zhuǎn)移患者原位腫瘤組織中MMP2蛋白的表達(dá)及其與骨轉(zhuǎn)移的關(guān)系 免疫組織化學(xué)分析(圖2)顯示:與未發(fā)生骨轉(zhuǎn)移的乳腺癌患者原位腫瘤組織中MMP2的表達(dá)相比,發(fā)生骨轉(zhuǎn)移的乳腺癌患者原位腫瘤組織中MMP2蛋白表達(dá)較高。結(jié)果(表1)顯示:原位腫瘤組織MMP2蛋白表達(dá)高的患者骨轉(zhuǎn)移發(fā)生率較高(P=0.001)。
2.3 MMP2基因促進(jìn)乳腺癌細(xì)胞遷移和侵襲 結(jié)果(圖3)顯示:SUM1315-bo中轉(zhuǎn)染MMP2干涉片段1或2后,與無關(guān)干涉對(duì)照組相比,SUM1315-bo的遷移和侵襲能力下降;MCF-7中過表達(dá)MMP2基因后,遷移、侵襲能力升高(P<0.01)。
圖2 免疫組化染色測(cè)定乳腺癌骨轉(zhuǎn)移患者原位腫瘤組織中MMP2蛋白表達(dá)
A:正常乳腺組織;B:未發(fā)生骨轉(zhuǎn)移的乳腺癌原位腫瘤標(biāo)本;C:發(fā)生骨轉(zhuǎn)移的乳腺癌原位腫瘤標(biāo)本. 箭頭所指為MMP2蛋白染色結(jié)果. Original magnification:×100
表1 不同臨床特征乳腺癌患者M(jìn)MP2蛋白的表達(dá)
ER:雌激素受體;PR:孕激素受體;HER-2:人類表皮生長(zhǎng)因子受體2
圖3 MMP2基因體外促進(jìn)乳腺癌細(xì)胞遷移和侵襲
2.4 miR-106b轉(zhuǎn)染乳腺癌細(xì)胞后細(xì)胞遷移和侵襲能力下降 定量PCR結(jié)果(圖4)顯示:與對(duì)照組相比,SUM1315-bo轉(zhuǎn)染miR-106b后,miR-106b含量增加約90%(圖4A),細(xì)胞遷移、侵襲能力下降(圖4B,P<0.05);與對(duì)照組相比,MCF-7中轉(zhuǎn)染miR-106b抑制劑后,miR-106b含量減少約80%(圖4C,P<0.05),細(xì)胞遷移、侵襲能力增強(qiáng)(圖4D,P<0.05)。
2.5 miR-106b調(diào)控MMP2基因的表達(dá)
2.5.1 熒光定量PCR和Western印跡結(jié)果 乳腺癌患者原位腫瘤組織中miR-106b含量低于腫瘤周圍正常組織(圖5A)。SUM1315-bo中轉(zhuǎn)染miR-106b模擬劑后,miR-106b表達(dá)上調(diào)、MMP2基因表達(dá)下調(diào);MCF-7中轉(zhuǎn)染miR-106b抑制劑后,miR-106b表達(dá)下調(diào)、MMP2基因表達(dá)上調(diào)(圖5B、5C,P<0.05、0.01)。
2.5.2 熒光素酶報(bào)告基因?qū)嶒?yàn)結(jié)果 突變型熒光報(bào)告質(zhì)粒與miR-106b模擬物共轉(zhuǎn)染SUM1315-bo細(xì)胞(miR-106b+pGL3-M-MUT)后,其熒光比值(螢火蟲熒光素酶/海腎熒光素酶)與對(duì)照組(miR-NC+pGL3-M-MUT)差異無統(tǒng)計(jì)學(xué)意義,表明miR-106b不能靶向結(jié)合MMP2基因3′-UTR區(qū)。與突變組(miR-106b+pGL3-M-MUT)相比,野生型熒光報(bào)告質(zhì)粒組(miR-106b+pGL3-M-WT) 中MMP2表達(dá)減少(P<0.01),表明miR-106b能特異性結(jié)合MMP2的3′-UTR(圖5D)。
突變型熒光報(bào)告質(zhì)粒與miR-106b抑制劑共轉(zhuǎn)染MCF-7(miR-106bI+pGL3-M-MUT)后,其熒光比值與對(duì)照組(miR-NCI+pGL3-M-MUT)差異無統(tǒng)計(jì)學(xué)意義,表明miR-106b不能靶向結(jié)合MMP2基因的3′-UTR區(qū)。野生型熒光報(bào)告質(zhì)粒組(miR-106bI+pGL3-M-WT)熒光比值顯著高于對(duì)照組(P<0.01),表明miR-106b受抑制后,MMP2 mRNA的表達(dá)增加(圖5E)。
圖4 miR-106b抑制乳腺癌細(xì)胞遷移和侵襲能力
2.6 MMP2和miR-106b對(duì)乳腺癌細(xì)胞遷移和侵襲能力的影響 免疫組織化學(xué)結(jié)果(圖6)顯示: MCF-7共轉(zhuǎn)染miR-106b抑制劑和MMP2無關(guān)干涉片段(106bI+si-NC)后,細(xì)胞遷移和侵襲能力較對(duì)照組(NCI+si-NC)增強(qiáng)。MCF-7共轉(zhuǎn)染miR-106b抑制劑和MMP2干涉片段(106bI+si-MMP2)后,細(xì)胞遷移和侵襲能力較對(duì)照組(106bI + si-NC)下降(P<0.01)。
2.7 miR-106b下調(diào)對(duì)乳腺癌細(xì)胞ERK表達(dá)的影響 Western 印跡結(jié)果顯示:SUM1315-bo中轉(zhuǎn)染miR-106b模擬劑或轉(zhuǎn)染MMP2干涉片段后,p-ERK/ERK表達(dá)較未轉(zhuǎn)染組減小(P<0.05,圖7A);MCF-7細(xì)胞中轉(zhuǎn)染miR-106b抑制劑,p-ERK/ ERK較未轉(zhuǎn)染組增大(P<0.05,圖7B)。
無條件培養(yǎng)基的HMSC定向分化為成骨細(xì)胞后,細(xì)胞中RANKL/OPG比值<1;SUM1315-bo的培養(yǎng)上清作為條件培養(yǎng)基培養(yǎng)的HMSC定向分化為成骨細(xì)胞后,細(xì)胞中RANKL/OPG比值>1;轉(zhuǎn)染MMP2干涉片段的SUM1315-bo的培養(yǎng)上清作為條件培養(yǎng)基培養(yǎng)HMSC,其定向分化的成骨細(xì)胞中RANKL/OPG比值<1(圖7C)。
圖5 miR-106b調(diào)控MMP2基因的表達(dá)
圖6 MMP2干涉片段能逆轉(zhuǎn)miR-106b抑制劑的功能
圖7 miR-106b下調(diào)對(duì)乳腺癌細(xì)胞ERK表達(dá)的影響
乳腺癌是女性患病和死亡人數(shù)最多的惡性腫瘤,約70%的乳腺癌會(huì)發(fā)生骨轉(zhuǎn)移[2],且骨轉(zhuǎn)移不能治愈。乳腺癌骨轉(zhuǎn)移后的5年生存率約20%[1]。本研究首次應(yīng)用免疫組織化學(xué)的方法在50例乳腺癌患者中證實(shí):乳腺原位腫瘤組織中MMP2表達(dá)高的患者乳腺癌骨轉(zhuǎn)移率高。本研究還通過正向和負(fù)向調(diào)節(jié)證實(shí):MMP2可促進(jìn)乳腺癌細(xì)胞遷移和侵襲,與研究[18]結(jié)論相似。
研究表明,腫瘤細(xì)胞miRNA表達(dá)水平的異常是腫瘤發(fā)生、發(fā)展的重要影響因素[19]。本研究前期的miRNA芯片結(jié)果[6]表明:乳腺癌細(xì)胞從乳腺組織到人骨組織的轉(zhuǎn)移過程中,miR-106b表達(dá)下調(diào)。本研究首次證實(shí):miR-106b在侵襲能力較強(qiáng)的乳腺癌細(xì)胞SUM1315-bo中表達(dá)較低;miR-106b可以抑制乳腺癌細(xì)胞的遷移和侵襲;miR-106b可能參與靶向下調(diào)MMP2基因的表達(dá)及下游ERK信號(hào)通路,從而抑制腫瘤細(xì)胞的遷移和侵襲。
RANK和其配體(RANKL)對(duì)骨骼改建、免疫系統(tǒng)成熟有重要作用[20];OPG作為游離的誘餌受體,能夠和RANK競(jìng)爭(zhēng)性結(jié)合RANKL。成骨細(xì)胞表達(dá)RANKL和OPG。OPG是RANKL假受體(decay receptor),它可以抑制體內(nèi)及體外破骨細(xì)胞的分化和骨質(zhì)重吸收。RANKL和OPG相對(duì)含量的多少?zèng)Q定了破骨細(xì)胞的活性。MMP2表達(dá)增高導(dǎo)致RANKL/OPG比值增加,使破骨細(xì)胞分化增多[21]。這是乳腺癌導(dǎo)致溶骨性骨轉(zhuǎn)移的經(jīng)典模式。本研究證實(shí),miR-106b/MMP2/ERK信號(hào)通路通過影響RANKL/OPG軸的平衡,從而誘導(dǎo)破骨細(xì)胞的分化最終促進(jìn)乳腺癌骨轉(zhuǎn)移。這說明MMP2不僅能增強(qiáng)腫瘤的侵襲,而且可通過影響腫瘤細(xì)胞、成骨細(xì)胞、破骨細(xì)胞之間的溶骨性信號(hào)通路促進(jìn)腫瘤細(xì)胞定居于骨髓微環(huán)境。
綜上所述,本研究在乳腺癌組織及多種乳腺癌細(xì)胞中證實(shí),miR-106b和MMP2的表達(dá)與癌細(xì)胞的遷移和侵襲相關(guān),其可能通過ERK信號(hào)通路發(fā)揮作用;靶向miR106b/MMP2/ERK信號(hào)通路可能成為乳腺癌骨轉(zhuǎn)移治療的潛在靶點(diǎn)。
[ 1 ] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017,67(1):7-30.
[ 2 ] ROODMAN G D. Mechanisms of bone metastasis[J].N Engl J Med, 2004,350(16):1655-1664.
[ 3 ] COSTA L, MAJOR P P. Effect of bisphosphonates on pain and quality of life in patients with bone metastases[J]. Nat Clin Pract Oncol, 2009,6(3):163-174.
[ 4 ] XIA T S, WANG J, YIN H, et al. Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer[J].Oncol Rep, 2010,24(1):203-211.
[ 5 ] PARUTHIYIL S, CVORO A, TAGLIAFERRI M, et al. Estrogen receptor β causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2[J]. Breast Cancer Res Treat, 2011,129(3):777-784.
[ 6 ] XIA T S, WANG G Z, DING Q, et al. Bone metastasis in a novel breast cancer mouse model containing human breast and human bone[J]. Breast Cancer Res Treat, 2012,132(2):471-486.
[ 7 ] ALLOTT E H, LYSAGHT J, CATHCART M C, et al. MMP9 expression in oesophageal adenocarcinoma is upregulated with visceral obesity and is associated with poor tumour differentiation[J].Mol Carcinog, 2013,52(2):144-154.
[ 8 ] REN F, TANG R, ZHANG X, et al. Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: a systematic review and Meta-analysis[J]. PLoS One, 2015,10(8):e0135544.
[ 9 ] SRIVASTAVA P, LONE T A, KAPOOR R, et al. Association of promoter polymorphisms in MMP2 and TIMP2 with prostate cancer susceptibility in North India[J]. Arch Med Res, 2012,43(2):117-124.
[10] GAO P, XING A Y, ZHOU G Y, et al. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer[J]. Oncogene, 2013,32(4):491-501.
[11] LOU L, YE W, CHEN Y, et al. Ardipusilloside inhibits survival, invasion and metastasis of human hepatocellular carcinoma cells[J]. Phytomedicine, 2012,19(7):603-608.
[12] CHEN J, LIU X, ZHANG J, et al. Targeting HMGB1 inhibits ovarian cancer growth and metastasis by lentivirus-mediated RNA interference[J]. J Cell Physiol, 2012,227(11):3629-3638.
[13] LAWICKI S, ZAJKOWSKA M, GLAZEWSKA E K, et al. Plasma levels and diagnostic utility of VEGF, MMP-2 and TIMP-2 in the diagnostics of breast cancer patients[J]. Biomarkers, 2017,22(2):157-164.
[14] LE QUESNE J, CALDAS C. Micro-RNAs and breast cancer[J]. Mol Oncol, 2010,4(3):230-241.
[15] YU Z, BASERGA R, CHEN L, et al. microRNA, cell cycle, and human breast cancer[J]. Am J Pathol, 2010,176(3):1058-1064.
[16] CAMPOS-PARRA A D, MITZNAHUATL G C, PEDROZA-TORRES A, et al. Micro-RNAs as potential predictors of response to breast cancer systemic therapy: future clinical implications[J]. Int J Mol Sci, 2017,18(6). pii: E1182.
[17] KIM Y K, KIM V N. Processing of intronic microRNAs[J]. EMBO J, 2007,26(3):775-783.
[18] SHIMODA M, KHOKHA R.Metalloproteinases in extracellular vesicles[J].Biochim Biophys Acta, 2017, 1864(11 Pt A):1989-2000.
[19] ZARE M, BASTAMI M, SOLALI S, et al. Aberrant miRNA promoter methylation and EMT-involving miRNAs in breast cancer metastasis: Diagnosis and therapeutic implications[J]. J Cell Physiol, 2017.[Epub ahead of print]
[20] SISAY M, MENGISTU G, EDESSA D. The RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer stem cell: potential targets for anticancer therapy[J]. Onco Targets Ther, 2017,10:3801-3810.
[21] MARTIN T J, SIMS N A. RANKL/OPG; Critical role in bone physiology[J]. Rev Endocr Metab Disord, 2015,16(2):131-139.
InactivationofmiR-106binducesbreastcancermetastasistoboneassociatedwithoverexpressionofmatrixmetalloproteinase2
NI Xiao-jian, ZHANG Hong-wei, ZHU Wei*
Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Objective: To investigate the function and mechanism of matrix metalloproteinase 2 (MMP2) and micro-RNA-106b (miR-106b) in the breast cancer bone metastasis.MethodsThe expressions of MMP2 and miR-106b were measured by immunohistochemistry, RT-PCR, and Western blotting in breast cancer bone metastasis tissue samples, and the relationship between MMP2 and clinical features of breast cancer bone metastasis patients was analyzed. The influence of MMP2 and miR-106b on migration and invasion of breast cancer cellsinvitrowas analyzed. The targeting relationship between miR-106b and MMP2 was confirmed by luciferase target assay. Western blotting was used to verify the regulated downstream signaling pathways.ResultsThe expression of MMP2 was higher in invasive cells, such as SUM1315-bo, but lower in less invasive breast cancer cells, such as MCF-7. However, the expression of miR-106b was opposite. Compared with breast cancer patients without bone metastasis, the expression of MMP2 protein in breast cancer patients with bone metastasis was higher, while the expression of miR-106b was the opposite. MMP2 promoted the migration and invasion of breast cancer cells, while miR-106b did the opposite (P<0.05). MiR-106b downregulated the expression of MMP2, and then affected the expression of downstream regulatory factor p-ERK/ERK. After downregulation of MMP2 gene in SUM1315-bo, the cultured human bone marrow-derived mesenchymal stem cell (HMSC) differentiated into osteoblasts, in which process receptor activator for nuclear factor-κ B ligand (RANKL) / osteoprotegerin (OPG) axis lost balance-the content of OPG increased and the content of RANKL decreased, resulting in reduced osteoclast differentiation (P<0.05).ConclusionsOverexpression of MMP2 may be one of the risk factors for bone metastasis in breast cancer, which may be related to the inactivation of miR-106b. MMP2 may promote the osteolytic bone metastasis of breast cancer by regulating the ERK signaling pathway. MiR-106b-MMP2-ERK signaling pathway has the potential to be a predictive factor and a therapeutic target for bone metastasis in breast cancer.
matrix metalloproteinase 2; miR-106b; bone metastasis; breast cancer
2017-06-21接受日期2017-08-07
國家自然科學(xué)基金(81702586, 81502267),復(fù)旦大學(xué)附屬中山醫(yī)院青年基金(2016ZSQN59). Supported by National Natural Science Foundation of China (81702586, 81502267) and Youth Foundation of Zhongshan Hospital, Fudan University (2016ZSQN59).
倪小健, 博士,住院醫(yī)師. E-mail:ni.xiaojian@zs-hospital.sh.cn
*通信作者(Corresponding author). Tel: 021-64041990-3207, E-mail:drzhu@163.com
10.12025/j.issn.1008-6358.2017.20170529
R 737.9
A
[本文編輯] 姬靜芳