葉金印,張錦堂,黃 勇,安晶晶,葉正陽
(1:安徽省氣象臺(tái),合肥 230031)(2:安徽省大氣科學(xué)與衛(wèi)星遙感重點(diǎn)實(shí)驗(yàn)室,合肥 230031)(3:安徽省水文局,合肥 230031)(4:南京信息工程大學(xué)大氣科學(xué)學(xué)院,南京 210044)
大別山庫區(qū)降水預(yù)報(bào)性能評(píng)估及應(yīng)用對(duì)策*
葉金印1,2,張錦堂3,黃 勇2,安晶晶1,葉正陽4
(1:安徽省氣象臺(tái),合肥 230031)(2:安徽省大氣科學(xué)與衛(wèi)星遙感重點(diǎn)實(shí)驗(yàn)室,合肥 230031)(3:安徽省水文局,合肥 230031)(4:南京信息工程大學(xué)大氣科學(xué)學(xué)院,南京 210044)
對(duì)降水預(yù)報(bào)進(jìn)行性能評(píng)估及應(yīng)用對(duì)策研究可以更好地發(fā)揮降水預(yù)報(bào)在水庫調(diào)度中的決策支持作用. 基于大別山庫區(qū)近10 a汛期(2007-2016年5月1日-9月30日)24~168 h共7個(gè)預(yù)見期降水預(yù)報(bào)和地面降水觀測(cè)資料,采用正確率、TS評(píng)分、概率統(tǒng)計(jì)、ROC曲線以及CTS等方法評(píng)估大別山庫區(qū)降水預(yù)報(bào)性能,并以響洪甸水庫為重點(diǎn)研究區(qū)域分析降水預(yù)報(bào)在水庫調(diào)度中的應(yīng)用對(duì)策. 結(jié)果表明:1)大別山庫區(qū)各量級(jí)的降水預(yù)報(bào)都有正預(yù)報(bào)技巧;24~72 h預(yù)見期降水預(yù)報(bào)的TS評(píng)分較高且空?qǐng)?bào)率、漏報(bào)率也較低,具有較高的預(yù)報(bào)性能;但96 h及以上預(yù)見期降水預(yù)報(bào)性能明顯下降,中雨以上量級(jí)空?qǐng)?bào)率、漏報(bào)率較大,特別是對(duì)大暴雨及其以上量級(jí)的降水預(yù)報(bào)性能顯著下降. 2)大別山庫區(qū)預(yù)報(bào)降水量級(jí)與實(shí)況降水量級(jí)基本符合,預(yù)報(bào)降水量級(jí)大于等于實(shí)況降水量級(jí)的概率超過75%;雖然降水預(yù)報(bào)量級(jí)上呈現(xiàn)出過度預(yù)報(bào)的現(xiàn)象,但降水過程預(yù)報(bào)對(duì)水庫調(diào)度仍有較好的應(yīng)用價(jià)值,應(yīng)用時(shí)要考慮到降水預(yù)報(bào)量級(jí)可能存在偏差. 3)轉(zhuǎn)折性天氣預(yù)報(bào)96 h及以上預(yù)見期CTS評(píng)分較低,但72 h以內(nèi)預(yù)見期的性能明顯改進(jìn),尤其是24 h預(yù)見期CTS評(píng)分也提高到了38.2%;水庫調(diào)度可從長(zhǎng)預(yù)見期的降水預(yù)報(bào)獲取降水過程及其可能發(fā)生轉(zhuǎn)折的信息,根據(jù)短預(yù)見期的降水預(yù)報(bào)進(jìn)行調(diào)度方案調(diào)整.
大別山庫區(qū);降水預(yù)報(bào);性能評(píng)估;水庫調(diào)度;應(yīng)用對(duì)策;響洪甸水庫
降水預(yù)報(bào)是防汛抗旱決策的重要科學(xué)依據(jù)[1-2],利用天氣預(yù)報(bào)進(jìn)行科學(xué)調(diào)度和防控是防汛抗旱重要的非工程措施之一[3-4]. 水庫作為防汛抗旱主要工程性措施,通過削峰填谷,在時(shí)空上重新分配水量,達(dá)到防洪錯(cuò)峰、蓄水興利的目的,實(shí)現(xiàn)洪水資源安全利用[5]. 選用不同預(yù)見期降水預(yù)報(bào)信息,采用工程性措施與非工程性措施相結(jié)合的方法可為洪水資源利用、防汛抗洪物資調(diào)配提前提供決策支持信息,為抗洪搶險(xiǎn)贏得寶貴時(shí)間[6].
根據(jù)降水預(yù)報(bào)信息可提高入庫洪量、洪水入庫流量過程預(yù)報(bào)精度和延長(zhǎng)預(yù)見期,以提前對(duì)洪水過程進(jìn)行調(diào)度分析,確定是否進(jìn)行預(yù)泄洪水或蓄水,以最大限度地減少洪水風(fēng)險(xiǎn)和實(shí)現(xiàn)洪水資源利用[7-8]. 準(zhǔn)確地把握降水預(yù)報(bào)性能并有效利用降水預(yù)報(bào),對(duì)于水庫科學(xué)調(diào)度,保障人民生命財(cái)產(chǎn)安全和發(fā)揮經(jīng)濟(jì)社會(huì)效益有重要價(jià)值[9-11].
大別山區(qū)屬于典型的亞熱帶季風(fēng)氣候區(qū),具有氣候溫和、雨量充沛的特點(diǎn). 尤其汛期北方大陸性氣團(tuán)和南方暖濕氣團(tuán)在此交匯,亦常常受到內(nèi)陸臺(tái)風(fēng)低壓環(huán)流的影響,而且山區(qū)地形抬升對(duì)降雨量的增幅較明顯,在大別山區(qū)形成一個(gè)多雨中心,造成該地區(qū)山洪災(zāi)害頻發(fā)[12],尤其是大別山北麓的淠、史河上游洪水亦會(huì)造成淮河流域中下游地區(qū)大范圍洪水,嚴(yán)重影響和制約了淮河流域社會(huì)經(jīng)濟(jì)可持續(xù)發(fā)展[13-14]. 因此,把握大別山庫區(qū)降水預(yù)報(bào)性能并將其運(yùn)用到水庫調(diào)度,對(duì)于減輕大別山區(qū)山洪災(zāi)害及發(fā)揮水庫防洪、蓄水灌溉和發(fā)電效益有著重要的現(xiàn)實(shí)意義[15-16].
本文對(duì)近10 a大別山庫區(qū)降水預(yù)報(bào)進(jìn)行性能評(píng)估,并以響洪甸水庫為重點(diǎn)研究區(qū)域分析水庫調(diào)度應(yīng)用對(duì)策,以更好地發(fā)揮降水預(yù)報(bào)在水庫防洪、蓄水灌溉發(fā)電調(diào)度工作中的決策支持作用.
以大別山區(qū)北麓淠河、史河上游的梅山、響洪甸、佛子嶺、磨子潭和白蓮崖等5座水庫集水區(qū)為降水預(yù)報(bào)性能評(píng)估研究區(qū)域. 水庫集水區(qū)面積為5210 km2,其中梅山水庫位于史河上游,響洪甸水庫位于淠河西源支流上游,佛子嶺水庫位于淠河?xùn)|源支流,磨子潭、白蓮崖為佛子嶺水庫上游的梯級(jí)水庫(圖1). 以響洪甸水庫為重點(diǎn)研究區(qū)域,分析降水預(yù)報(bào)在水庫調(diào)度中的應(yīng)用對(duì)策.
圖1大別山水庫集水區(qū)及氣象水文站點(diǎn)Fig.1 The reservoir watersheds in Dabie Mountain area and the locations of rain gauge and streamflow stations
選擇霍山、金寨2個(gè)國(guó)家級(jí)氣象站作為研究大別山庫區(qū)降水預(yù)報(bào)性能的代表站,2007-2016年5月1日-9月30日的逐日降水分級(jí)預(yù)報(bào)資料來源于安徽省氣象臺(tái),逐日降水預(yù)報(bào)劃分為7個(gè)預(yù)見期:0~24、24~48、48~72、72~96、96~120、120~144、144~168 h(北京時(shí)間20時(shí)為日界,下同). 2個(gè)國(guó)家級(jí)氣象站地面降水觀測(cè)資料采用安徽省氣象信息中心提供的整編資料.
采用中國(guó)氣象局《中短期天氣預(yù)報(bào)質(zhì)量檢驗(yàn)辦法》中規(guī)定的正確率(Percentage Correct,PC)、TS評(píng)分(Threat Score,風(fēng)險(xiǎn)評(píng)分,簡(jiǎn)稱TS)、漏報(bào)率(PO)、空?qǐng)?bào)率(FAR)等業(yè)務(wù)評(píng)分方法,以及ROC曲線(Receiver Operating Characteristic Curve,相對(duì)特征運(yùn)行曲線)、概率統(tǒng)計(jì)、轉(zhuǎn)折天氣評(píng)分(CTS)等方法評(píng)估無雨、小雨、中雨、大雨、暴雨、大暴雨、特大暴雨7個(gè)量級(jí)的降水預(yù)報(bào). 降水量分級(jí)采用中國(guó)氣象局日降水量等級(jí)劃分標(biāo)準(zhǔn):小雨(0.1~9.9 mm)、中雨(10.0~24.9 mm)、大雨(25.0~49.9 mm)、暴雨(50.0~99.9 mm)、大暴雨(100.0~250.0 mm)和特大暴雨(>250 mm).
表1 預(yù)報(bào)與實(shí)況列聯(lián)表*
Tab.1 The contingency table of the dimorphic distribution
預(yù)報(bào)(有)預(yù)報(bào)(無)實(shí)況(有)NANC實(shí)況(無)NBND
*NA為預(yù)報(bào)正確次數(shù),NB為空?qǐng)?bào)次數(shù),NC為漏報(bào)次數(shù),ND為“無降水”預(yù)報(bào)正確次數(shù).
對(duì)2個(gè)國(guó)家級(jí)氣象站逐日預(yù)報(bào)中“有”“無”(某量級(jí))降水和實(shí)況“有”“無”(某量級(jí))降水結(jié)果構(gòu)成預(yù)報(bào)與實(shí)況列聯(lián)表(表1).
“有”“無”降水預(yù)報(bào)(晴雨預(yù)報(bào))正確率(PC)計(jì)算公式為:
PC=(NA+ND)/(NA+NB+NC+ND)×100%
(1)
式中,NA、NB、NC、ND含義見表1,下同.
TS評(píng)分(TS)、漏報(bào)率(PO)以及空?qǐng)?bào)率(FAR)計(jì)算公式分別為:
TSk=NAk/(NAk+NBk+NCk)×100%
(2)
POk=NCk/(NAk+NCk)×100%
(3)
FARk=NBk/(NAk+NBk)×100%
(4)
式中,k代表降水量級(jí). 漏報(bào)率為實(shí)況量級(jí)高于預(yù)報(bào)量級(jí)在預(yù)報(bào)中的比例,說明了預(yù)報(bào)不足的現(xiàn)象. 空?qǐng)?bào)率為實(shí)況量級(jí)低于預(yù)報(bào)量級(jí)在預(yù)報(bào)中的比例,反映了預(yù)報(bào)過度的現(xiàn)象.TS評(píng)分為實(shí)況與預(yù)報(bào)量級(jí)一致在預(yù)報(bào)中的比例,數(shù)值越大表明預(yù)報(bào)越準(zhǔn)確.
各等級(jí)降水預(yù)報(bào)對(duì)應(yīng)的實(shí)際降水量級(jí)概率(P)計(jì)算公式為:
Pk=Nki/Nk×100%
(5)
式中,Nk為預(yù)報(bào)k等級(jí)降水次數(shù),Nki為預(yù)報(bào)k等級(jí)降水預(yù)報(bào)時(shí)實(shí)際發(fā)生的i等級(jí)降水次數(shù).
相對(duì)特征運(yùn)行曲線(ROC曲線)分析方法廣泛應(yīng)用于概率天氣預(yù)報(bào)技巧檢驗(yàn)[17].ROC曲線是以虛警率為橫坐標(biāo),命中率為縱坐標(biāo)繪制的曲線. 命中率(Rhit)、虛警率(Rfalsealarm)計(jì)算公式分別為:
Rhit=NA/(NA+NC)×100%
(6)
Rfalsealarm=NB/(NB+ND)×100%
(7)
ROC曲線和橫坐標(biāo)構(gòu)成的面積為AUC值(Area Under Curve),ROC曲線位于對(duì)角線上方時(shí),命中率大于虛警率,即當(dāng)AUC>0.5時(shí),有正的預(yù)報(bào)價(jià)值.
轉(zhuǎn)折性天氣是指從無到有或者從有到無的轉(zhuǎn)折性降水過程. 若預(yù)報(bào)與實(shí)況一致,則判定轉(zhuǎn)折性天氣預(yù)報(bào)正確;預(yù)報(bào)出現(xiàn)轉(zhuǎn)折天氣而實(shí)況沒有出現(xiàn)則判定為空?qǐng)?bào),實(shí)況出現(xiàn)了轉(zhuǎn)折性天氣而未能預(yù)報(bào)則判定為漏報(bào)[18].
轉(zhuǎn)折性天氣預(yù)報(bào)評(píng)分(CTS):
CTS=CNA/(CNS+CNY-CNA)×100%
(8)
轉(zhuǎn)折天氣空?qǐng)?bào)率:
CFAR=(CNY-CNA)/CNY×100%
(9)
轉(zhuǎn)折天氣漏報(bào)率:
CPO=(CNS-CNA)/CNS×100%
(10)
式中,CNS為實(shí)況轉(zhuǎn)折性天氣的數(shù)量,CNY為預(yù)報(bào)轉(zhuǎn)折性天氣的數(shù)量,CNA為實(shí)況和預(yù)報(bào)均為轉(zhuǎn)折性天氣,并且轉(zhuǎn)折過程類型相同.
圖2 不同降水量級(jí)預(yù)報(bào)的TS評(píng)分、空?qǐng)?bào)率和漏報(bào)率Fig.2 TS score,false alarm rate and missing forecast rate of different level precipitation forecasts
對(duì)2007-2016年汛期(5月1日-9月30日)逐年實(shí)況降水觀測(cè)數(shù)據(jù)以及24~168 h預(yù)見期降水預(yù)報(bào)數(shù)據(jù)分不同量級(jí)和預(yù)見期進(jìn)行統(tǒng)計(jì). 因特大暴雨出現(xiàn)的次數(shù)非常少,10 a來也未對(duì)大別山庫區(qū)未作出過“特大暴雨”預(yù)報(bào),為便于分析將“特大暴雨”合并到“大暴雨”進(jìn)行處理分析. 對(duì)7個(gè)預(yù)見期內(nèi)“有”“無”降水預(yù)報(bào)(不分量級(jí))統(tǒng)計(jì)晴雨預(yù)報(bào)正確率,對(duì)各降水量級(jí)不分預(yù)見期計(jì)算TS評(píng)分、空?qǐng)?bào)率和漏報(bào)率(圖2).
晴雨預(yù)報(bào)正確率為74.3%,表明在不考慮量級(jí)的情況下,晴雨預(yù)報(bào)的性能較高. 小雨、中雨、大雨、暴雨、大暴雨量級(jí)對(duì)應(yīng)的TS評(píng)分分別為:39.0%、13.2%、9.4%、9.0%和2.0%,隨著降水量級(jí)增大明顯下降,空?qǐng)?bào)率和漏報(bào)率明顯提升. 大別山庫區(qū)汛期以鋒面和江淮氣旋降雨為最多,由于此類降水系統(tǒng)雨區(qū)范圍大,降雨量空間變異性相對(duì)較小,預(yù)報(bào)性能相對(duì)較高;切變線、低空急流、低渦及臺(tái)風(fēng)是產(chǎn)生大別山庫區(qū)強(qiáng)降水的主要天氣系統(tǒng),此類天氣系統(tǒng)的強(qiáng)雨帶和雨量中心位置不確定性大;此外,大別山地形地貌不僅對(duì)降水有明顯的增幅作用,而且有利于局地性和突發(fā)性中小尺度天氣系統(tǒng)生成和發(fā)展[2],導(dǎo)致大量級(jí)降水的預(yù)報(bào)難度較高,對(duì)應(yīng)的TS評(píng)分隨之降低.
大別山庫區(qū)降水預(yù)報(bào)性能隨預(yù)見期延長(zhǎng)呈現(xiàn)整體下降趨勢(shì)(圖3). 24~72 h預(yù)見期,TS評(píng)分較高且空?qǐng)?bào)率、漏報(bào)率也較低,具有較高的預(yù)報(bào)性能;96 h及以上預(yù)見期,中雨以上量級(jí)空?qǐng)?bào)率、漏報(bào)率較大,降水預(yù)報(bào)性能明顯下降,特別是對(duì)大暴雨及其以上量級(jí)的降水預(yù)報(bào)性能顯著下降. 各預(yù)見期晴雨預(yù)報(bào)正確率均在64%以上,表明對(duì)降水范圍的預(yù)報(bào)能力較高,但對(duì)強(qiáng)降水中心的預(yù)報(bào)能力較差.
降水預(yù)報(bào)具有較大的誤差和不確定性,主要體現(xiàn)在位置偏差、量級(jí)偏差以及降水開始或結(jié)束時(shí)間的偏差,并且這種偏差隨時(shí)間累積而增大. 深入認(rèn)知降水預(yù)報(bào)的性能,發(fā)掘降水預(yù)報(bào)的有效性和確定性信息,可為水庫調(diào)度提供科學(xué)的決策支持信息.
選擇所有預(yù)見期預(yù)報(bào)有降水以及實(shí)際發(fā)生降水的天氣個(gè)例構(gòu)成統(tǒng)計(jì)樣本,分析各量級(jí)降水預(yù)報(bào)對(duì)應(yīng)的實(shí)際降水量級(jí)概率以及各量級(jí)預(yù)報(bào)下的降水量期望值(表2). 預(yù)報(bào)降水量級(jí)主要分布在實(shí)況降水量級(jí)附近及以上,預(yù)報(bào)降水量級(jí)大于等于實(shí)況降水量級(jí)的概率超過75%,預(yù)報(bào)量級(jí)上呈現(xiàn)出過度預(yù)報(bào)的特點(diǎn). 隨預(yù)報(bào)量級(jí)的增大,實(shí)況出現(xiàn)小雨或無雨的概率明顯減小,而實(shí)況出現(xiàn)中雨、大雨、暴雨、大暴雨的概率明顯上升,說明對(duì)大別山庫區(qū)的降水過程預(yù)報(bào)具有較好的性能.
圖3 不同預(yù)見期各量級(jí)降水預(yù)報(bào)TS評(píng)分、空?qǐng)?bào)率和漏報(bào)率Fig.3 TS score,false alarm rate and missing alarm rate of different level precipitation forecasts in different lead time
預(yù)報(bào)等級(jí)降水概率小雨/%中雨/%大雨/%暴雨/%大暴雨/%最小期望值/mm最大期望值/mm小雨41.013.38.14.01.06.7717.91中雨40.618.813.97.82.211.8628.93大雨36.519.917.411.83.015.6136.54暴雨32.319.719.215.45.620.3947.07大暴雨19.515.022.531.59.532.5772.11
圖4 各量級(jí)降雨條件下響洪甸入庫流量過程線Fig.4 The flow hydrograph of flood discharge of Xianghongdian Reservoir under the condition of rainfall
對(duì)于水庫調(diào)度而言,需根據(jù)不同量級(jí)的降水預(yù)報(bào)作出不同的響應(yīng). 以大別山庫區(qū)響洪甸水庫2016年6月12日2時(shí)水位(125 m,汛限水位)為起點(diǎn),此時(shí)前期影響降雨量為18.9 mm,以未來24 h降水預(yù)報(bào)(取各量級(jí)雨量上限)為驅(qū)動(dòng),采用水利部淮河水利委員會(huì)編的《淮河流域淮河水系實(shí)用水文預(yù)報(bào)方案》中的降雨徑流關(guān)系模型[19]計(jì)算相同降雨徑流關(guān)系下的入庫流量過程線(圖4). 需要說明的是,本文采用的降水預(yù)報(bào)資料是24 h間隔的時(shí)段累積量分級(jí)預(yù)報(bào),將未來24 h降雨預(yù)報(bào)量平均分配到24 h作為模型輸入. 由于預(yù)報(bào)資料的局限性,這種時(shí)間上的均化處理方式(沒有考慮雨型分布)不可避免地帶來徑流模擬過程坦化現(xiàn)象.
水庫在不進(jìn)行下泄條件下24 h的小雨、中雨、大雨的最大入庫流量差別不明顯,分別為100、170、364 m3/s;暴雨條件下最大入庫流量增大至859 m3/s;大暴雨條件下迅速增大至2930 m3/s. 在小雨、中雨和大雨預(yù)報(bào)條件下水庫水位峰值分別為125.17、125.29、125.59 m,漲幅較小;暴雨條件下水庫水位峰值為126.27 m,尤其是大暴雨條件下顯著上漲至129.01 m,漲幅達(dá)4.01 m.
以2016年6月12日2時(shí)水位(125 m,汛限水位)為起點(diǎn),根據(jù)入庫洪量及水庫參數(shù)并參考下游允許泄量對(duì)不同歷時(shí)庫水位上漲0、0.5、1.0、2.0 m的下泄方案流量進(jìn)行計(jì)算,不同雨量級(jí)和下泄時(shí)間對(duì)于不同目標(biāo)庫水位對(duì)應(yīng)著不同的泄流量(表3).
表3 不同歷時(shí)下泄方案流量(m3/s)
小雨、中雨、大雨量級(jí)降水過程對(duì)水庫水位影響較小,根據(jù)降水預(yù)報(bào)可適當(dāng)預(yù)泄或在降雨匯入水庫進(jìn)行實(shí)時(shí)調(diào)度,對(duì)于暴雨及以上量級(jí)的降水預(yù)報(bào)應(yīng)提前做好準(zhǔn)備,根據(jù)預(yù)報(bào)降雨量及徑流深,推求入庫流量過程線,綜合入庫洪量和調(diào)度目標(biāo)對(duì)水庫做合理預(yù)泄.
在暴雨量級(jí)下,以庫水位漲幅為零為調(diào)度目標(biāo),12、24、48、72 h對(duì)應(yīng)下泄流量分別為1789.81、894.91、447.45、298.30 m3/s,由于入庫流量過程線中流量峰值為859 m3/s,考慮到消峰作用只有泄流歷時(shí)大于48 h的下泄方案為合理. 同理可對(duì)漲幅0.5、1.0 m的下泄方案進(jìn)行分析.
暴雨量級(jí)降雨條件下,在下泄為零情況下水庫最高水位為126.27 m,達(dá)不到2.0 m漲幅,對(duì)降雨匯流過程結(jié)束時(shí)相對(duì)起始狀態(tài)水位漲幅2.0 m的調(diào)度目標(biāo)無需對(duì)庫容預(yù)泄. 在大暴雨量級(jí)降水條件下,入庫流量峰值為2930 m3/s,若以降雨結(jié)束時(shí)保持起始狀態(tài)水位(0 m)為調(diào)度目標(biāo),72~48 h內(nèi)調(diào)度方案都能起到消峰作用. 對(duì)水文漲幅0.5、1.0、2.0 m不同調(diào)度目標(biāo),選取不同的調(diào)度方案起到消峰錯(cuò)峰和減緩下游壓力的作用.
除防洪以外供水發(fā)電灌溉也是水庫的重要功能,掌握降水預(yù)報(bào)的偏差和不確定性,可以避免大量棄水損失. 小雨、中雨的降雨量期望值均大于小雨、中雨雨量值范圍(表2),在此預(yù)報(bào)條件下由于小雨、中雨、大雨對(duì)水庫水位影響較小,在此可不做分析. 以未來24 h預(yù)報(bào)為暴雨、大暴雨,用各雨量級(jí)降雨量期望值上限對(duì)水庫調(diào)度預(yù)泄量計(jì)算來作為水庫的預(yù)泄值,并結(jié)合實(shí)時(shí)雨水情進(jìn)行相應(yīng)調(diào)整,可以對(duì)水庫庫容做到有效控制,既滿足了水庫防洪要求,保證水庫及下游安全同時(shí)也保障了水庫的生產(chǎn)效益.
利用降水預(yù)報(bào)和實(shí)況結(jié)果分別計(jì)算不同量級(jí)NA、NB、NC、ND值得到ROC曲線(圖5),以進(jìn)一步檢驗(yàn)不同預(yù)見期的不同量級(jí)降水預(yù)報(bào)性能. 各時(shí)次各量級(jí)的降水預(yù)報(bào)ROC特征曲線都在對(duì)角線以上,表明降水預(yù)報(bào)對(duì)各量級(jí)的降水都有正預(yù)報(bào)技巧. 但是各量級(jí)的AUC面積隨預(yù)見期增長(zhǎng)呈顯著下降,且超過24h預(yù)見期的降水預(yù)報(bào)下降趨勢(shì)明顯.
圖5 小雨(a)、中雨(b)、大雨(c)、暴雨(d)、大暴雨(e)及其以上量級(jí)降水預(yù)報(bào)ROC曲線Fig.5 The ROC curves of different precipitation levels
降雨預(yù)報(bào)性能隨預(yù)見期縮短有所提高,應(yīng)根據(jù)最新降水預(yù)報(bào)對(duì)水庫調(diào)度方案進(jìn)行調(diào)整,制定更合理的預(yù)泄或蓄水方案. 不同預(yù)見期的降雨預(yù)報(bào)體現(xiàn)在對(duì)某一時(shí)段降雨量預(yù)報(bào)的時(shí)間長(zhǎng)度,對(duì)于同一地區(qū)前期降雨條件相同情況下,降雨徑流關(guān)系是確定的,推求的入庫流量過程線以及對(duì)應(yīng)的入庫洪量一定. 對(duì)未來24 h預(yù)報(bào)為暴雨,響洪甸水庫在預(yù)見期為72、48、24 h所設(shè)計(jì)的下泄流量分別為295.5、443.3、886.6 m3/s. 降水預(yù)報(bào)的預(yù)見期越長(zhǎng),對(duì)水庫預(yù)泄的時(shí)間就可以較長(zhǎng),相應(yīng)下泄流量變小. 降低預(yù)泄流量的意義就在于避免短時(shí)下泄大水量,降低對(duì)下游的壓力做到消峰錯(cuò)峰效果,也可避免降水預(yù)報(bào)出現(xiàn)較大誤差造成后期無水可蓄;若后期降雨增大可適時(shí)加大下泄量增加機(jī)動(dòng)性能.
轉(zhuǎn)折性天氣是指從無降雨到有降雨或者從有降雨到無降雨的天氣變化過程. 轉(zhuǎn)折性天氣的降水范圍和強(qiáng)度預(yù)報(bào)難度要高于穩(wěn)定型天氣,但是轉(zhuǎn)折性天氣降水預(yù)報(bào)對(duì)于水庫調(diào)度策略制定非常重要. 對(duì)所有轉(zhuǎn)折性天氣個(gè)例分不同預(yù)見期分析其CTS評(píng)分、空?qǐng)?bào)率、漏報(bào)率(圖6).
圖6 轉(zhuǎn)折性天氣CTS、空?qǐng)?bào)率、漏報(bào)率隨預(yù)見期變化Fig.6 The variation of CTS score,false alarm rate and missing alarm rate of intransition weather with different lead time
96 h以上預(yù)見期預(yù)報(bào)CTS評(píng)分低于或者接近于20%,空?qǐng)?bào)率和漏報(bào)率均高于60%;72 h以內(nèi)空?qǐng)?bào)率和漏報(bào)率明顯下降,尤其是24 h預(yù)見期空?qǐng)?bào)率和漏報(bào)率均在50%以下,CTS評(píng)分也提高到了38.2%,短預(yù)見期的轉(zhuǎn)折性天氣降水預(yù)報(bào)仍然有指示意義(圖6).
以2016年6月20日至10月11日響洪甸水庫運(yùn)行狀態(tài)為例,進(jìn)一步分析轉(zhuǎn)折性天氣降水預(yù)報(bào)在水庫調(diào)度中的應(yīng)用. 圖7為6月20日至10月11日響洪甸水庫流域的面雨量、水庫的下泄流量和水庫水位過程線.
圖7 響洪甸水庫面雨量、泄流量、水位過程線Fig.7 Areal main rainfall,discharge and water level of Xianghongdian Reservoir
6月30日前后大別山庫區(qū)出現(xiàn)了一次強(qiáng)降雨過程,由于水庫未進(jìn)行預(yù)泄導(dǎo)致水庫水位快速上升,峰值達(dá)到129.41 m,隨即水庫加大下泄流量,最大泄流量達(dá)1000 m3/s,使水位快速回落到起始水平,未進(jìn)行蓄水. 在此次降雨過程結(jié)束后至10月11日期間降雨較少且雨量級(jí)較小,最大日面雨量?jī)H35 mm,其中7月22日至8月1日、8月9日至9月14日、9月17日至9月26日無降雨,10月11日水位落至116.95 m. 至9月17日期間水庫泄流量基本保持在123 m3/s左右,主要用來發(fā)電,9月17日開始水庫發(fā)電洞關(guān)閉. 由于沒有做到對(duì)轉(zhuǎn)折性天氣下水庫的合理調(diào)度,未對(duì)6月30日的強(qiáng)降水做到合理預(yù)泄和水資源有效利用,致使水庫最高水位達(dá)129.41 m,超汛限水位4.41 m,超正常蓄水位1.41 m;因下泄造成汛限水位和正常蓄水位之間的庫容沒有有效利用,后期又因降水少、發(fā)電消耗導(dǎo)致庫水位逐漸降低,9月17日起關(guān)閉發(fā)電洞,影響了生產(chǎn)效益.
由此可見,轉(zhuǎn)折性天氣預(yù)報(bào)對(duì)于水庫的調(diào)度非常重要,從無降雨到有降雨的轉(zhuǎn)折過程需要對(duì)降雨預(yù)報(bào)量級(jí)、預(yù)見期、水庫參數(shù)及調(diào)度的目標(biāo)綜合考慮進(jìn)行水庫調(diào)度,起到消峰錯(cuò)峰的作用確保水庫安全;從有降雨到無降雨的過程則需要考慮前期降雨量、水庫當(dāng)前狀態(tài)以及雨后水庫供水、發(fā)電、灌溉等方面用水的需求,對(duì)水庫調(diào)度方案進(jìn)行調(diào)整,做到汛前棄水保安全,汛后蓄水保效益.
1)大別山庫區(qū)各量級(jí)的降水預(yù)報(bào)都有正預(yù)報(bào)技巧,但隨預(yù)見期延長(zhǎng)顯著下降. 72 h預(yù)見期降雨預(yù)報(bào)具有較高的預(yù)報(bào)性能;96 h及以上預(yù)見期降水預(yù)報(bào)性能明顯下降,特別是對(duì)大暴雨及其以上量級(jí)的降水預(yù)報(bào)性能顯著下降. 大別山庫區(qū)降水預(yù)報(bào)量級(jí)上呈現(xiàn)出過度預(yù)報(bào)的現(xiàn)象,但降水過程預(yù)報(bào)對(duì)水庫調(diào)度仍有較好的應(yīng)用價(jià)值,可綜合入庫洪量和調(diào)度目標(biāo)對(duì)水庫做合理預(yù)泄,并結(jié)合實(shí)時(shí)雨水情進(jìn)行相應(yīng)調(diào)整.
2)轉(zhuǎn)折性天氣預(yù)報(bào)一直是天氣預(yù)報(bào)的難點(diǎn). 雖大別山庫區(qū)轉(zhuǎn)折性天氣預(yù)報(bào)性能與連續(xù)性降水預(yù)報(bào)性能相比明顯較低,但可從長(zhǎng)預(yù)見期的降水預(yù)報(bào)獲取未來降水過程及其可能發(fā)生轉(zhuǎn)折的信息,初步制定轉(zhuǎn)折性天氣下的水庫調(diào)度方案,隨著天氣系統(tǒng)的演變發(fā)展,再根據(jù)短預(yù)見期的降水預(yù)報(bào)進(jìn)行調(diào)度方案的調(diào)整.
3)本文僅分析了氣象臺(tái)公開發(fā)布的降水預(yù)報(bào)準(zhǔn)確率及其在單一水庫調(diào)度方面的應(yīng)用對(duì)策,未涉及降水預(yù)報(bào)誤差原因及改進(jìn)方法研究. 分析不同預(yù)見期、不同降雨強(qiáng)度對(duì)預(yù)報(bào)準(zhǔn)確率的影響,并提出其訂正方法是值得進(jìn)一步研究的問題;同時(shí),利用較長(zhǎng)預(yù)見期的降水預(yù)報(bào)進(jìn)行多水庫聯(lián)合調(diào)度研究,可以提高水庫水資源利用率并有效減輕下游洪水災(zāi)害.
[1] Liu Ning. Flood control & drought resistance and risk management of flood and drought.ChinaFlood&DroughtManagement, 2012,22(2): 1-4. [劉寧. 防汛抗旱與水旱災(zāi)害風(fēng)險(xiǎn)管理. 中國(guó)防汛抗旱, 2012,22(2): 1-4.]
[2] Zhai Panmao, Li Lei, Zhou Baiquanetal. Progress on mechanism and prediction methods for persistent extreme precipitation in the Yangtze-Huai River Valley.JournalofAppliedMeteorologicalScience, 2016,27(5): 631-640. [翟盤茂, 李蕾, 周佰銓等. 江淮流域持續(xù)性極端降水及預(yù)報(bào)方法研究進(jìn)展. 應(yīng)用氣象學(xué)報(bào), 2016,27(5): 631-640.]
[3] Huo Shiqing, Wang Chunqing, Xu Zhuoshou. Progress on hydro-meteorological information and forecasting of the Yellow River in recent ten years.YellowRiver, 2016,38(10): 36-39. [霍世青, 王春青, 許卓首. 近10 a黃河水文氣象情報(bào)預(yù)報(bào)工作進(jìn)展. 人民黃河, 2016,38(10): 36-39.]
[4] Zhang Hexi, Chi Daocai, Wang Yongtaoetal. Applied research of the rainfall forecast model based on NNBR and Monte-Carlo algorithm.ResearchofSoilandWaterConservation, 2014,21(2): 106-110. [張和喜, 遲道才, 王永濤等. 基于NNBR與蒙特卡洛算法的降雨量預(yù)報(bào)模型應(yīng)用研究. 水土保持研究, 2014,21(2): 106-110.]
[5] Zhang Qianyu, Xu Youpeng, Lei Chaoguietal. Risk assessment of flood based on dynamic simulation in downstream of reservoirs in coastal area of southeast China.JLakeSci, 2016,28(4): 868-874. DOI:10. 18307/2016. 0421. [張倩玉, 許有鵬, 雷超桂等. 東南沿海水庫下游地區(qū)基于動(dòng)態(tài)模擬的洪澇風(fēng)險(xiǎn)評(píng)估. 湖泊科學(xué), 2016,28(4): 868-874.]
[6] Cui Chunguang, Peng Tao, Shen Tieyuanetal. The flood forecast test on QPF coupling with hydrological model in flood season in medium and small catchment.MeteorologicalMonthly, 2010,36(12): 56-61. [崔春光, 彭濤, 沈鐵元等. 定量降水預(yù)報(bào)與水文模型耦合的中小流域汛期洪水預(yù)報(bào)試驗(yàn). 氣象, 2010,36(12): 56-61.]
[7] Van Steenbergen N, Willems P. Rainfall uncertainty in flood forecasting: Belgian case study of Rivierbeek.JournalofHydrologicEngineering, 2014,19(19): 554-555.
[8] Lin CA, Wen L, Lu Getal. Real-time forecast of the 2005 and 2007 summer severe floods in the Huaihe River Basin of China.JournalofHydrology, 2010,381(1): 33-41.
[9] Diakakis M. Rainfall thresholds for flood triggering. The case of Marathonas in Greece.NaturalHazards, 2011,60(3): 789-800.
[10] Huang Xiaoxiang, Yao Cheng, Li Zhijiaetal. Application of grid-Xinanjiang model in the upstream of Yuqiao Basin, Tianjin.JLakeSci, 2016,28(5): 1134-1140. DOI:10.18307/2016.0524. [黃小祥, 姚成, 李致家等. 柵格新安江模型在天津于橋水庫流域上游的應(yīng)用. 湖泊科學(xué), 2016,28(5): 1134-1140.]
[11] Zhang Xingxing, Zhu Chengli, Peng Shizhangetal. Accuracy analysis of rainfall forecast and its application to improvement of utilization rate of rainfall.JournalofHohaiUniversity:NaturalSciences, 2014,42(3): 230-233. [張星星, 朱成立, 彭世彰等. 降水預(yù)報(bào)準(zhǔn)確度分析及其在提高降水利用率中的作用. 河海大學(xué)學(xué)報(bào): 自然科學(xué)版, 2014,42(3): 230-233.]
[12] Shi Zhigang. Study on the characteristics of soil and water loss and integrated control in the Dabieshan Area in the west of Anhui Province.ResearchofSoilandWaterConservation, 2012,19(5): 39-42. [史志剛. 皖西大別山區(qū)水土流失特征及其綜合防治研究. 水土保持研究, 2012,19(5): 39-42.]
[13] Ye Jinyin, Li Zhijia, Liu Jingetal. Identification of early meteorological risk warning indicators for flash flood disasters.TorrentialRainandDisasters, 2016,35(1): 25-30. [葉金印, 李致家, 劉靜等. 山洪災(zāi)害氣象風(fēng)險(xiǎn)預(yù)警指標(biāo)確定方法研究. 暴雨災(zāi)害, 2016,35(1): 25-30.]
[14] Liu Yihua, Lu Yanrong, Zhou Qiangetal. Application of HBV model to the study on risk precipitation in different grades in Batang River region.ResearchofSoilandWaterConservation, 2015,22(2): 224-228. [劉義花, 魯延榮, 周強(qiáng)等. HBV水文模型在玉樹巴塘河流域洪水臨界雨量閾值研究中的應(yīng)用. 水土保持研究, 2015,22(2): 224-228.]
[15] Ye Jinyin, Gu Weiqi, Li Qiaolingetal. Application of ECMWF ensemble forecasts in Jiangjiaji Catchment of Huaihe River Basin.JournalofHohaiUniversity:NaturalSciences, 2016,44(6): 471-476. [葉金印, 顧瑋琪, 李巧玲等. ECMWF集合預(yù)報(bào)在淮河蔣家集流域的應(yīng)用. 河海大學(xué)學(xué)報(bào): 自然科學(xué)版, 2016,44(6): 471-476.]
[16] Ye Jinyin, Shao Yuehong, Li Zhijia. Flood forecasting based on TIGGE precipitation ensemble forecast.AdvancesinMeteorology, 2016. DOI:10. 1155/2016/9129734.
[17] Zhang Bing, Wei Jiansu, Wang Wenlanetal. A method for verifying precipitation prediction of transition weather.MeteorologicalScienceandTechnology, 2012,40(3): 411-416. [張冰, 魏建蘇, 王文蘭等. 轉(zhuǎn)折性天氣降水預(yù)報(bào)檢驗(yàn)方法及應(yīng)用. 氣象科技, 2012,40(3): 411-416.]
[18] Liu Lin, Chen Jing, Cheng Longetal. Study of the ensemble-based forecast of extremely heavy rainfalls in China.ActaMeteorologicaSinica, 2013,71(5): 853-866. [劉琳, 陳靜, 程龍等. 基于集合預(yù)報(bào)的中國(guó)極端強(qiáng)降水預(yù)報(bào)方法研究. 氣象學(xué)報(bào), 2013,71(5): 853-866.]
[19] Huaihe River Water Resources Committee. Practical hydrological forecast schemes of drainage in Huaihe River Basin. Jinan: Huanghe Press, 2002: 125-152. [淮河水利委員會(huì). 淮河流域淮河水系實(shí)用水文預(yù)報(bào)方案. 濟(jì)南: 黃河出版社, 2002: 125-152.]
EvaluationofprecipitationforecastsforDabieMountainareaandapplicationcountermeasuresforthereservoirsregulation
YE Jinyin1,2, ZHANG Jintang3, HUANG Yong2, AN Jingjing1& YE Zhengyang4
(1:AnhuiMeteorologicalObservatory,Hefei230031,P.R.China)(2:AnhuiKeyLabofAtmosphericScienceandSatelliteRemoteSensing,Hefei230031,P.R.China)(3:AnhuiHydrologyBureau,Hefei230031,P.R.China)(4:CollegeofAtmosphericScience,NanjingUniversityofInformationScienceandTechnology,Nanjing210044,P.R.China)
The evaluation and application research of precipitation forecasts for reservoirs area can help to optimize the reservoir regulation. Based on the precipitation forecasts with 7 lead time(24-168 h) and the observation precipitation data in the flood season during 2007-2016, evaluation methods (e.g. Percentage Correct, Threat Score, Probability Statistics,ROCcurve,CTS) were introduced to estimate the precipitation prediction skill, and the application countermeasures for the reservoir regulation in Xianghongdian Reservoir of Dabie Mountain area were analyzed. The results indicate that: 1) The precipitation forecasting skills for all precipitation magnitudes are all positive in the Dabie Mountains reservoir area. The precipitation forecast performance of 24-72 h lead time in the Dabie Mountains reservoir area is the best, and theTSscore is relatively high and false alarm rate and missing forecast rate are also relatively low. However, the forecasting performance of 96 h lead time and above is obviously decreased, the false alarm rate and missing forecast rate are getting higher for moderate rain, especially for heavy rain. 2) Overall, even though the rainfall scale predictions are generally consistent with the observations, the probability of precipitation forecast greater than or equal to the observation is more than 75%. Although it is inclined to the over forecast the precipitation scale, the precipitation forecast products still havea good application value. However, precipitation scale forecast deviation must be considered during application. 3) Compared to the forecasts with long lead time which have great uncertainty, forecasts with short lead time are more reliable and have better performance in heavy precipitation processes and transition weather. TheCTSscores of 96 h lead time and above are relatively low,but the forecasting performance is improved significantly within 72 h lead time. Especially, theCTSscores of 24 h lead time increases to 38.2%. In practical application, the combination of precipitation forecasts with different forecast periods, including the latest forecasts, are strongly suggested to get the information of transition weather. Such a forecast combination can be utilized to adjust the reservoirs regulation timely when the transition weather is approaching. Our statistic results have justified the usability of precipitation forecast, and the research results could be a valuable reference for the reservoir regulation decision making.
Dabie Mountain area; precipitation forecast; performance evaluation; reservoir regulation; application countermeasures; Xianghongdian Reservoir
*公益性行業(yè)(氣象)科研專項(xiàng)(GYHY201406021)資助. 2017-01-17收稿;2017-03-16收修改稿. 葉金印(1968~),男,正研級(jí)高級(jí)工程師,博士;E-mail: yejinyin@sina.com.