李新,顧曉川,2,龍海波,彭煥,黃文坤,彭德良
?
禾谷孢囊線蟲(chóng)果膠酸裂解酶新基因的鑒定與表達(dá)特征分析
李新1,顧曉川1,2,龍海波3,彭煥1,黃文坤1,彭德良1
(1中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲(chóng)害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100193;2中國(guó)熱帶農(nóng)業(yè)科學(xué)院橡膠研究所,海南儋州571737;3中國(guó)熱帶農(nóng)業(yè)科學(xué)院環(huán)境與植物保護(hù)研究所農(nóng)業(yè)部熱帶作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室,???71101)
【】禾谷孢囊線蟲(chóng)()是一種嚴(yán)重危害麥類(lèi)作物的重要植物病原線蟲(chóng),對(duì)農(nóng)業(yè)生產(chǎn)造成巨大的經(jīng)濟(jì)損失,然而其致病機(jī)制和有效防控方法還有待進(jìn)一步研究。通過(guò)克隆禾谷孢囊線蟲(chóng)的果膠酸裂解酶新基因,并對(duì)其表達(dá)特性進(jìn)行分析,為后續(xù)探究的基因功能及其與寄主的互作提供理論依據(jù),并為探討禾谷孢囊線蟲(chóng)防控途徑提供新思路?!尽坎捎猛纯寺〗Y(jié)合RACE技術(shù)從禾谷孢囊線蟲(chóng)中克隆出一個(gè)新的果膠酸裂解酶基因;采用DNAMAN、Clustal、SignalP 4.0 Server和GSDS等相關(guān)生物信息學(xué)軟件和在線工具分析該基因的核苷酸和氨基酸序列,并使用MEGA 5.0構(gòu)建系統(tǒng)進(jìn)化樹(shù);采用原位雜交和半定量PCR方法確定該基因的在禾谷孢囊線蟲(chóng)中的表達(dá)部位及其在線蟲(chóng)不同齡期中的表達(dá)情況。【】從禾谷孢囊線蟲(chóng)中成功克隆出一個(gè)果膠酸裂解酶基因(GenBank登錄號(hào)GQ998895),該基因cDNA全長(zhǎng)1 717 bp,包含一個(gè)長(zhǎng)度為1 563 bp的開(kāi)放閱讀框,編碼一個(gè)長(zhǎng)度為521個(gè)氨基酸殘基的蛋白,其理論分子量為57.5 kD,理論等電點(diǎn)為8.52。從線蟲(chóng)基因組DNA中擴(kuò)增獲得長(zhǎng)度為7 199 bp的基因組全長(zhǎng),基因結(jié)構(gòu)顯示分析發(fā)現(xiàn),基因組包含14個(gè)外顯子和13個(gè)內(nèi)含子,除第3個(gè)內(nèi)含子剪接位點(diǎn)是GC-AG外,其余12個(gè)內(nèi)含子都符合真核生物基因剪接位點(diǎn)GT-AG規(guī)則。同源比對(duì)結(jié)果表明,預(yù)測(cè)蛋白Ha-PEL-1的C端與大豆孢囊線蟲(chóng)果膠酸裂解酶HG-PEL-1、甜菜孢囊線蟲(chóng)果膠酸裂解酶HS-PEL-1均有67%的一致性和83%的相似性;此外,其N(xiāo)端信號(hào)肽后比報(bào)道的其他植物寄生線蟲(chóng)果膠酸裂解酶多出一段長(zhǎng)度為254個(gè)氨基酸殘基的序列,這段序列中,靠近N端的184個(gè)氨基酸殘基與數(shù)據(jù)庫(kù)中的蛋白均無(wú)相似性,而靠近C端有70個(gè)氨基酸殘基(Lys205—Glu274)與韋塞爾斯布朗病毒NS5蛋白(注冊(cè)號(hào)3ELD)的甲基轉(zhuǎn)移酶區(qū)域有32%的一致性和47%的相似性。氨基酸序列分析發(fā)現(xiàn),預(yù)測(cè)蛋白Ha-PEL-1包含一個(gè)長(zhǎng)度為20個(gè)氨基酸殘基的信號(hào)肽和4個(gè)果膠酸裂解酶第3家族(PL3)的高度保守區(qū)域以及多個(gè)保守的半胱氨酸殘基;系統(tǒng)進(jìn)化分析發(fā)現(xiàn),及其他已報(bào)道的線蟲(chóng)果膠酸裂解酶基因與細(xì)菌和真菌來(lái)源的PEL聚在一個(gè)大的分支中;原位雜交結(jié)果顯示主要在禾谷孢囊線蟲(chóng)亞腹食道腺中表達(dá);半定量RT-PCR確定在寄生前和寄生后的2齡幼蟲(chóng)中大量表達(dá)?!尽客ㄟ^(guò)對(duì)禾谷孢囊線蟲(chóng)中一個(gè)新果膠酸裂解酶基因的克隆和表達(dá)特征分析,揭示該基因與禾谷孢囊線蟲(chóng)的侵染和寄生過(guò)程密切相關(guān)。
禾谷孢囊線蟲(chóng);果膠酸裂解酶;基因克隆;原位雜交;發(fā)育表達(dá)分析
【研究意義】小麥禾谷孢囊線蟲(chóng)()是一種嚴(yán)重危害小麥()、大麥()和燕麥()等禾谷類(lèi)作物的重要病原線蟲(chóng)[1]。自1874年在德國(guó)首次發(fā)現(xiàn)后,現(xiàn)已在全球40多個(gè)國(guó)家和地區(qū)發(fā)生與危害[2]。中國(guó)1989年在湖北省天門(mén)縣岳口鎮(zhèn)首次發(fā)現(xiàn)該病原線蟲(chóng)[3],隨著農(nóng)業(yè)機(jī)械化和小麥跨區(qū)聯(lián)合收割,小麥孢囊線蟲(chóng)病發(fā)生范圍迅速擴(kuò)大,危害程度日趨嚴(yán)重,目前已擴(kuò)散至全國(guó)16個(gè)?。ㄊ?、自治區(qū))的小麥種植區(qū)[4],對(duì)小麥等麥類(lèi)作物的生產(chǎn)造成了嚴(yán)重的經(jīng)濟(jì)損失[5]。研究表明,由植物線蟲(chóng)食道腺細(xì)胞產(chǎn)生、并通過(guò)口針穿刺分泌到寄主植物組織中的纖維素酶、果膠酸裂解酶等一系列細(xì)胞壁降解酶類(lèi),在線蟲(chóng)的侵染過(guò)程中,能夠降解和軟化細(xì)胞壁,從而有利于線蟲(chóng)的寄生和遷移[6]。對(duì)重要的細(xì)胞壁降解酶——果膠酸裂解酶(pectate lyase,PEL)基因進(jìn)行克隆和表達(dá)特性分析,可為后續(xù)探究的基因功能及其與寄主的互作機(jī)制提供理論依據(jù),為從基因和蛋白水平上對(duì)禾谷孢囊線蟲(chóng)進(jìn)行防治打下基礎(chǔ)。【前人研究進(jìn)展】2000年,Popeijus等首次從馬鈴薯金線蟲(chóng)()中發(fā)現(xiàn)果膠酸裂解酶基因[7],隨后陸續(xù)從大豆孢囊線蟲(chóng)()、甜菜孢囊線蟲(chóng)()、馬鈴薯金線蟲(chóng)、根結(jié)線蟲(chóng)(spp.)、松材線蟲(chóng)()和燕麥真滑刃線蟲(chóng)()等多種植物線蟲(chóng)中分離獲得該基因[8-16]。基因組數(shù)據(jù)分析預(yù)測(cè)顯示,松材線蟲(chóng)、北方根結(jié)線蟲(chóng)()、南方根結(jié)線蟲(chóng)(.)分別含有15、22和30個(gè)果膠酸裂解酶基因[17-19]。在大豆孢囊線蟲(chóng)研究中,先后發(fā)現(xiàn)了兩類(lèi)結(jié)構(gòu)和功能具有顯著差異的果膠酸裂解酶基因,Bakhetia等[20]和Peng等[10]先后采用RNAi技術(shù)沉默了大豆孢囊線蟲(chóng)的兩個(gè)果膠酸裂解酶基因(和),結(jié)果發(fā)現(xiàn),當(dāng)被沉默后,大豆孢囊線蟲(chóng)在寄主體內(nèi)的雌雄比發(fā)生變化,但是對(duì)侵染寄主根系的線蟲(chóng)數(shù)量沒(méi)有影響;而沉默后,寄主根系內(nèi)的線蟲(chóng)數(shù)量和雌成蟲(chóng)數(shù)均明顯下降,說(shuō)明兩類(lèi)結(jié)構(gòu)和功能不同的果膠酸裂解酶在線蟲(chóng)侵染過(guò)程發(fā)揮著不同的作用。【本研究切入點(diǎn)】在前期研究中,禾谷孢囊線蟲(chóng)中已分離克隆出多個(gè)與植物細(xì)胞壁降解相關(guān)的-1,4-內(nèi)切葡聚糖酶基因(-1,4-endoglucanase gene)[21-22]、擴(kuò)展蛋白基因(expansion gene)[23-24]和纖維素結(jié)合蛋白基因(CBP)[25],但關(guān)于果膠酸裂解酶的研究未見(jiàn)報(bào)道。【擬解決的關(guān)鍵問(wèn)題】從禾谷孢囊線蟲(chóng)中克隆獲得一個(gè)果膠酸裂解酶基因,對(duì)其序列特征、表達(dá)部位和發(fā)育動(dòng)態(tài)進(jìn)行系統(tǒng)研究,為進(jìn)一步解析該類(lèi)基因的功能打下基礎(chǔ)。
試驗(yàn)于2015年9月至2016年12月在中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所完成。
含有禾谷孢囊線蟲(chóng)成熟孢囊的土樣采集于河南省濮陽(yáng)市南樂(lè)縣。采用蔗糖離心法分離獲得孢嚢,并將挑取的孢囊在4℃條件下保存8周以上,然后放于16℃條件下中孵化2齡幼蟲(chóng)[26],參考亓?xí)岳虻萚27]方法,挑取單條線蟲(chóng)進(jìn)行分子檢測(cè),確定為禾谷孢囊線蟲(chóng)后,將其他2齡幼蟲(chóng)接種到感病寄主小麥溫麥19的根系中,進(jìn)行擴(kuò)大培養(yǎng),從根系和土壤中再次分離出來(lái)的孢囊,在4℃低溫刺激后,16℃孵化2齡幼蟲(chóng)用于下一步研究。
Trizol Reagent、SuperScriptTMFirst-strand Synthesis System for RT-PCR反轉(zhuǎn)錄試劑盒、5′ RACE System for Rapid Amplification of cDNA Ends Version 2.0 kit、Dynbeads?mRNA DIRECTTMKit購(gòu)自Invitrogen公司;3′-Full RACE Core Set Ver.2.0購(gòu)自Takara公司;DIG High Prime DNA Labeling and Detection Starter Kit I、PCR DIG Probe Synthesis Kit、蛋白酶K購(gòu)自Roche公司;RQ1 RNase-Free DNase、pGEM-T easy vector購(gòu)自Promega公司;DNeasy Blood & Tissue Kit購(gòu)自QIAGEN公司;DNA Marker、DH5感受態(tài)細(xì)胞、凝膠回收試劑盒購(gòu)自北京天根生化有限責(zé)任公司;其他常規(guī)試劑購(gòu)自Sigma等公司。
1.3.1 核酸提取 收集新鮮孵化的禾谷孢囊線蟲(chóng)2齡幼蟲(chóng)置于1 mL的Trizol溶液中,參考彭煥等[28]方法提取總RNA,總RNA用RQ1 RNase-Free DNase進(jìn)行去DNA處理,純化后產(chǎn)物置于-80℃保存。第一鏈cDNA的合成使用Invitrogen公司的SuperScriptTMFirst-Strand Synthesis System for RT-PCR試劑盒,反轉(zhuǎn)錄產(chǎn)物置于-20℃保存。參照DNeasy Blood & Tissue Kit試劑盒說(shuō)明書(shū)提取禾谷孢囊線蟲(chóng)基因組DNA。
1.3.2 RACE 擴(kuò)增3′端和5′端序列 根據(jù)已報(bào)道的植物寄生線蟲(chóng)果膠酸裂解酶蛋白序列,參照Takara公司3′-Full RACE Core Set Ver.2.0試劑盒引物設(shè)計(jì)說(shuō)明,采用Primier 5.0軟件,設(shè)計(jì)3′ RACE反應(yīng)的簡(jiǎn)并引物(JPL-O和JPL-I,表1),以2齡幼蟲(chóng)總RNA為模板,進(jìn)行3′末端擴(kuò)增,具體步驟參照試劑盒說(shuō)明書(shū),然后對(duì)擴(kuò)增片段進(jìn)行回收、連接、轉(zhuǎn)化、送生工生物工程(上海)股份有限公司進(jìn)行測(cè)序。再根據(jù)已測(cè)序獲得的基因3′末端片段序列,參考Invitrogen公司5′ RACE System for Rapid Amplification of cDNA Ends,Version 2.0 kit試劑盒引物設(shè)計(jì)說(shuō)明,設(shè)計(jì)的5′ RACE特異引物(GSP-PL1、GSP-PL2和GSP-nPL4,表1),以2齡幼蟲(chóng)總RNA為模板,進(jìn)行5′末端擴(kuò)增,具體步驟參照試劑盒說(shuō)明書(shū),對(duì)擴(kuò)增片段進(jìn)行回收、連接、轉(zhuǎn)化、測(cè)序。
1.3.3 cDNA全長(zhǎng)和基因組DNA克隆 根據(jù)已測(cè)序獲得的基因cDNA拼接全長(zhǎng)序列,設(shè)計(jì)全長(zhǎng)引物(PEL-L1和PL-LA2,表1),以第一鏈cDNA和基因組DNA為模板,分別進(jìn)行PCR擴(kuò)增。反應(yīng)參數(shù):94℃預(yù)變性5 min;94℃變性30 s,50℃退火30 s,72℃延伸2 min;35個(gè)循環(huán);72℃延伸10 min;對(duì)擴(kuò)增片段進(jìn)行回收、連接、轉(zhuǎn)化、測(cè)序。
1.3.4 序列分析 分別使用DNAMAN和Clustal軟件進(jìn)行核苷酸序列的翻譯和氨基酸序列的比對(duì)分析,使用在線工具(http://www.expasy.ch/tools/ pi_tool.html/)進(jìn)行蛋白質(zhì)等電點(diǎn)和分子量的預(yù)測(cè),使用SignalP 4.0 Server(http://www.cbs.dtu.dk/services/ SignalP/)預(yù)測(cè)蛋白質(zhì)前體信號(hào)肽[29],使用CBS Prediction Servers(http://www.cbs.dtu.dk/services/)對(duì)氨基酸序列中可能存在的糖基化位點(diǎn)和磷酸化位點(diǎn)進(jìn)行預(yù)測(cè),使用基因內(nèi)含子分析工具(http://gsds.cbi.pku. edu.cn/)分析基因組結(jié)構(gòu)[30],使用MEGA 5.0構(gòu)建系統(tǒng)進(jìn)化樹(shù)[31]。
1.3.5 原位雜交 原位雜交方法參考De Boer等[32]的方法進(jìn)行,收集新孵化的禾谷孢囊線蟲(chóng)2齡幼蟲(chóng)用DEPC水清洗3次,4%多聚甲醛固定24 h,用手術(shù)刀將蟲(chóng)體切斷后,采用甲醇和丙酮進(jìn)行通透,蛋白酶K進(jìn)行消化,再用1倍雜交液重懸并置于-20℃保存。根據(jù)全長(zhǎng)序列設(shè)計(jì)特異性引物Yw-F和Yw-R(表1),以cDNA第一鏈為模板加入DIG標(biāo)記的dNTP進(jìn)行正、負(fù)鏈探針合成。將合成的DIG標(biāo)記探針與預(yù)處理的禾谷孢囊線蟲(chóng)參考DIG High Prime DNA Labeling and Detection Starter Kit Ⅰ說(shuō)明書(shū)進(jìn)行雜交和洗脫,停止顯色后,在Leica DM2500顯微鏡下進(jìn)行觀察拍照。
1.3.6 發(fā)育表達(dá)分析 參考Long等[22]方法,通過(guò)控制接種時(shí)間結(jié)合酶裂解處理分離獲得5種不同發(fā)育階段的禾谷孢囊線蟲(chóng)(侵染前2齡幼蟲(chóng)、侵染后2齡幼蟲(chóng)、3齡幼蟲(chóng)、4齡幼蟲(chóng)和雌蟲(chóng))。采用Dynbeads?mRNA DIRECTTMKit提取不同齡期禾谷孢囊線蟲(chóng)mRNA,并取等量mRNA(200 ng)分別反轉(zhuǎn)錄合成第一鏈cDNA。分別以5個(gè)不同發(fā)育階段線蟲(chóng)的第一鏈cDNA和小麥根系的第一鏈cDNA為模板,采用特異引物RT-F和RT-R(表1)進(jìn)行PCR 擴(kuò)增,30個(gè)循環(huán),同時(shí)以引物ActinF和ActinR(表1)擴(kuò)增禾谷孢囊線蟲(chóng)的作為陽(yáng)性對(duì)照。擴(kuò)增產(chǎn)物在1.5%瓊脂糖凝膠中電泳分離檢測(cè)。
表1 本研究中的引物序列
采用Trizol法提取的禾谷孢囊線蟲(chóng)2齡幼蟲(chóng)總RNA,電泳分離檢測(cè)可見(jiàn)總RNA的28S、18S和5S 3條清晰的帶,其OD260/280值為1.9—2.0,說(shuō)明蛋白質(zhì)和DNA去除較徹底,RNA純度較高,可以用于后續(xù)試驗(yàn)。電泳檢測(cè)提取的禾谷孢囊線蟲(chóng)基因組DNA,獲得大小為23 kb左右的完整條帶,無(wú)拖尾和降解,完整性較好,可用于下游試驗(yàn)。
通過(guò)同源克隆策略,采用3′ RACE技術(shù)擴(kuò)增獲得長(zhǎng)度為280 bp的禾谷孢囊線蟲(chóng)果膠酸裂解酶基因cDNA 3′末端片段(圖1-A),BLAST比對(duì)分析表明,該片段與已報(bào)道的線蟲(chóng)果膠酸裂解酶基因具有較高的同源性。在此基礎(chǔ)上,采用5′ RACE技術(shù)獲得長(zhǎng)度為1 499 bp的cDNA 5′末端片段(圖1-B)。為驗(yàn)證拼接序列的準(zhǔn)確性,采用全長(zhǎng)引物從禾谷孢囊線蟲(chóng)cDNA模板中擴(kuò)增獲得到長(zhǎng)度1 682 bp,包含完整ORF的cDNA全長(zhǎng)序列(圖1-C);采用分步克隆和序列拼接,從禾谷孢囊線蟲(chóng)基因組DNA中擴(kuò)增獲長(zhǎng)度為7 199 bp的基因組全長(zhǎng)。
1:PCR產(chǎn)物Product of PCR;M1:DL 2000 plus marker;M2:DL 2000 marker
序列分析結(jié)果表明,(GenBank登錄號(hào)GQ998895)cDNA全長(zhǎng)為1 717 bp(不包含多聚腺苷酸尾)(圖2),其中5′端非編碼區(qū)(UTR)為98 bp,3′端非編碼區(qū)為56 bp,開(kāi)放閱讀框?yàn)? 563 bp,編碼一個(gè)長(zhǎng)度為521個(gè)氨基酸殘基的蛋白,其理論分子量為57.5 kD,理論等電點(diǎn)為8.52。SignalP預(yù)測(cè)發(fā)現(xiàn),Ha-PEL-1蛋白N端含有一個(gè)長(zhǎng)度為20個(gè)氨基酸殘基的信號(hào)肽,剪接位點(diǎn)在Gly20和Arg21之間。糖基化位點(diǎn)預(yù)測(cè)顯示,該蛋白在Asn38存在一個(gè)N位糖基化位點(diǎn)?;蚪Y(jié)構(gòu)顯示分析發(fā)現(xiàn),基因組含有14個(gè)外顯子和13個(gè)內(nèi)含子,除第3個(gè)內(nèi)含子的剪接位點(diǎn)為GC-AG外,其余12個(gè)內(nèi)含子都符合真核生物基因剪接位點(diǎn)GT-AG規(guī)則,其中相位0的內(nèi)含子有5個(gè),相位1的內(nèi)含子有6個(gè),相位2的內(nèi)含子有2個(gè)。
圖2 Ha-pel-1基因組DNA結(jié)構(gòu)分析
NCBI中BLASTp比對(duì)分析發(fā)現(xiàn),Ha-PEL-1預(yù)測(cè)蛋白C端的247個(gè)氨基酸殘基與已報(bào)道的大豆孢囊線蟲(chóng)果膠酸裂解酶HG-PEL-1、甜菜孢囊線蟲(chóng)HS-PEL-1均有67%的一致性和83%的相似性,與大豆孢囊線蟲(chóng)HG-PEL-2和馬鈴薯孢囊線蟲(chóng)GR-PEL-1的相似性分別為82%和81%;其N(xiāo)端信號(hào)肽后的254個(gè)氨基酸殘基與GenBank蛋白數(shù)據(jù)庫(kù)中的蛋白無(wú)相似性,而與RCSB Protein Data Bank比對(duì)后發(fā)現(xiàn),這段氨基酸序列后70個(gè)氨基酸殘基(Lys205—Glu274)與RCSB蛋白質(zhì)數(shù)據(jù)庫(kù)中韋塞爾斯布朗病毒NS5蛋白(注冊(cè)號(hào)3ELD)甲基轉(zhuǎn)移酶區(qū)域的71個(gè)氨基酸殘基具有32%的一致性和47%的相似性。
多序列比對(duì)和保守結(jié)構(gòu)域分析表明,預(yù)測(cè)蛋白Ha-PEL-1具有果膠酸裂解酶第3家族(PL3)的4個(gè)保守區(qū)域和多個(gè)保守的半胱氨酸殘基,同時(shí),在Ha-PEL-1上發(fā)現(xiàn)一個(gè)帶負(fù)電荷的保守天冬氨酸和兩個(gè)帶正電荷的保守賴氨酸,可以確定Ha-PEL-1是果膠酸裂解酶第3家族的新成員。
采用ME法構(gòu)建了Ha-PEL-1及42個(gè)已報(bào)道的植物線蟲(chóng)、真菌和細(xì)菌來(lái)源的果膠酸裂解酶的系統(tǒng)發(fā)育樹(shù)。結(jié)果顯示,所有植物線蟲(chóng)來(lái)源的果膠酸裂解酶聚為3個(gè)獨(dú)立的分支,其中燕麥滑刃線蟲(chóng)AA-PEL-1和AA-PEL-2、松材線蟲(chóng)BX-PEL-1和BX-PEL-2、擬松材線蟲(chóng)()BM-PEL-1和BM-PEL-2、馬鈴薯孢囊線蟲(chóng)HG-PEL-2、甜菜孢囊線蟲(chóng)HS-PEL-2和大豆孢囊線蟲(chóng)HG-PEL-5聚為一個(gè)分支,命名為Nematode PEL-1;南方根結(jié)線蟲(chóng)MI-PEL-1和爪哇根結(jié)線蟲(chóng)()MJ-PEL-1聚在另一個(gè)分支,命名為Nematode PEL-2;而禾谷孢囊線蟲(chóng)Ha-PEL-1與大豆孢囊線蟲(chóng)HG-PEL-1和HG-PEL-2、甜菜孢囊線蟲(chóng)HS-PEL-1、馬鈴薯孢囊線蟲(chóng)GR-PEL-1、南方根結(jié)線蟲(chóng)MI-PEL-2和MI-PEL-3聚為一個(gè)分支,命名為Nematode PEL-3。其中第1分支Nematode PEL-1和第2分支Nematode PEL-2又與芽孢桿菌(sp.)、番茄細(xì)菌性潰瘍病菌()等的果膠酸裂解酶聚在一個(gè)大分支上,第3分支Nematode PEL-3與菊歐式桿菌()、纖維堆囊菌()等細(xì)菌聚為一支(圖3)。
采用原位雜交方法明確了在禾谷孢囊線蟲(chóng)中的表達(dá)部位。地高辛標(biāo)記的負(fù)鏈探針雜交結(jié)果表明,在禾谷孢囊線蟲(chóng)的兩個(gè)亞腹食道腺細(xì)胞中有明顯雜交信號(hào)(圖4-A),而作為對(duì)照的正鏈探針無(wú)雜交信號(hào)(圖4-B),由此確定在禾谷孢囊線蟲(chóng)的亞腹食道腺細(xì)胞中特異表達(dá)。
采用半定量RT-PCR方法對(duì)在禾谷孢囊線蟲(chóng)5個(gè)不同發(fā)育階段中的表達(dá)差異進(jìn)行了分析。結(jié)果表明,主要在禾谷孢囊線蟲(chóng)寄生前2齡幼蟲(chóng)和寄生后2齡幼蟲(chóng)中表達(dá),而在寄生后期和雌成蟲(chóng)中表達(dá)量很低甚至檢測(cè)不到,內(nèi)標(biāo)基因在各個(gè)齡期中均有表達(dá),在小麥根系DNA的陰性對(duì)照中未檢測(cè)到和的表達(dá)(圖5)。
淺色部分:線蟲(chóng)PEL;深色部分:真菌PEL;無(wú)底色部分:細(xì)菌PEL;下劃線:Ha-PEL-1
植物細(xì)胞壁是寄主植物抵御外界病原物侵染的物理屏障,其主要成分為纖維素、果膠質(zhì)和半纖維素等,降解和軟化植物細(xì)胞壁是植物線蟲(chóng)成功侵染和寄生的關(guān)鍵。目前的研究結(jié)果表明,植物線蟲(chóng)能從食道腺細(xì)胞中分泌一系列的細(xì)胞壁修飾酶類(lèi),共同作用于植物細(xì)胞壁,從而利于線蟲(chóng)侵染和寄生[6,33-34],其中果膠酸裂解酶在植物細(xì)胞壁降解過(guò)程中發(fā)揮著不可替代的作用。本研究從禾谷孢囊線蟲(chóng)中分離出一個(gè)果膠酸裂解酶基因,并對(duì)其序列結(jié)構(gòu)、系統(tǒng)進(jìn)化關(guān)系及表達(dá)特性進(jìn)行了系統(tǒng)研究。
結(jié)構(gòu)域分析發(fā)現(xiàn),Ha-PEL-1氨基酸序列C端有一個(gè)長(zhǎng)度為247個(gè)氨基酸殘基的果膠酸裂解酶區(qū)域,比報(bào)道的其他植物寄生線蟲(chóng)果膠酸裂解酶氨基酸序列多出一段長(zhǎng)度為250個(gè)氨基酸左右的序列。這段序列中,靠近N端的184個(gè)氨基酸殘基與數(shù)據(jù)庫(kù)中的蛋白均無(wú)相似性,而靠近C端有70個(gè)氨基酸殘基與韋塞爾斯布朗病毒NS5蛋白(注冊(cè)號(hào)3ELD)的甲基轉(zhuǎn)移酶區(qū)域有32%的一致性和47%的相似性。韋塞爾斯布朗病毒是一種危害人類(lèi)的病毒,其N(xiāo)S5蛋白參與了病毒復(fù)制,該蛋白的甲基轉(zhuǎn)移酶區(qū)域能夠參與RNA的加帽反應(yīng),催化RNA的甲基化[35]。到目前為止,在其他病原線蟲(chóng)的果膠酸裂解酶中均未發(fā)現(xiàn)該結(jié)構(gòu)域。在Ha-PEL-1中,果膠酸裂解酶結(jié)構(gòu)域與類(lèi)似甲基轉(zhuǎn)移酶結(jié)構(gòu)域結(jié)合在一起,該段與韋塞爾斯布朗病毒NS5蛋白具有相似性的氨基酸序列是否也具有甲基轉(zhuǎn)移酶功能,有待于今后進(jìn)一步研究。
A:Ha-pel-1負(fù)鏈探針雜交In situ hybridization of digoxigenin-labelled antisence probes of Ha-pel-1;B:Ha-pel-1正鏈探針雜交In situ hybridization of digoxigenin-labelled sence probes of Ha-pel-1;S:口針Stylet;M:中食道球Metacorpus;G:亞腹食道腺Subventral oesophageal gland region
1:侵染前2齡幼蟲(chóng)Pre-parasitic 2nd stage juveniles;2:侵染后2齡幼蟲(chóng)Parasitic 2nd stage juveniles;3:3齡幼蟲(chóng)Parasitic 3rd stage juveniles;4:4齡幼蟲(chóng)Parasitic 4th stage juveniles;5:雌蟲(chóng)Adult females;6:陰性對(duì)照Negative control
序列同源比對(duì)結(jié)果顯示,禾谷孢囊線蟲(chóng)Ha-PEL-1與大豆孢囊線蟲(chóng)HG-PEL-1、HG-PEL-2,甜菜孢囊線蟲(chóng)HS-PEL-1和馬鈴薯孢囊線蟲(chóng)GR-PEL-1的相似度高達(dá)81%—83%;進(jìn)化分析也發(fā)現(xiàn)上述果膠酸裂解酶序列被聚類(lèi)到同一個(gè)分支中,連同南方根結(jié)線蟲(chóng)MI-PEL-2和MI-PEL-3,聚為線蟲(chóng)果膠酸裂解酶的第3分支Nematode PEL-3;兩個(gè)根結(jié)線蟲(chóng)果膠酸裂解酶聚在一起單獨(dú)形成線蟲(chóng)果膠酸裂解酶的第2分支Nematode PEL-2;其他的線蟲(chóng)果膠酸裂解酶則聚為第1分支Nematode PEL-1,推測(cè)這些植物線蟲(chóng)PEL可能具有3個(gè)不同的進(jìn)化起源。此外,這3個(gè)線蟲(chóng)果膠酸裂解酶進(jìn)化分支均與細(xì)菌或真菌來(lái)源的果膠酸裂解酶聚在一起,在植物寄生線蟲(chóng)的其他細(xì)胞壁降解酶中也曾發(fā)現(xiàn)類(lèi)似現(xiàn)象,如纖維素酶和擴(kuò)展蛋白等[36],由上述結(jié)果推測(cè)植物線蟲(chóng)PEL的起源可能與其他微生物的基因水平轉(zhuǎn)移有關(guān),而植物寄生線蟲(chóng)分泌細(xì)胞壁降解酶也正是線蟲(chóng)與真菌和細(xì)菌之間存在基因水平轉(zhuǎn)移的重要證明[36]。綜上所述,本研究結(jié)果為植物寄生線蟲(chóng)果膠酸裂解酶的起源過(guò)程提供了新的依據(jù)。
原位雜交結(jié)果發(fā)現(xiàn),在禾谷孢囊線蟲(chóng)的亞腹食道腺細(xì)胞中特異表達(dá),這與其他的植物寄生線蟲(chóng)的PEL,如HG-PEL-1和HG-PEL-2、HS-PEL-1和HS-PEL-2、GR-PEL-1等的表達(dá)部位一致[7-16],此外,Ha-PEL-1蛋白N端具有信號(hào)肽,推測(cè)Ha-PEL-1是由禾谷孢囊線蟲(chóng)亞腹食道腺細(xì)胞合成,并通過(guò)口針?lè)置诘郊闹黧w內(nèi);同時(shí),禾谷孢囊線蟲(chóng)亞腹食道腺細(xì)胞也是其他細(xì)胞壁降解酶類(lèi)的合成場(chǎng)所[21-24]。
突破植物細(xì)胞壁的物理屏障是植物線蟲(chóng)成功寄生的關(guān)鍵,在禾谷孢囊線蟲(chóng)侵染過(guò)程中,食道腺細(xì)胞會(huì)分泌一系列細(xì)胞壁降解酶類(lèi)如果膠酸裂解酶、-1,4-內(nèi)切葡聚糖酶[21-22]和擴(kuò)展蛋白[23-24]等分泌物,協(xié)同口針穿刺的機(jī)械壓力來(lái)完成對(duì)寄主的侵染和早期寄生。禾谷孢囊線蟲(chóng)在5個(gè)不同齡期的表達(dá)分析顯示,該基因在寄生前2齡幼蟲(chóng)和寄生后2齡幼蟲(chóng)中大量表達(dá),在寄生后期和雌成蟲(chóng)中表達(dá)量非常低或者不表達(dá);Long等研究發(fā)現(xiàn)禾谷孢囊線蟲(chóng)-1,4-內(nèi)切葡聚糖酶Ha-eng-1a、Ha-eng-2和Ha-eng-3及擴(kuò)展蛋白Ha-EXPB1、HaEXPB2也均在侵染和寄生早期大量表達(dá),由此推測(cè)可能在禾谷孢囊線蟲(chóng)侵染植物寄主的過(guò)程中與上述兩類(lèi)蛋白共同發(fā)揮作用[21-24]。
本研究從禾谷孢囊線蟲(chóng)中克隆獲得一個(gè)果膠酸裂解酶基因,并對(duì)其序列特征、組織定位和發(fā)育表達(dá)進(jìn)行了系統(tǒng)分析,結(jié)果可為明確在禾谷孢囊線蟲(chóng)與寄主互作過(guò)程中的功能研究打下基礎(chǔ),并為探究植物寄生線蟲(chóng)果膠酸裂解酶的起源提供了新的證據(jù),后續(xù)將利用RNAi等技術(shù),進(jìn)一步對(duì)進(jìn)行功能驗(yàn)證;此外,Ha-PEL-1中與韋塞爾斯布朗病毒NS5蛋白甲基轉(zhuǎn)移酶區(qū)域相似的氨基酸序列是否也具有甲基轉(zhuǎn)移酶功能,仍有待進(jìn)一步研究。
從禾谷孢囊線蟲(chóng)中克隆獲得一個(gè)新的果膠酸裂解酶基因,該基因cDNA全長(zhǎng)1 717 bp,編碼一個(gè)長(zhǎng)度為521個(gè)氨基酸殘基的蛋白Ha-PEL-1;基因組全長(zhǎng)為7 199 bp,包含14個(gè)外顯子和13個(gè)內(nèi)含子。對(duì)其序列特征和表達(dá)特性進(jìn)行系統(tǒng)研究表明,在Ha-PEL-1中,類(lèi)似甲基轉(zhuǎn)移酶結(jié)構(gòu)域與果膠酸裂解酶結(jié)構(gòu)域結(jié)合在一起;Ha-PEL-1屬于果膠酸裂解酶第3家族,根據(jù)進(jìn)化分析推測(cè)其起源可能與其他微生物的基因水平轉(zhuǎn)移有關(guān);主要在禾谷孢囊線蟲(chóng)寄生前和寄生后的2齡幼蟲(chóng)的亞腹食道腺中大量表達(dá),揭示該基因與禾谷孢囊線蟲(chóng)的侵染和寄生過(guò)程密切相關(guān)。
[1] Meagher J W. World dissemination of the cereal-cyst nematode () and its potential as a pathogen of wheat., 1977, 9(1): 9-15.
[2] Rivoal R, Nicol J M. Past research on the cereal cyst nematode complex and future needs. Cereal cyst nematodes: status, research and outlook//Antalya, Turkey, 2009: 3-10.
[3] 陳品三, 王明祖, 彭德良. 我國(guó)小麥禾谷孢囊線蟲(chóng)(Wollenweber)的發(fā)現(xiàn)與鑒定初報(bào). 中國(guó)農(nóng)業(yè)科學(xué), 1991, 24(5): 89.
Chen P S, Wang M Z, Peng D L. Preliminary report of identification on cereal cyst nematode of wheat in china., 1991, 24(5): 89. (in chinese)
[4] Cui J K, Huang W K, Peng H, Liu S M, Wang G F, Kong L A, Peng D L. A new pathotype characterization of Daxing and Huangyuan populations of cereal cyst nematode () in China., 2015, 14(4): 724-731.
[5] Peng D L, Nicol J M, Li H M, Hou S Y, Li H X, Chen S L, Ma P, Li H L, Riley I T.Current knowledge of cereal cyst nematode () on wheat in China. Cereal cyst nematodes: status, research and outlook//. Antalya, Turkey, 2009: 29-34.
[6] Bohlmann H, Sobczak M. The plant cell wall in the feeding sites of cyst nematodes., 2014, 5(1): 89.
[7] Popeijus H, Overmars H, Jones J, Blok V, Goverse A, Helder J, Schots A, Bakker J, Smant G. Degradation of plant cell walls by a nematode., 2000, 406(6791): 36-37.
[8] De Boer J M, McDermott J P, Davis E L, Hussey R S, Popeijus H, Smant G, Baum T J. Cloning of a putative pectate lyase gene expressed in the subventral esophageal glands of., 2002, 34(1): 9-11.
[9] 彭煥, 彭德良, 黃文坤, 賀文婷, 胡先奇. 大豆孢囊線蟲(chóng)果膠酸裂解酶基因的克隆與分析. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(5): 854-866.
Peng H, Peng D L, Huang W K, He W T, Hu X Q. Molecular cloning and analysis of a novel pectate lyase genefrom soybean cyst nematode., 2012, 45(5): 854-866. (in chinese)
[10] Peng H, Cui J K, Long H B, Huang W K, Kong L A, Liu S M, He W T, Hu X Q, Peng D L. Novel pectate lyase genes ofplay key roles in the early stage of parasitism., 2016, 11(3): e0149959.
[11] Vanholme B, Van Thuyne W, Vanhouteghem K, De Meutter J, Cannoot B, Gheysen G. Molecular characterization and functional importance of pectate lyase secreted by the cyst nematode., 2007, 8(3): 267-278.
[12] Kudla U, Milac A L, Qin L, Overmars H, Roze E, Holterman M, Petrescu A J, Goverse A, Bakker J, Helder J, Smant G. Structural and functional characterization of a novel, host penetration-related pectate lyase from the potato cyst nematode., 2007, 8(3): 293-305.
[13] Doyle E A, Lambert K N. Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode., 2002, 15(6): 549-556.
[14] Huang G, Dong R, Allen R, Davis E L, Baum T J, Hussey R S. Developmental expression and molecular analysis of twopectate lyase genes., 2005, 35: 685-692.
[15] Kikuchi T, Shibuya H, Aikawa T, Jones J T. Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode., 2006, 19(3): 280-287.
[16] Karim N, Jones J T, Okada H, Kikuchi T. Analysis of expressed sequence tags and identification of genes encoding cell- wall-degrading enzymes from the fungivorous nematode., 2009, 10: 525.
[17] Kikuchi T, Cotton J A, Dalzell J J, Hasegawa K, Kanzaki N, McVeigh P, Takanashi T, Tsai I J, Assefa S A, Cock P J A, Otto T D, Hunt M, Reid A J, Sanchez-Flores A, Tsuchihara K, Yokoi T, Larsson M C, Miwa J, Maule A G, Sahashi N, Jones J T, Berriman M. Genomic insights into the origin of parasitism in the emerging plant pathogen., 2011, 7(9): e1002219.
[18] Opperman C H, Bird D M, Williamsond V M, Rokhsar D S, Burke M, Cohn J, Cromera J, Diener S, Gajan J, Graham S, Houfek T D, Liu Q L, Mitros T , Schaff J, Schaffer R, Scholl E, Sosinski B R, Thomas V P, Windham E. Sequence and genetic map of: A compact nematode genome for plant parasitism., 2008, 105(39): 14802-14807.
[19] Abad P, Gouzy J, Aury J M, Castagnone-Sereno P, Danchin E G J, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok V C, Caillaud M C, Coutinho P M, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone J V, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier T R, Markov G V, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, Van Ghelder C, Veronico P, Baum T J, Blaxter M, Bleve-Zacheo T, Davis E L, Ewbank J J, Favery B, Grenier E, Henrissat B, Jones J T, Laudet V, Maule A G, Quesneville H, Rosso M N, Schiex T, Smant G, Weissenbach J, Wincker P. Genome sequence of the metazoan plant-parasitic nematode., 2008, 26(8): 909-915.
[20] Bakhetia M, Urwin P E, Atkinson H J. qPCR analysis and RNAi define pharyngeal gland cell-expressed genes ofrequired for initial interactions with the host., 2007, 20(3): 306-312.
[21] Long H B, Peng H, Huang W K, Wang G F, Gao B L, Moens M, Peng D L. Identification and molecular characterization of a new-1,4-endoglucanase gene () in the cereal cyst nematode., 2012, 134(2): 391-400.
[22] Long H B, Peng D L, Huang W K, Peng H, Wang G F. Molecular characterization and functional analysis of two new-1,4-endoglucanase genes () from the cereal cyst nematode., 2013, 62(4): 953-960.
[23] Long H B, Peng D L, Huang W K, Liu Y K, Peng H. Identification of a putative expansin gene expressed in the subventral glands of the cereal cyst nematode, 2012, 14(5): 571-577.
[24] Liu J, Peng H, Cui J K, Huang W K, Kong L A, Clarke L J H, Jian H, Wang G L, Peng D L. Molecular characterization of a novel effector expansin-like protein fromthat induces cell death in., 2016, 6: 35677.
[25] 顧曉川, 彭德良, 彭煥, 龍海波, 王高峰, 黃文坤, 何月秋. 禾谷孢囊線蟲(chóng)()纖維素結(jié)合蛋白基因()的克隆和序列分析. 植物病理學(xué)報(bào), 2011, 41(3): 240-246.
Gu X C, Peng D L, Peng H, Long H B, Wang G F, Huang W K, He Y Q. Molecular cloning and sequencing of cellulose binding protein gene () from the cereal cyst nematode ()., 2011, 41(3): 240-246. (in chinese)
[26] Liu Y K, Huang W K, Long H B, Peng H, He W T, Peng D L. Molecular characterization and functional analysis of a new acid phosphatase gene () from., 2014, 13(6): 1303-1310.
[27] 亓?xí)岳? 彭德良, 彭煥, 龍海波, 黃文坤, 賀文婷. 基于SCAR標(biāo)記的小麥禾谷孢囊線蟲(chóng)快速分子檢測(cè)技術(shù). 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(21): 4388-4395.
Qi X L, Peng D L, Peng H, Long H B, Huang W K, He W T. Rapid molecular diagnosis based on SCAR marker system for cereal cyst nematode., 2012, 45(21): 4388-4395. (in chinese)
[28] 彭煥, 彭德良, 黃文坤. 甘薯莖線蟲(chóng)-1,4內(nèi)切葡聚糖酶基因() cDNA全長(zhǎng)的克隆與序列分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2009, 17(6): 1035-1041.
Peng H, Peng D L, Huang W K. Molecular cloning and sequence analysis of a new-1, 4-endoglucanase gene () from plant-parasitic nematodeon sweetpotato in China., 2009, 17(6): 1035-1041. (in Chinese)
[29] Petersen T N, Brunak S, Von H G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions., 2011, 8(10): 785-786.
[30] 郭安源, 朱其慧, 陳新, 羅靜初. GSDS:基因結(jié)構(gòu)顯示系統(tǒng). 遺傳, 2007, 29(8): 1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server., 2007, 29(8): 1023-1026. (in chinese)
[31] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods., 2011, 28(10): 2731-2739.
[32] De Boer J M, Yan Y, Smant G, Davis E L, Baum T J.hybridization to messenger RNA of., 1998, 30(3): 309-312.
[33] Vanholme B, De Meutter J, Tytgat T, Van Montagu M, Coomans A, Gheysen G. Secretions of plant-parasitic nematodes: a molecular update., 2004, 332: 13-27.
[34] 彭德良, 鄭經(jīng)武, 廖金鈴, 萬(wàn)方浩. 重要植物線蟲(chóng)致病相關(guān)基因研究進(jìn)展//彭友良. 中國(guó)植物病理學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集. 北京: 中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社, 2006: 221-229.
Peng D L, Zheng J W, Liao J L, Wan F H. Advanced on putative patasitim genes of plant-parasitic nematodes and prospective//Peng Y L.. Beijing: China Agricultural Science and Technology Press, 2006: 221-229. (in Chinese)
[35] Bollati M, Milani M, Mastrangelo E, Ricagno S, Tedeschi G, Nonnis S, Decroly E, Selisko B, Lamballerie X D, Coutard B, Canard B, Bolognesi M. Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus., 2009, 385(1): 140-152.
[36] Haegeman A, Jones J T, Danchin E G J. Horizontal gene transfer in nematodes: a catalyst for plant parasitism?, 2011, 24(8): 879-887.
(責(zé)任編輯 岳梅)
Identification and expression analysis of a new pectate lyase genefrom
LI Xin1, GU XiaoChuan1,2, LONG HaiBo3, PENG Huan1, HUANG WenKun1, PENG DeLiang1
(1Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193;2Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan;3Key Laboratory of Pests Comprehensive Governance for Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101)
【】The cereal cyst nematode () is one of the important plant parasitic nematodes which seriously threatened cereal crops and caused huge economic losses to agricultural production in China. However, its pathogenic mechanism and effective prevention and control methods still need to be further studied. The objective of this study is to provide a theoretical basis for further study on the gene function ofand its interaction with host plants, and to give new ideas for the control strategies of cereal cyst nematode based on the cloning and expression analysis of a new pectate lyase genefrom.【】A novel pectate lyase genewas cloned fromusing homology cloning combined with RACE technology, and its nucleotide sequence and amino acid sequence were analyzed by related bioinformatics softwares and online tools, such as DNAMAN, Clustal, SignalP 4.0 Server and GSDS. a phylogenetic tree was also constructed using MEGA 5.0. the tissue localization and developmental expression characteristics ofwere analyzed byhybridization and semi-quantitative PCR method. 【】A novel pectate lyase gene (, GenBank accession number GQ998895) was cloned successfully from.was 1 717 bp in length which contained a 1 563 bp open reading frame (ORF) encoding a protein of 521 amino acid residues. The molecular weight ofencoding protein was 57.5 kD and isoelectric point was 8.52. The full length of genomic sequence ofwas amplified from the nematode genome DNA which contains 7 199 bp. Gene structure analysis showed that thegenome contains 14 exons and 13 introns, except for the 3rd intron splice sites are GC-AG, the other 12 introns are in line with the rules of the eukaryotic gene splicing site GT-AG. The results of homologous comparison showed that the C-terminal sequence of the putative Ha-PEL-1 had a 67% identity and a similarity of 83% with that of soybean cyst nematode HG-PEL-1 and beet cyst nematode HS-PEL-1. In addition, after the end of N-terminal signal peptide, the putative Ha-PEL-1 had a sequence of 254 amino acid residues more than other reported plant parasitic nematodes pectate lyases. In this sequence, 184 amino acid residues closing to the N-terminal had no similarity with protein database, while 70 amino acid residues (Lys205-Glu274) closing to the C-terminal had an identity of 32% and a similarity of 47% with the methyltransferase domain of Wesselsbron virus NS5 (Registration No. 3ELD). The amino acid sequence analysis revealed that the predicted protein contained a signal peptide of 20 amino acid residues, as well as 4 highly conserved regions and several conserved cysteine residues characteristic of class Ⅲ pectate lyases (PL3). A phylogenetic analysis revealed thatand other nematodes pectate lyase genes are gathered in a large branch with bacterial and fungal sources PEL.hybridization analyses showed that the transcripts ofwere mainly expressed in the two subventral gland cells of. a semi-quantitative RT-PCR analysis confirmed that its transcriptions were highly expressed at the pre-parasitic and parasitic 2nd stage juveniles.【】A new pectate lyase genefrom, closely related to the infection and parasitic process of cereal cyst nematode, was found and analyzed.
; pectate lyase; gene cloning;hybridization; developmental expression analysis
10.3864/j.issn.0578-1752.2017.19.009
2017-03-30;接受日期:2017-05-08
國(guó)家“973”計(jì)劃(2013CB127502)、國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503114)
李新,E-mail:lixin9745@163.com。通信作者彭德良,Tel:010-62815611;E-mail:dlpeng@ippcaas.cn
中國(guó)農(nóng)業(yè)科學(xué)2017年19期