邱克娥, 彭長文
(貴州師范學(xué)院 數(shù)學(xué)與計算機科學(xué)學(xué)院, 貴州 貴陽 550018)
關(guān)于Riemann-Liouville分?jǐn)?shù)積分的Hermite-Hadamard型不等式
邱克娥, 彭長文
(貴州師范學(xué)院 數(shù)學(xué)與計算機科學(xué)學(xué)院, 貴州 貴陽 550018)
主要建立2個關(guān)于已知函數(shù)導(dǎo)數(shù)的重要Hermite-Hadamard型Riemann-Liouville分?jǐn)?shù)積分恒等式,進而得到關(guān)于某些特殊凸函數(shù)有意義的Riemann-Liouville分?jǐn)?shù)積分的Hermite-Hadamard型不等式,如s-凸函數(shù)、m-凸函數(shù)、(s,m)-凸函數(shù)等.這些結(jié)果改進了一些文獻中的有關(guān)結(jié)果,并結(jié)合幾個常用的平均值給出應(yīng)用.
Riemann-Liouville分?jǐn)?shù)積分; Hermite-Hadamard型不等式;s-凸函數(shù);m-凸函數(shù); (s,m)-凸函數(shù)
1893年,Hermite和Hadamard給出了著名的Hadamard不等式(也叫Hermite-Hadamard不等式):若f(x)是閉區(qū)間[a,b]上的連續(xù)凸函數(shù),則有
等號當(dāng)且僅當(dāng)f(x)為線性函數(shù)時成立.近些年來,Hermite-Hadamard不等式受到廣泛關(guān)注并應(yīng)用于生產(chǎn)實際及計算機領(lǐng)域,參見文獻[1-3].更有許多學(xué)者對Hermite-Hadamard不等式做了大量的改進和推廣,M.Z.Sarikava等在文獻[4]的定理2中得到:設(shè)0≤a
其中
顯然Hermite-Hadamard不等式是Riemann-Liouville分?jǐn)?shù)積分的一種特殊形式,只需要α=1.對于分?jǐn)?shù)積分的有關(guān)結(jié)果,參看文獻[5-7].ZhuC.等在文獻[8]定理2.3中得到如下結(jié)果:
定理1[8]設(shè)a
受上述不等式的啟發(fā),本文主要建立關(guān)于s-凸函數(shù)、m-凸函數(shù)、(s,m)-凸函數(shù)的左Riemann-Liouville分?jǐn)?shù)積分的Hermite-Hadamard不等式,其中某些結(jié)果改進了上述不等式的結(jié)果.
為了方便,首先給出一些記號、凸函數(shù)的有關(guān)概念以及本文所需要的2個重要引理.記I是實數(shù)集R的一個子集,即I?R.
定義1[9]設(shè)函數(shù)f(x)在區(qū)間I?R+上有定義,若對任意x,y∈I和λ∈[0,1],都有
f(λx+(1-λ)y)≤λsf(x)+(1-λ)sf(y),
其中s∈(0,1],則稱f(x)是I上的s-凸函數(shù).
定義2[10]設(shè)函數(shù)f(x)在區(qū)間I?R+上有定義,若對任意x,y∈I和λ∈[0,1],都有
f(λx+m(1-λ)y)≤λf(x)+m(1-λ)f(y),
其中m∈[0,1],則稱f(x)是I上的m-凸函數(shù).
定義3[10]設(shè)函數(shù)f(x)在區(qū)間I?R+上有定義,若對任意x,y∈I和λ∈[0,1],都有
f(λx+m(1-λ)y)≤λsf(x)+m(1-λs)f(y),
其中(s,m)∈[0,1]×[0,1],則稱f(x)是I上的(s,m)-凸函數(shù).
不少學(xué)者關(guān)于s-凸函數(shù)、m-凸函數(shù)、(s,m)-凸函數(shù)得到許多Hermite-Hadamard不等式,可以參看文獻[10-12].關(guān)于其他類型凸函數(shù)如MT-凸函數(shù)、Schur-凸函數(shù)、GA-凸函數(shù)的相關(guān)不等式,參看文獻[13-15].
引理1設(shè)a
證明
I1+I2-I3-I4-I5+I6.
(1)
分別積分得
(2)
(3)
且
(4)
且
(5)
(6)
且
(7)
所以將(2)~(7)式代入(1)式可得
(8)
注1在引理1中,令α=1,則有
引理2設(shè)a 證明利用引理1,并注意到區(qū)間[a,mb]?[a,b],則該引理易得.證畢 2.1主要結(jié)果通過引理1和引理2得到如下結(jié)果,其中定理2中的分?jǐn)?shù)積分不等式是定理1中不等式的加細. 定理2設(shè)a 其中,0<α≤1,B是貝塔函數(shù); 其中α>1. 定理4設(shè)a 當(dāng)α≥1時,下列分?jǐn)?shù)積分不等式成立 2.2定理2的證明對任意t∈[0,1],由引理1及基本不等式(1+t)α<2α有 由于|f′(x)|是定義在[a,b]上的s-凸函數(shù),則對任意t∈[0,1],對某些固定的s∈(0,1]有 且 因此 通過簡單計算得到 由于對任意t∈[0,1],s∈(0,1],有不等式(1+t)s≤1+ts,所以 另一方面,對任意t∈[0,1],當(dāng)α∈(0,1],有不等式(1+t)α≥2α-1(1+tα),所以 當(dāng)α∈(1,∞)有不等式(1+t)α≥1+tα,所以 綜上所述,當(dāng)α∈(0,1]時 當(dāng)α∈(1,∞)時 因此 其中 K′= 定理2得證. 注2在定理2中取α=s=1,則 得到文獻[11]中的結(jié)果.該結(jié)果改進了文獻[8]中的結(jié)果. 且 與定理2證明類似可得,定理3結(jié)論成立.證畢. 2.4定理4的證明由于|f′(x)|是定義在[a,b]上的可測(s,m)-凸函數(shù),對任意t∈[0,1],對某(s,m)∈(0,1]2, 且 與定理2證明類似可得,定理4結(jié)論成立.證畢. 對任意實數(shù)α,β,α≠β,考慮文獻[12]中的以下平均值: 命題1設(shè)a,b∈R,a 證明設(shè)f(x)=xn,α=1,應(yīng)用定理2即可證.證畢. 命題2設(shè)a,b∈R,a 證明設(shè)f(x)=1/x,α=1,應(yīng)用定理2即可證.證畢. 命題3設(shè)a,b∈R{0},ab-1,0?[a,b],n∈Z且|n|≥2,則 同時 證明在命題1及命題2中,做替換a→b-1,b→a-1即可證.證畢. 致謝2015年省級本科教學(xué)工程建設(shè)項目(黔教高發(fā)[2015]337號)和基于ACM/ICPC問題驅(qū)動的《數(shù)據(jù)結(jié)構(gòu)》課程教學(xué)改革項目(黔教高發(fā)[2015]337號)對本文給予了資助,謹(jǐn)致謝意. [3] CAL J, CARCAMOB J, ESCAURIAZA L. A general multidimensional Hermite-Hadamard type inequality[J]. J Math Anal Appl,2009,356(2):659-663. [4] SARIKAYA M Z, SET E, YALDIZ H, et al. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities[J]. Math Comput Model,2013,57(9/10):2403-2407. [5] DAHMANI Z. New inequalities in fractional integrals[J]. Nonlinear Sci,2010,9(4):493-497. [6] DAHMANI Z. On Minkowski and Hermite-Hadamard integral inequalities via fractional integration[J]. Ann Funct Anal,2010,1(1):51-58. [7] Dahmani Z. On some new fractional integral inequalities[J]. Inter J Math Anal,2010,4(4):185-191. [8] ZHU C, FECKAN M, WANG J. Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula[J]. J Appl Math:Statistics and Informatics,2012,8(2):21-28. [9] HUDZIK H, MALIGRANDA L. Some remarks ons-convex functions[J]. Aequationes Mathematicae,1994,48(1):100-111. [10] TUNC M. On new inequalities form-convex functions via Riemmann-Liouville fractional integration[J]. Filomat,2013,27(4):559-565. [11] KIRMACI U S. Hermite-Hadamard type inequalities fors-convex functions[J]. Appl Math Comput,2007,19(3):26-35. [13] CHU Y M, KHAN M A, KHAN T U, et al. Generalizations of Hermite-Hadamard type inequalities for MT-convex functions[J]. Nonlinear Sci Appl,2016,9(6):4305-4316. [14] CHU Y M, WANG G D, ZHANG X H. Schur convexity and Hadamard’s inequality[J]. Math Ineq Appl,2010,13(4):725-731. [15] ZHANG X M, CHU Y M, ZHANG X H. The Hermite-Hadamard type inequality of GA-convex functions and its application[J]. J Ineq Appl,2010,11(1):1-11. On Hermite-Hadamard-type Inequalities for Riemann-Liouville Fractional Integrals QIU Ke’e, PENG Changwen (InstituteofMathematicsandComputerScience,GuizhouNormalUniversity,Guiyang550018,Guizhou) In this paper, we explore two important Hermite-Hadamard-type fractional integral identities including the first-order derivative of a given function. With the help of the fractional integral identities, some interesting and important Hermite-Hadamard’s inequalities involving Riemann-Liouville fractional integrals fors-convex,m-convex, (s,m)-convex functions are established, respectively. The results obtained in this paper provide a refinement of previously known results in the literature and some applications to special means of real numbers. Riemann-Liouville fractional integrals; Hermite-Hadamard type inequalities;s-convex functions;m-convex functions; (s,m)-convex functions 2016-02-15 貴州省科學(xué)技術(shù)基金(黔科合J字[2014]2142)、貴州省教育廳自然科學(xué)研究項目(黔教合KY字[2015]422號)和卓越工程師教育培養(yǎng)計劃項目(黔教高發(fā)[2013]446號) 邱克娥(1986—),女,講師,主要從事函數(shù)論的研究,E-mail:qke456@sina.com O122.3 A 1001-8395(2017)05-0644-07 10.3969/j.issn.1001-8395.2017.05.014 2010MSC:26A15; 26A51 (編輯 李德華)2 主要結(jié)果及證明
3 應(yīng)用