亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        棉鈴蟲復(fù)眼中Clock生物鐘基因的晝夜表達模式

        2017-11-07 02:33:17閆碩劉彥君張馨方秦萌劉慧朱家林李貞張青文劉小俠
        中國農(nóng)業(yè)科學(xué) 2017年19期
        關(guān)鍵詞:棉鈴蟲生物鐘交配

        閆碩,劉彥君,張馨方,秦萌,劉慧,朱家林,李貞,張青文,劉小俠

        ?

        棉鈴蟲復(fù)眼中生物鐘基因的晝夜表達模式

        閆碩1,2,劉彥君1,張馨方3,秦萌2,劉慧2,朱家林4,李貞1,張青文1,劉小俠1

        (1中國農(nóng)業(yè)大學(xué)植物保護學(xué)院,北京100193;2全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心,北京100125;3河北省農(nóng)林科學(xué)院昌黎果樹研究所,河北昌黎066600;4北京出入境檢驗檢疫局,北京100026)

        【】克隆并分析棉鈴蟲()復(fù)眼()生物鐘基因的cDNA序列,探討棉鈴蟲復(fù)眼中生物鐘基因的晝夜表達模式及其表達水平的影響因子,以確認其在復(fù)眼中是否起著調(diào)節(jié)生物節(jié)律的功能,為理解復(fù)眼中生物鐘基因網(wǎng)絡(luò)提供理論參考?!尽恳?日齡棉鈴蟲復(fù)眼為試驗材料,采用RT-PCR和RACE末端擴增技術(shù)克隆棉鈴蟲生物鐘基因。利用生物信息學(xué)軟件對得到的棉鈴蟲CLK氨基酸序列進行生物信息學(xué)分析。采用實時熒光定量PCR(qRT-PCR)技術(shù),檢測棉鈴蟲成蟲不同器官(頭、胸、腹、足、翅、腦、觸角、復(fù)眼)中生物鐘基因的表達水平;通過設(shè)置不同的光周期環(huán)境,檢測復(fù)眼中生物鐘基因的晝夜表達模式;通過在暗期設(shè)置6 h不同波段光 (UV、藍光和綠光)照射,檢測復(fù)眼中生物鐘基因的表達水平;通過設(shè)置棉鈴蟲雌雄蛾交配處理,檢測交配結(jié)束0 h和3 h復(fù)眼中生物鐘基因的表達水平;通過饑餓處理棉鈴蟲雌雄蛾,檢測復(fù)眼中生物鐘基因的表達水平。【】克隆得到棉鈴蟲生物鐘基因的cDNA序列,命名為(GenBank登錄號為KM233158),開放讀碼框1 860 bp,編碼619個氨基酸組成的多肽,理論推測分子量(Mw)為69.32 kD,等電點(pI)為5.71。推導(dǎo)得到的氨基酸序列具有3個跨膜拓撲結(jié)構(gòu),包含多個昆蟲CLK蛋白的保守區(qū)域(PAS和HLH),其與甜菜夜蛾()和黑脈金斑蝶()的同源性較高,分別為97%和74%。與點蜂緣蝽()和馬鈴薯甲蟲()的同源性較低,分別為53%和52%。qRT-PCR結(jié)果表明在檢測的成蟲器官中,在復(fù)眼中表達水平最低,觸角中表達水平最高。在14L﹕10D光周期下,復(fù)眼中的表達量在白天增高,夜晚下降。生物鐘基因的晝夜表達模式在1 d黑暗下可以持續(xù),而在持續(xù)黑暗下固有表達節(jié)律消失。復(fù)眼中的表達水平在6 h光照后上調(diào),但不同波段光照射無顯著性差異。復(fù)眼中的表達水平在交配后有下調(diào)趨勢,在雄蛾交配后表達水平顯著性下降。復(fù)眼中的表達水平在饑餓處理后無顯著性變化?!尽砍晒囊苟昝掴徬x的復(fù)眼中克隆得到生物鐘基因,由生物鐘基因推導(dǎo)得到的氨基酸序列具有典型的CLK蛋白特征,且與昆蟲CLK蛋白同源性較高。在檢測的棉鈴蟲成蟲器官中,在復(fù)眼中的表達水平最低。在外周組織復(fù)眼中的表達水平受蛾類自身節(jié)律、光照和蛾類生理狀態(tài)的影響,證實棉鈴蟲復(fù)眼中在調(diào)節(jié)生物節(jié)律方面具有重要作用,但生物鐘基因網(wǎng)絡(luò)在復(fù)眼與中樞神經(jīng)中是否類似有待進一步深入研究。

        棉鈴蟲;生物鐘;復(fù)眼;光感受器;外周組織;節(jié)律

        0 引言

        【研究意義】作為最普遍的節(jié)律現(xiàn)象,晝夜節(jié)律是調(diào)節(jié)昆蟲生命活動以24 h為周期的內(nèi)源性振蕩,其參與昆蟲的許多生物學(xué)行為,如產(chǎn)卵、羽化、交配、滯育、遷徙等[1-5]。昆蟲的晝夜節(jié)律受到自身生物鐘基因的調(diào)控,前人對于生物鐘基因的研究主要集中在昆蟲中樞神經(jīng)系統(tǒng)[6-9],外周組織中生物鐘基因的晝夜表達研究相對較少,其表達是否存在固有節(jié)律有待進一步驗證。外周組織復(fù)眼是夜蛾感光的重要器官,闡明復(fù)眼中生物鐘基因的表達模式有利于理解外周組織中生物鐘基因的功能和夜蛾感受光調(diào)節(jié)自身節(jié)律的機制。【前人研究進展】鱗翅目昆蟲的生物鐘基因網(wǎng)絡(luò)比較清楚,()和()生物鐘基因轉(zhuǎn)錄的CLK和CYC蛋白在細胞核中結(jié)合形成異二聚體,結(jié)合在()、()、()生物鐘基因和控制某些行為和生理的基因的E-box上啟動它們的轉(zhuǎn)錄,PER、TIM和CYR2蛋白在細胞質(zhì)中形成三聚體。果蠅沒有CRY2蛋白,鱗翅目昆蟲CRY2蛋白作為轉(zhuǎn)錄負調(diào)控因子,進入細胞核作用于CLK/CYC二聚體,從而抑制自身的轉(zhuǎn)錄[2,4,10-14]。鱗翅目昆蟲CRYPTOCHROME1(CRY1)蛋白與果蠅的CRY1蛋白功能相似,均作為感光受體,當感受到光刺激后導(dǎo)致TIM蛋白降解[15-18]。昆蟲生物鐘基因的表達受到內(nèi)源性和外源性因子的影響,包括光照、溫度和生理狀態(tài)[19-23]?,F(xiàn)有的研究表明,光感受器中生物鐘基因的表達可能受到自身節(jié)律調(diào)控[24]?!颈狙芯壳腥朦c】復(fù)眼作為夜蛾光感受的直接器官,復(fù)眼生物鐘基因的功能研究相對較少。有關(guān)棉鈴蟲()生物鐘基因的研究尚無報道,其在復(fù)眼中的表達模式尚不清楚,其重要的生物學(xué)功能有待闡明?!緮M解決的關(guān)鍵問題】利用RT-PCR和RACE技術(shù)克隆棉鈴蟲生物鐘基因全長,并檢測其在外周組織復(fù)眼中的表達模式,闡明夜蛾復(fù)眼中生物鐘基因的作用機制,理解復(fù)眼中生物鐘基因網(wǎng)絡(luò)。

        1 材料與方法

        試驗于2014年9月至2016年5月在中國農(nóng)業(yè)大學(xué)完成。

        1.1 試蟲

        供試棉鈴蟲幼蟲采自河北邯鄲棉田,長期飼養(yǎng)于中國農(nóng)業(yè)大學(xué)有害生物綜合治理實驗室。室內(nèi)飼養(yǎng)溫度(27±1)℃,相對濕度(75±10)%,光周期14L﹕10D,在ZT0(CT0)進入光期,ZT14(CT14)進入暗期。幼蟲用人工飼料飼養(yǎng)[25],初孵幼蟲群體飼養(yǎng),3 齡后單管飼養(yǎng)以防自相殘殺。蛹期分雌雄,分別置于養(yǎng)蟲籠(20 cm×25 cm×30 cm)中等待羽化,暗期羽化的成蟲記為0日齡蛾[26-27],成蟲羽化后飼喂10%蜂蜜水。

        1.2 Clock生物鐘基因的克隆

        以棉鈴蟲2日齡蛾復(fù)眼為材料,參照RNA提取試劑盒(RNeasy Mini Kit購自Qiagen公司)提取復(fù)眼總RNA。經(jīng)NanoDrop2000測定的RNA樣本進行反轉(zhuǎn)錄生成cDNA(反轉(zhuǎn)錄酶Omniscript RT Kit購自Qiagen公司),可于-20℃保存?zhèn)溆谩?/p>

        通過NCBI在線比對設(shè)計簡并引物(表1,引物由上海生工生物工程公司合成),對目的基因 (包括起始密碼子)進行PCR擴增(DNA聚合酶Trans Taq-T購自北京全式金生物技術(shù)有限公司),PCR擴增程序:94℃預(yù)變性3 min;94℃45 s,55℃30 s,72℃60 s,35個循環(huán);72℃延伸10 min。PCR產(chǎn)物經(jīng)瓊脂糖凝膠電泳檢測后,將回收的目的條帶(DNA膠回收試劑盒Gel Extraction Kit購自O(shè)mega公司)與克隆載體(pEASY-T1 Cloning Vector購自北京全式金生物技術(shù)有限公司)連接,轉(zhuǎn)化到大腸桿菌內(nèi),37℃培養(yǎng)過夜。菌落進行藍白斑篩選(IPTG和Amp購自Takara公司;X-gal購自北京拜爾迪生物有限公司),隨機選取陽性克隆送至北京擎科生物技術(shù)有限公司測序。

        參照RACE試劑盒說明,在RNA水平上做3′RACE處理(First Choice RLM-RACE購自Ambion公司)。根據(jù)擴增得到的棉鈴蟲生物鐘基因的5′端序列設(shè)計引物(表1),結(jié)合試劑盒提供的 2 個下游引物進行巢式PCR。PCR擴增程序:94℃預(yù)變性3 min;94℃45 s,56℃30 s,72℃90 s,35個循環(huán);72℃延伸10 min。PCR產(chǎn)物經(jīng)電泳檢測后測序。

        表1 基因克隆和熒光定量PCR所用引物

        1.3 序列分析

        序列的拼接借助DNAMAN v.5.2.2軟件完成;序列同源性比對和保守區(qū)分析通過NCBI(http://www. ncbi.nlm.nih.gov/)完成;分子量和等電點預(yù)測通過Computepl/Mw tool(http://web.expasy.org/compute _pi/)完成;功能位點分析通過PROSITE SCAN (http://npsa- pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_proscan.html)完成[28-29];跨膜區(qū)預(yù)測通過TMpred(http://www.ch.embnet.org/software/TMPRED_form.html)完成;3D結(jié)構(gòu)的構(gòu)建通過在線網(wǎng)站SWISS MODEL WORKSPACE(http://swissmodel. expasy.org)和軟件Deep View4.0.1完成。系統(tǒng)進化樹通過MEGA 4.0軟件的neighbor-joining法構(gòu)建,非參數(shù)重復(fù)取樣估計方法評估系統(tǒng)發(fā)育樹節(jié)點的可靠性(1 000次重復(fù))。

        1.4 Clock生物鐘基因的表達水平檢測

        器官特異性檢測:在進入光期1 h(ZT1),提取2日齡雌雄蛾頭、胸、腹、足、翅、腦、觸角、復(fù)眼的總RNA。以下試驗的樣本均采自2日齡雌雄蛾復(fù)眼。晝夜節(jié)律性檢測:(1)在14L﹕10D光環(huán)境下飼養(yǎng)的雌雄蛾,從ZT1開始每隔2 h取樣;(2)在14L﹕10D光環(huán)境下飼養(yǎng)的雌雄蛾轉(zhuǎn)移至24 h黑暗中,從CT1開始每隔2 h取樣;(3)在14L﹕10D光環(huán)境下飼養(yǎng)的幼蟲,化蛹后轉(zhuǎn)移至24 h持續(xù)黑暗環(huán)境,羽化至2日齡蛾時,從CT1開始每隔2 h取樣。光照后檢測:根據(jù)棉鈴蟲視網(wǎng)膜電位的研究[30],在進入暗期時(ZT14)設(shè)置500 lx照度的UV(峰值365 nm)、藍光(峰值450 nm)和綠光(峰值505 nm),照射6 h后(ZT20)取樣,在14L﹕10D 光環(huán)境下的雌雄蛾作為對照(CK)。交配后檢測:在進入暗期時,將20對雌雄處女蛾放入交配籠(20 cm×25 cm×30 cm)中配對,每隔15 min觀察交配是否發(fā)生,通過這種方式獲得交配結(jié)束0 h和3 h的雌雄蛾,處女蛾作為對照(ZT15和ZT18)。饑餓后檢測:雌雄蛾羽化后不再飼喂蜂蜜水,饑餓飼養(yǎng)至2日齡,正常飼喂的棉鈴蟲作為對照,當進入光期1 h取樣。以上每個RNA樣本取3個生物學(xué)重復(fù)。

        在qRT-PCR之前,通過測序保證PCR產(chǎn)物是目的基因片段,生物鐘基因表達量檢測在ABI 7300儀器上進行(ABI Power SYBR Green PCR Master Mix購自ABI公司)。選取棉鈴蟲和為內(nèi)參基因[22,27,31-32],qRT-PCR引物見表1。qRT-PCR反應(yīng)程序:95℃預(yù)變性10 min;95℃15 s,55℃40 s,72℃35 s,40個循環(huán);此外再加上qRT-PCR儀器自帶的熔解步驟。保證熔解曲線為平滑的單峰且峰值單一,無雜峰。檢測所取樣本中目的基因和內(nèi)參基因的Ct值,每個樣本設(shè)置3次點樣重復(fù),基因相對表達量的計算采用2-ΔΔCt方法[33]進行。

        1.5 數(shù)據(jù)分析

        數(shù)據(jù)分析采用Tukey比較和獨立樣本檢驗方法進行,<0.05視為顯著性差異。所有統(tǒng)計分析均借助SPASS 16.0軟件包完成。

        2 結(jié)果

        2.1 棉鈴蟲Clock生物鐘基因的克隆及生物信息學(xué)分析

        成功克隆得到棉鈴蟲基因的完整開放閱讀框,包含1 860個堿基,編碼619個氨基酸組成的多肽,命名為,GenBank登錄號KM233158。的cDNA序列及其推導(dǎo)得到的氨基酸序列見圖1。

        HeCLK的理論推測分子量(Mw)為69.32 kD,等電點(pI)為5.71??缒ね負浣Y(jié)構(gòu)預(yù)測顯示HeCLK在91—112位和491—512位有2個由外向內(nèi)趨性的氨基酸跨膜拓撲結(jié)構(gòu),在416—437位有1個由內(nèi)向外趨性的氨基酸跨膜拓撲結(jié)構(gòu)。功能位點的分析表明,HeCLK含有3個N-糖基化位點(N-glycosylation site)、2個cAMP-和cGMP-蛋白激酶磷酸化位點(cAMP- and cGMP-dependent protein kinase phosphorylation site)、13個蛋白激酶C磷酸化位點(protein kinase C phosphorylation site)、15個酪蛋白激酶Ⅱ磷酸化位點(casein kinase II phosphorylation site)、9個N-豆蔻?;稽c(N-myristoylation site)。HeCLK蛋白序列的3D結(jié)構(gòu)模型的構(gòu)建基于鼠模型4f3i.1.B(2.27?)完成(圖2),序列一致性(sequence identity)57.66%,E-value:0.42,QMEAN Z-Score:-2.25。

        用BLAST在線進行同源性比較分析,HeCLK氨基酸序列與已報道的昆蟲CLK蛋白同源性較高,其中與甜菜夜蛾()同源性高達97%,與黑脈金斑蝶()同源性高達74%,與柞蠶()同源性高達71%,與切葉蟻(和)同源性達到68%,與赤擬谷盜()同源性達到65%,與長須羅蛉()同源性達到56%,與點蜂緣蝽()同源性達到53%,與馬鈴薯甲蟲()同源性達到52%。如進化樹(圖3)所示,棉鈴蟲與甜菜夜蛾親緣關(guān)系最近,鱗翅目、鞘翅目和膜翅目昆蟲分別聚為一類,通過CLK氨基酸序列構(gòu)建的進化關(guān)系與傳統(tǒng)分類布局基本一致。

        2.2 棉鈴蟲Clock生物鐘基因在復(fù)眼中低表達

        以持家基因和為內(nèi)參基因,借助qRT-PCR技術(shù)檢測在棉鈴蟲成蟲頭、胸、腹、足、翅、腦、觸角和復(fù)眼中的相對表達量。如圖4所示,在棉鈴蟲雌雄蛾的不同器官中均有表達,不具有器官特異性,且雌雄蛾間基因表達水平變化趨勢相似(頭:=0.179,=4,=0.866;胸:=0.642,=4,=0.556;腹:=1.254,=4,=0.278;足:=1.007,=4,=0.371;翅:=0.761,=4,=0.489;腦:=0.724,=4,=0.509;觸角:=1.658,=4,=0.173;復(fù)眼:=0.930,=4,=0.405)。表達量在不同器官中具有波動性,在雌雄蛾腹、翅和觸角中高表達,在復(fù)眼中表達水平最低(雌蟲:7,16=11.946,<0.001;雄蟲:7,16=20.382,<0.001)。以下試驗均選取棉鈴蟲復(fù)眼為試驗材料,檢測在外周組織復(fù)眼中的表達模式。

        2.3 棉鈴蟲Clock生物鐘基因在復(fù)眼中的晝夜表達節(jié)律

        在14L﹕10D的光環(huán)境下(圖5-A),表達量在光期上升,暗期下降,且雌雄蛾中表達趨勢一致(雌蛾:11,24=8.628,<0.001;雄蛾:11,24=12.062,<0.001)。飼養(yǎng)于14L﹕10D光環(huán)境下的棉鈴蟲轉(zhuǎn)移至黑暗條件,檢測的表達是否在外周組織復(fù)眼中存在固有節(jié)律。如圖5-B所示,的表達趨勢與處理14L﹕10D一致,并未發(fā)生變化(雌蛾:11,24=6.690,<0.001;雄蛾:11,24=13.469,<0.001)。在持續(xù)黑暗(棉鈴蟲自化蛹飼養(yǎng)于黑暗環(huán)境)下(圖5-C),的這種表達模式被打破,表達量隨著時間的推移不存在顯著性差異(雌蛾:11,24=0.552,=0.848;雄蛾:11,24=0.388,=0.948)。

        堿基和氨基酸的位置均標識在左側(cè)。起始密碼子加粗表示,終止密碼子加星號表示,PAS保守區(qū)用陰影表示,HLH保守區(qū)標下劃線,N-糖基化位點加框標出,cAMP-和cGMP-蛋白激酶磷酸化位點加虛框標出The positions of nucleotide and amino acid were indicated in the left margin. The start codon was in bold, and the stop codon was indicated with an asterisk. Conserved domain of PAS was outlined in gray, conserved domain of HLH was underlined, N-glycosylation sites were indicated with boxes, and cAMP- and cGMP-dependent protein kinase phosphorylation sites were indicated with dashed boxes

        藍綠色代表α螺旋,紅色代表β折疊,洋紅色代表Ω環(huán),藍色代表PAS-B保守區(qū)域,綠色代表PAS-A保守區(qū),黃色代表HLH保守區(qū)

        物種登錄號The accession number of listed species:Antheraea pernyi柞蠶(AAR14936),Danaus plexippus黑脈金斑蝶(EHJ69324),Spodoptera exigua甜菜夜蛾(AEJ38222),Lutzomyia longipalpis長須羅蛉(AKN63486),Gryllus bimaculatus雙斑蟋(BAM76759),Leptinotarsa decemlineata馬鈴薯甲蟲(AKG92749),Tribolium castaneum赤擬谷盜(NP_001106937),Limulus polyphemus美洲鱟(ANO53967),Papilio xuthus柑橘鳳蝶(KPI91944),Papilio machaon金鳳蝶(KPJ06357),Cyphomyrmex costatus蟻類(KYN07352),Harpegnathos saltator印度跳蟻(EFN76178),Eufriesea mexicana蜂類(OAD62154),Habropoda laboriosa回條蜂(KOC70150),Anopheles darlingi達氏按蚊(ETN62614),Riptortus pedestris點蜂緣蝽(BAN20981),Trachymyrmex cornetzi蟻類(KYN13948),Trachymyrmex zeteki蟻類(KYQ51193),Atta colombica哥倫比亞美洲切葉蟻(KYM91193),Acromyrmex echinatior頂切葉蟻(EGI62057),Lasius niger黑蟻(KMR01088),Melipona quadrifasciata蜂類(KOX77563) and Dufourea novaeangliae蜂類(KZC11045)

        圖中數(shù)據(jù)為平均值±標準誤(n=3)。下同 Value was the mean±SE of three collections. The same as below

        陰影區(qū)域代表暗期 Shadowed area indicated dark period

        2.4 棉鈴蟲Clock生物鐘基因在光照下表達量上調(diào),交配后表達量下調(diào)

        暗期光照6 h后,表達水平顯著上升,且不同波段光處理之間無顯著性差異,雌雄蛾之間表達水平相似(雌蛾:3,8=4.407,=0.041;雄蛾:3,8=4.114,=0.049)(圖6)。在棉鈴蟲交配后,表達水平有下降趨勢(0 h雄蛾:=3.891,df=4,=0.018;3 h雄蛾:=2.993,df=4,=0.040)(圖7)。

        2.5 饑餓對棉鈴蟲Clock生物鐘基因表達的影響

        如圖8所示,饑餓處理對的表達無顯著性影響(雌蛾:=0.023,df=4,=0.983;雄蛾:=1.192,df=4,=0.299)。

        在ZT20時,提取14L﹕10D光環(huán)境下棉鈴蟲復(fù)眼RNA作為CK樣本。U:UV,B:藍光,G:綠光

        “*”表示基因表達差異顯著(獨立樣本t檢驗,P<0.05) “*” indicated significant differences in gene expression at P<0.05 level according to independent t-tests

        在ZT1時,取正常飼喂棉鈴蟲的復(fù)眼RNA作為CK樣本 RNA samples were collected at ZT1 from the moths fed as CK

        3 討論

        光感受器在同步生物體自身節(jié)律與外界光環(huán)境的過程中起到關(guān)鍵作用,因此光感受器中生物鐘基因的研究十分重要[34-38]。本試驗利用RT-PCR和RACE技術(shù)從棉鈴蟲復(fù)眼中成功克隆得到生物鐘基因(),其與已報道的昆蟲生物鐘基因同源性較高,且保守區(qū)域相似,PAS和HLH保守區(qū)被報道是CLK-CYC二聚體結(jié)合的關(guān)鍵區(qū)域[39]。表達量在不同器官中波動較大,其在復(fù)眼中表達水平最低,觸角中表達水平最高,但其表達不具有器官特異性,暗示在外周組織中可能承擔著一定的生物學(xué)功能。與前人研究相似,棉鈴蟲和生物鐘基因[22]、甘藍夜蛾()和生物鐘基因[40]、二化螟()滯育生物鐘蛋白基因[41]、家蠶()、、和生物鐘基因[3-4]在所檢測的成蟲和幼蟲組織器官中均不存在表達特異性,生物鐘基因的表達不具有器官特異性在其他動物中的報道也比較多[42-44]。鱗翅目昆蟲對光的反應(yīng)分化,蛾類具有夜行性視覺,Yan等[27]研究表明,棉鈴蟲復(fù)眼視覺基因的表達受生物鐘基因的調(diào)控。本試驗比較了生物鐘基因在復(fù)眼與其他器官中的表達水平,雖然在復(fù)眼中的表達水平低,但其很可能參與復(fù)眼中生物節(jié)律的調(diào)控。

        生物鐘基因晝夜表達結(jié)果表明,在14L﹕10D光周期下,復(fù)眼中的表達量在光期上升,暗期下降。與前人對西方蜜蜂()和鹿角珊瑚()的研究結(jié)果相似,生物鐘基因的表達量在光期上升,暗期下降[6,45]。將飼養(yǎng)于14L﹕10D的棉鈴蟲轉(zhuǎn)移至黑暗條件,的表達模式?jīng)]有變化,而在持續(xù)黑暗下此模式被打破,結(jié)果表明在外周組織復(fù)眼中的表達具有節(jié)律性,推測其執(zhí)行著調(diào)節(jié)生物節(jié)律的功能;持續(xù)的黑暗可以擾亂生物鐘基因的表達模式,進而打破生物節(jié)律。復(fù)眼作為昆蟲最重要的感光器官,其生物鐘的作用機制非常重要,結(jié)合之前的研究,初步明確了棉鈴蟲復(fù)眼中第一環(huán)路生物鐘基因的表達模式:生物鐘基因表達量在進入光期5 h達到高峰,隨后表達量下降,生物鐘基因表達量在光期下降,暗期升高[28]。綜上所述,所檢測的棉鈴蟲復(fù)眼生物鐘基因的表達均存在固有節(jié)律性,筆者推測棉鈴蟲復(fù)眼中生物鐘基因執(zhí)行著調(diào)節(jié)生物節(jié)律的功能。對雙斑蟋()視葉[24]、斜紋夜蛾()觸角[46]和煙草天蛾()觸角[47]中生物鐘基因的研究表明,外周組織中存在內(nèi)源性的調(diào)節(jié)生物鐘基因表達的機制。

        生物鐘基因的表達水平受到外界光環(huán)境的影響[3,9,23]。黑腹果蠅()TIM和PER蛋白在持續(xù)光照下表達下調(diào),TIM蛋白在450 nm波段下下調(diào)最多,600 nm以上波段幾乎沒有影響[7,48-49]。根據(jù)棉鈴蟲視網(wǎng)膜電位和視覺基因的敏感波段[27,30],筆者檢測了棉鈴蟲在3種敏感波段光照射后,的表達水平。雖然在復(fù)眼中的表達存在固有節(jié)律,但暗期光照可以顯著增強其表達,與進入光期表達量上調(diào)結(jié)果相一致,不同波段光之間表達上調(diào)程度相似。棉鈴蟲和生物鐘基因在黑光燈照射2 h后表達量有下降趨勢[21]。在蛋白水平上,持續(xù)光照下,TIM和PER蛋白表達量下調(diào)[2,7,49],CRY1蛋白降解TIM蛋白,導(dǎo)致PER-TIM二聚體或者CRY2蛋白轉(zhuǎn)錄負調(diào)控作用下降。

        棉鈴蟲交配后,和生物鐘基因的表達有下降趨勢[21]。棉鈴蟲平均交配持續(xù)時間1 h,的表達水平在交配后有下降趨勢。蛾類交配行為(求偶、性信息素合成和釋放)存在一定的節(jié)律性,受到外源(光周期和溫度)和內(nèi)源性因子(神經(jīng)中樞和激素)的調(diào)控[50-53]。有研究表明棉鈴蟲和煙青蟲()的交配行為也具有節(jié)律性,弱光可以促進二者快速完成種內(nèi)交配[54-55]。夜行性蛾類交配一般發(fā)生在黃昏或者黎明,光信號在其中起著重要作用[56-59]。本試驗還進行了饑餓處理,但的表達不受饑餓影響。綜上所述,的表達更易受到外界光環(huán)境的影響。

        4 結(jié)論

        利用RT-PCR和RACE技術(shù)從棉鈴蟲復(fù)眼中成功克隆得到了的cDNA序列,推導(dǎo)得到的HeCLK氨基酸序列具有典型的CLK蛋白的保守序列(PAS和HLH),其與甜菜夜蛾同源性最高。在外周組織復(fù)眼中的表達受到自身節(jié)律、外界光環(huán)境和生理狀態(tài)的影響。光照和交配可以分別上調(diào)和下調(diào)的表達;的表達量在光期高于暗期,黑暗下表達模式?jīng)]有發(fā)生改變,說明的表達存在固有節(jié)律性,可能在外周組織(復(fù)眼)中執(zhí)行著生物鐘基因的功能。

        [1] Tanoue S, Nishioka T. A receptor-type guanylyl cyclase expression is regulated under circadian clock in peripheral tissues of the silk moth. Light-induced shifting of the expression rhythm and correlation with eclosion., 2001,276(50): 46765-46769.

        [2] Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert S M. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation., 2008, 6(1): e4.

        [3] 張達燕, 梁輝, 司馬楊虎, 徐世清. 溫度與光照節(jié)律對家蠶成蟲生物鐘基因和表達的影響. 蠶業(yè)科學(xué), 2013, 39(3): 453-459.

        Zhang D Y, Liang H, Sima Y H, Xu S Q. Effects of temperature and light rhythm on expression of clock genesandadult., 2013, 39(3): 453-459. (in Chinese)

        [4] 王文棟, 束梅影, 張達艷, 徐世清. 家蠶晝夜節(jié)律生物鐘基因的生物信息學(xué)分析. 四川動物, 2016, 35(2): 275-282.

        Wang W D, Shu M Y, Zhang D Y, Xu S Q. Bioinformatics analysis of circadian rhythm biological clock genes in., 2016, 35(2): 275-282. (in Chinese)

        [5] Zhu L, Liu W, Tan Q Q, Lei C L, Wang X P. Differential expression of circadian clock genes in two strains of beetles reveals candidates related to photoperiodic induction of summer diapause., 2017, 603: 9-14.

        [6] Rubin E B, Shemesh Y, Cohen M, Elgavish S, Robertson H M, Bloch G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee () and shed new light on the molecular evolution of the circadian clock., 2006, 16(11): 1352-1365.

        [7] Gegear R J, Casselman A, Waddell S, Reppert S M. Cryptochrome mediates light-dependent magnetosensitivity in., 2008, 454(7207): 1014-1018.

        [8] Barberà M, Collantes-Alegre J M, Martínez-Torres D. Characterisation, analysis of expression and localization of circadian clock genes from the perspective of photoperiodism in the aphid., 2017, 83: 54-67.

        [9] Kontogiannatos D, Gkouvitsas T, Kourti A. The expression patterns of the clock genesandare affected by photoperiod in the Mediterranean corn stalk borer,., 2017, 94(1): e21366.

        [10] Chang D C, McWatters H G, Williams J A, Gotter A L, Levine J D, Reppert S M. Constructing a feedback loop with circadian clock molecules from the silkmoth,., 2003, 278(40): 38149-38158.

        [11] Shirasu N, Shimohigashi Y, Tominaga Y, ShimohigashiM. Molecular cogs of the insect circadian clock., 2003, 20(8): 947-955.

        [12] Sandrelli F, Costa R, Kyriacou C P, Rosato E. Comparative analysis of circadian clock genes in insects., 2008, 17(5): 447-463.

        [13] Tomioka K, Matsumoto A. A comparative view of insect circadian clock systems., 2010, 67(9): 1397-1406.

        [14] 任爽, 魏慧敏, 郝友進, 陳斌. 昆蟲鐘基因研究進展. 昆蟲學(xué)報, 2016, 59(3): 353-364.

        Ren S, Wei H M, Hao Y J, Chen B. Research progress in circadian clock genes in insects., 2016, 59(3): 353-364. (in Chinese)

        [15] Cashmore A R. Cryptochromes: enabling plants and animals to determine circadian time., 2003, 114(5): 537-543.

        [16] Busza A, Emery-Le M, Rosbash M, Emery P. Roles of the twocryptochrome structure domains in circadian photoreception., 2004, 304(5676): 1503-1506.

        [17] Lin C, Todo T. The cryptochromes., 2005, 6(5): 220.

        [18] Zhu H, Yuan Q, Froy O, Casselman A, Reppert S M. The two CRYs of the butterfly., 2005, 15(23): R953-R954.

        [19] Boothroyd C E, Wijnen H, Naef F, Saez L, Young M W. Integration of light and temperature in the regulation of circadian gene expression in., 2007, 3(4): e54.

        [20] Fan J Y, Muskus M J, Price J L. Entrainment of thecircadian clock: more heat than light., 2007, 413: pe65.

        [21] Ni H, Yan S, Liu X X, Zhang Q W.mRNA expression under mating and black light treatment on., 2011, 2(3): 20-23, 30.

        [22] Yan S, Ni H, Li H T, Zhang J, Liu X X, Zhang Q W. Molecular cloning, characterization, and mRNA expression of twogenes in(Lepidoptera: Noctuidae)., 2013, 106(1): 450-462.

        [23] 劉孝明, 張松斗, 馬木提·賽麗蔓, 鄒馳, 李貞, 張青文, 劉小俠. 光周期和溫度對生物鐘基因在棉鈴蟲幼蟲節(jié)律表達的影響. 應(yīng)用昆蟲學(xué)報, 2016, 53(5): 942-952.

        Liu X M, Zhang S D, Mamuti S, Zou C, Li Z, Zhang Q W, Liu X X. The effect of photoperiod and temperature on the diurnal expression of the circadian clock genein larvae of cotton bollworm,(Hübner)., 2016, 53(5): 942-952. (in Chinese)

        [24] Uryu O, Karpova S G, Tomioka K. The clock geneplays an important role in the circadian clock of the cricket., 2013, 59(7): 697-704.

        [25] Wu K J, Gong P Y. A new and practical artificial diet for the cotton bollworm., 1997, 4(3): 277-282.

        [26] Yan S, Li H T, Zhang J, Zhu J L, Zhang Q W, Liu X X. Sperm storage and sperm competition in the(Lepidoptera: Noctuidae)., 2013, 106(2): 708-715.

        [27] Yan S, Zhu J L, Zhu W L, Zhang X F, Li Z, Liu X X, Zhang Q W. The expression of three opsin genes from the compound eye of(Lepidoptera: Noctuidae) is regulated by a circadian clock, light conditions and nutritional status., 2014, 9(10): e111683.

        [28] Bairoch A, Bucher P, Hofmann K. The PROSITE database, its status in 1997., 1997, 25(1): 217-221.

        [29] Combet C, Blanchet C, Geourjon C, Deléage G. NPS@: network protein sequence analysis., 2000, 25(3): 147-150.

        [30] 魏國樹, 張青文, 周明牂, 吳衛(wèi)國. 棉鈴蟲[(Hübner)]蛾復(fù)眼視網(wǎng)膜電位研究. 生物物理學(xué)報, 1999, 15(4): 682-688.

        Wei G S, Zhang Q W, Zhou M Z, Wu W G. Studies on the electroretinogram of the compound eyes of(Hübner) moth., 1999, 15(4): 682-688. (in Chinese)

        [31] Fuller R C, Claricoates K M. Rapid light-induced shifts in opsin expression: finding new opsins, discerning mechanisms of change, and implications for visual sensitivity., 2011, 20(16): 3321-3335.

        [32] 閆碩, 朱家林, 朱威龍, 潘李隆, 張青文, 劉小俠. 棉鈴蟲-微管蛋白基因的克隆、序列分析及表達模式檢測. 中國農(nóng)業(yè)科學(xué), 2013, 46(9): 1808-1817.

        Yan S, Zhu J L, Zhu W L, Pan L L, Zhang Q W, Liu X X. Molecular cloning, sequence analysis and expression pattern detection of a-tubulin gene from(Hübner)., 2013, 46(9): 1808-1817. (in Chinese)

        [33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod., 2001,25(4): 402-408.

        [34] Sancar A. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception., 2000, 69: 31-67.

        [35] Saunders D S. Insect photoperiodism: seeing the light., 2012, 37(3): 207-218.

        [36] Ruan G X, Gamble K L, Risner M L, Young L A, McMahon D G. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators., 2012, 7(6): e38985.

        [37] Bobu C, Sandu C, Laurent V, Felder-Schmittbuhl M P, Hicks D. Prolonged light exposure induced widespread phase shifting in the circadian clock and visual pigment gene expression of theretina., 2013, 19(1): 1060-1073.

        [38] Buonfiglio D C, Malan A, Sandu C, Jaeger C, Cipolla-Neto J, Hicks D, Felder-Schmittbuhl M P. Rat retina shows robust circadian expression of clock and clock output genes in explant culture., 2014, 20(6): 742-752.

        [39] Huang N, Chelliah Y, Shan Y, Taylor C A, Yoo S H, Partch C, Green C B, Zhang H, Takahashi J S. Crystal structure of the heterodimeric CLOCK: BMAL1 transcriptional activator complex., 2012, 337(6091): 189-194.

        [40] Merlin C, Fran?ois M C, Queguiner I, Ma?bèche- Coisné M, Jacquin-Joly E. Evidence for a putative antennal clock in: molecular cloning and characterization of two clock genes-and-in antennae., 2006,15(2): 137-145.

        [41] 魯艷輝, 趙燕燕, 張發(fā)成, 鄭許松, 朱平陽, 呂仲賢. 二化螟滯育生物鐘蛋白TIME-EA4基因的克隆及時空和溫度誘導(dǎo)表達分析. 昆蟲學(xué)報, 2016, 59(4): 392-401.

        Lu Y H, Zhao Y Y, Zhang F C, Zheng X S, Zhu P Y, Lü Z X. Cloning and spatiotemporal and temperature-induced expression profiling of diapause bioclock protein TIME-EA4 gene in the rice stem borer,(Lepidoptera: Pyralidae)., 2016, 59(4): 392-401. (in Chinese)

        [42] Chong N W, Chaurasia S S, Haque R, Klein D C, Iuvone P M. Temporal-spatial characterization of chicken clock genes: circadian expression in retina, pineal gland, peripheral tissues., 2003, 85(4): 851-860.

        [43] Liu S, Cai Y N, Sothern R B, Guan Y Q, Chan P. Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice., 2007, 24(5): 793-820.

        [44] Singh D, Rani S, Kumar V. Daily expression of six clock genes in central and peripheral tissues of a night-migratory songbird: evidence for tissue-specific circadian timing., 2013, 30(10): 1208-1217.

        [45] Brady A K, Snyder K A, Vize P D. Circadian cycles of gene expression in the coral,., 2011, 6(9): e25072.

        [46] Merlin C, Lucas P, Rochat D, Fran?ois M C, Ma?bèche-Coisne M, Jacquin-Joly E. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth., 2007, 22(6): 502-514.

        [47] Schuckel J, Siwicki K K, Stengl M. Putative circadian pacemaker cells in the antennae of the hawkmoth., 2007, 330(2): 271-278.

        [48] Suri V, Qian Z, Hall J C, Rosbash M. Evidence that the TIM light response is relevant to light-induced phase shifts in., 1998, 21(1): 225-234.

        [49] Ceriani M F, Darlington T K, Staknis D, Más P, Petti A A, Weitz C J, Kay S A. Light-dependent sequestration of TIMELESS by CRYPTOCHROME., 1999, 285(5427): 553-556.

        [50] Hollander A, Yin C M. Neurological in?uences on pheromone release and calling behaviour in the gypsy moth,(L.)., 1982, 7(2): 163-166.

        [51] Raina A K, Klun J A. Brain factor control of sex pheromone production in the female corn earworm moth., 1984, 225(4661): 531-533.

        [52] Delisle J, McNeil J N. Calling behaviour and pheromone titre of the true armyworm(Haw.) (Lepidoptera: Noctuidae) under different temperature and photoperiodic conditions., 1987, 33(5): 315-324.

        [53] Raina A K. Neuroendocrine control of sex pheromone biosynthesis in Lepidoptera., 1993, 38: 329-349.

        [54] 閆碩, 李慧婷, 朱威龍, 朱家林, 張青文, 劉小俠. 光強度對棉鈴蟲交配行為的影響. 昆蟲學(xué)報, 2014, 57(9): 1045-1050.

        Yan S, Li H T, Zhu W L, Zhu J L, Zhang Q W, Liu X X. Effects of light intensity on the sexual behavior of the cotton bollworm,(Lepidoptera: Noctuidae)., 2014, 57(9): 1045-1050. (in Chinese)

        [55] Li H T, Yan S, Li Z, Zhang Q W, Liu X X. Dim light during scotophase enhances sexual behavior of the oriental tobacco budworm(Lepidoptera: Noctuidae)., 2015, 98(2): 690-696.

        [56] Schal C, Cardé R T. Effects of temperature and light on calling in the tiger moth(Freeman) (Lepidoptera: Arctiidae)., 1986, 11(1): 75-87.

        [57] Kamimura M, Tatsuki S. Effects of photoperiodic changes on calling behavior and pheromone production in the oriental tobacco budworm moth,(Lepidoptera: Noctuidae)., 1994, 40(8): 731-734.

        [58] Burks C S, Brandl D G, Higbee B S. Effect of natural and artificial photoperiods and fluctuating temperature on age of first mating and mating frequency in the navel orangeworm,., 2011,11(1): 48.

        [59] Kawazu K, Adati T, Tatsuki S. The effect of photoregime on the calling behavior of the rice leaf folder moth,(Lepidoptera: Crambidae)., 2011, 45(2): 197-202.

        (責任編輯 岳梅)

        Daily Expression ofGene in Compound Eye of

        YAN Shuo1,2, LIU YanJun1, ZHANG XinFang3, QIN Meng2, LIU Hui2, ZHU JiaLin4, LI Zhen1, ZHANG QingWen1, LIU XiaoXia1

        (1College of Plant Protection, China Agricultural University, Beijing 100193;2National Agricultural Technology Extension and Service Center, Beijing 100125;3Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Changli 066600, Hebei;4Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 100026)

        【】The objective of this study is to clone and analyze a circadian clock gene,() in the compound eyes of, examine the diurnal changes and determinants ofmRNA levels in compound eyes of cotton bollworm, and to determine whetherperformed circadian functions in compound eyes, which will provide a theoretical reference for understanding the circadian clock machinery in compound eyes. 【】The total RNA was isolated from the compound eyes of 2-day-oldmoths, and thewas cloned by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The amino acid sequence of CLK from cotton bollworm was analyzed using bioinformatics softwares. The relative mRNA levels ofwere determined among various adult organs (head, thorax, abdomen, leg, wing, brain, antennae and compound eye) ofby quantitative real-time PCR (qRT-PCR). The diurnal change ofmRNA levels in compound eyes was measured under different photoperiods. Moths were illuminated by UV, blue and green lights, respectively, for 6 h from the beginning of the scotophase, and the expression levels ofin compound eyes were determined after light exposure. Female and male moths were paired for mating, and the expression levels ofin compound eyes were determined from the moths that had completed mating 0 h and 3 h. The expression levels ofin compound eyes were determined from the moths that were not fed. 【】An open reading frame of 1 860 bp was cloned, encoding 619 amino acids, designed as “” (GenBank accession number KM233158). The molecular mass of the deduced protein was predicted to be 69.32 kD, and the calculated isoelectric point (pI) was 5.71. Deduced amino acids sequence contained three transmembrane topologies, and several conserved domains of insect CLK (PAS and HLH). HeCLK showed high homology with(97% identity) and(74% identity), and low homology with(53% identity) and(52% identity). qRT-PCR revealed thatshowed the lowest mRNA levels in compound eyes, and the highest mRNA levels in antennas among tested adult organs. The mRNA levels ofin compound eyes increased during the day, and decreased during the night under 14L﹕10D. The cycling of the circadian clock gene mRNA levels persisted for 1 d under dark condition, but did not persist further under constant darkness.was up-regulated in compound eyes after light exposure, but there was no significant difference in mRNA levels ofamong different wavelengths of light. The expression levels ofwere tended to be down-regulated in the compound eyes after copulation, and there was a significant difference in mRNA levels ofbetween mated males and virgin males. The expression levels ofin compound eyes were not influenced by starvation. 【】from the compound eyes of a nocturnal moth,, was cloned. Deduced amino acids sequence contained the conserved domains of CLK proteins, and shared high homology with insect CLK.showed the lowest mRNA levels in compound eyes among tested adult organs. The expression levels ofin peripheral tissues (compound eyes) were regulated by the circadian rhythms, light condition and physiological status of moths, confirming thatplayed an important role in circadian rhythms in compound eyes. Whether the circadian clock machinery is similar between compound eyes and the central nervous system need to be further studied.

        ; circadian clock; compound eye; photoreceptor; peripheral tissue; rhythm

        10.3864/j.issn.0578-1752.2017.19.010

        2017-05-12;接受日期:2017-07-15

        國家自然科學(xué)基金(31572018)

        閆碩,E-mail:yanshuo2011@foxmail.com。通信作者劉小俠,E-mail:liuxiaoxia611@cau.edu.cn

        猜你喜歡
        棉鈴蟲生物鐘交配
        周末“補覺”是一個謊言
        從計時鐘到生物鐘
        不同交配方式對家蠶種性影響
        二化螟的多次交配及其對雌蛾產(chǎn)卵量的影響
        打亂生物鐘會讓人變丑
        奧秘(2018年1期)2018-07-02 10:56:34
        不同誘芯、誘捕器誘集棉鈴蟲效果試驗
        高效低毒新型藥劑防治棉鈴蟲試驗
        棉鈴蟲幾種常見藥劑大田試驗篩選
        當自由交配遇上自由組合的幾種解法淺析
        黑龍江省發(fā)現(xiàn)馬鈴薯晚疫病菌(Phytophthora infestans)A2交配型
        中國馬鈴薯(2015年3期)2015-12-19 08:03:56
        蜜臀av一区二区| 国产内射一级一片内射视频| 日日拍夜夜嗷嗷叫国产| 朝鲜女子内射杂交bbw| 亚洲日韩精品久久久久久| 日本一区二区高清视频在线| 日韩精品第一区二区三区| 少妇高潮惨叫久久久久久电影| 国产精品久久久久免费a∨| 免费人人av看| 国产69精品麻豆久久| 日本少妇春药特殊按摩3| 嫩草影院未满十八岁禁止入内| 精品国免费一区二区三区| 96中文字幕一区二区| 麻豆网神马久久人鬼片| 亚洲一本大道无码av天堂| 美女裸体无遮挡免费视频国产| 日韩人妖干女同二区三区| 一色桃子中文字幕人妻熟女作品| 免费观看又污又黄的网站| 高清高速无码一区二区| 日韩av水蜜桃一区二区三区| 人人做人人爽人人爱| 国产成人亚洲综合无码| 免费人成视频网站在线观看不卡 | 日韩精品成人无码AV片| 国产精品视频一区日韩丝袜 | 丰满少妇被爽的高潮喷水呻吟| 亚洲成熟丰满熟妇高潮xxxxx| 无码人妻精品一区二区三区免费| 久久国产A∨一二三| 美女脱了内裤洗澡视频| 亚洲欧美日韩成人高清在线一区| 精品手机在线视频| 白白白色视频在线观看播放| 国产精品国产亚洲精品看不卡| 欧美人妻精品一区二区三区| 亚洲 国产 韩国 欧美 在线 | 久久婷婷五月综合色高清| 亚洲av男人的天堂在线观看|