亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Fe(II)活化過一硫酸鹽氧化調(diào)理剩余活性污泥

        2017-11-07 04:47:51劉昌庚謝四才
        中國環(huán)境科學(xué) 2017年10期
        關(guān)鍵詞:硫化鈉活性污泥硫酸鹽

        劉昌庚,伍 斌,謝四才

        ?

        Fe(II)活化過一硫酸鹽氧化調(diào)理剩余活性污泥

        劉昌庚*,伍 斌,謝四才

        (攀枝花學(xué)院資源與環(huán)境工程學(xué)院,四川攀枝花 617000)

        采用Fe(II)活化過一硫酸鹽(Fe(II)-PMS)氧化對(duì)剩余活性污泥進(jìn)行調(diào)理研究.結(jié)果表明,Fe(II)-PMS氧化能有效改善污泥的脫水性能;在優(yōu)化實(shí)驗(yàn)條件下(pH為6.7,Fe(II)和PMS投量分別為60和120mg/gTSS),標(biāo)準(zhǔn)化毛細(xì)吸附時(shí)間(SCST=CST0/CST)和毛細(xì)吸附時(shí)間(CST)減少率分別為11.28和91.13%.Fe(II)-PMS氧化有助于污泥穩(wěn)定性提高和組分溶出,處理后VSS減少率為15.74%、上清液中TN和TOC的含量較初始值分別增加6.21和9.13倍.此外,研究表明Fe(II)-PMS氧化能有效破解和降解胞外聚合物(EPS)(特別是蛋白質(zhì)),釋放出EPS結(jié)合水,進(jìn)而顯著改善污泥脫水性能.

        過一硫酸鹽;脫水性能;剩余活性污泥;毛細(xì)吸附時(shí)間

        1 材料與方法

        1.1 實(shí)驗(yàn)材料

        牛血清蛋白為生化試劑,其他試劑均為分析純?cè)噭?供試污泥取自攀枝花市某污水處理廠的污泥濃縮池,取回后自然沉淀12h,去掉上清液后將污泥存放于4℃的冰箱中,其基本性質(zhì)如表1.

        表1 供試剩余活性污泥的基本性質(zhì)

        注:a為污泥上清液中濃度.

        1.2 實(shí)驗(yàn)方法

        取200mL供試剩余活性污泥于500mL錐形瓶中,然后預(yù)熱至室溫(~20℃);隨后考察不同初始pH、Fe(II)及PMS投量對(duì)污泥脫水性能的影響.pH采用濃度為2mol/L的硫酸和氫氧化鈉調(diào)節(jié),待pH調(diào)至設(shè)置值后,同時(shí)加入Fe(II)及PMS進(jìn)行氧化調(diào)理,并以120r/min的速度攪拌至結(jié)束.在處理過程中,按預(yù)先設(shè)定時(shí)間取樣5mL用于測(cè)定毛細(xì)吸附時(shí)間(CST).為保證實(shí)驗(yàn)數(shù)據(jù)可靠性,每組實(shí)驗(yàn)重復(fù)操作3次.

        1.3 分析方法

        pH值和毛細(xì)吸附時(shí)間分別利用酸度計(jì)(雷磁,PHS-3C)和CST測(cè)定儀(304B,英國Triton公司)測(cè)定;總懸浮固體(TSS)和揮發(fā)性懸浮固體(VSS)采用重量法測(cè)定;EPS分層方法詳見文獻(xiàn)[13],多糖和蛋白質(zhì)濃度分別采用硫酸-蒽酮法和考馬斯亮藍(lán)G-250法測(cè)定[13,16];上清液中總氮(TN)和總有機(jī)碳(TOC)含量利用TOC/TN分析儀測(cè)定(TOC-L,日本Shimadzu公司).標(biāo)準(zhǔn)化毛細(xì)吸附時(shí)間(SCST)用于表征污泥的脫水性能,SCST值越大,污泥脫水性能越好,其計(jì)算式如下:

        式中:CST0和CST分別表示污泥處理前后的毛細(xì)吸附時(shí)間.

        2 結(jié)果與討論

        2.1 pH對(duì)污泥脫水性能的影響

        相比Fenton氧化,Fe(II)-PMS氧化調(diào)理污泥受初始pH值影響較小,可在污泥原始pH值條件下取得較好的脫水效率;而Fenton氧化則需在酸性條件才能獲得較好的污泥脫水效率,但是在極酸性條件下,其氧化效率會(huì)因[Fe(H2O2)]2+的形成而嚴(yán)重受到抑制[20].由圖1可知,在反應(yīng)20min后,pH值為3、5、6.7、9時(shí)的SCST值分別為6.32、8.95、11.18、3.24,對(duì)應(yīng)CST減少率分別為84.18%、88.83%、91.06%、69.14%.因此,可推斷出pH值并非Fe(II)-PMS氧化改善污泥脫水性能的主要影響因素.該研究結(jié)果與前期Zhen等[7]報(bào)道的結(jié)論相似,他們指出Fe(II)活化過硫酸鹽(Fe(II)-PDS)氧化能在較廣pH范圍內(nèi)(3.0~8.5)顯著改善污泥的脫水性能.由以上研究結(jié)果可知,Fe(II)-PMS氧化改善污泥脫水性能在成本控制和處理效率方面均具有優(yōu)勢(shì).

        圖1 pH值對(duì)污泥脫水性能的影響

        2.2 Fe(II)和PMS投量對(duì)污泥脫水性能的影響

        2.3 Fe(II)-PMS氧化對(duì)污泥組分溶出的影響

        本研究還探究了Fe(II)-PMS氧化對(duì)污泥穩(wěn)定性的改善效果.在優(yōu)化條件下,污泥經(jīng)Fe(II)- PMS氧化處理后,VSS減少率為15.74%.VSS減少率是污泥穩(wěn)定性的重要指標(biāo),VSS減少率越高,污泥穩(wěn)定性能越好[26].因此,Fe(II)-PMS氧化有利于提高污泥穩(wěn)定性.最近,Kim等[25]指出污泥經(jīng)熱活化PMS和PDS處理后,VSS減少率分別為4.9%~15.4%和4.1%~7.7%.此外,Chen等[14]同樣指出PMS較PDS氧化更能有效的降解有機(jī)物.因此,活化PMS氧化較活化PDS氧化可能更有助于提高污泥的穩(wěn)定性.

        圖4 Fe(II)-PMS氧化處理后VSS減少率、上清液中TN和TOC的濃度

        2.4 Fe(II)-PMS氧化對(duì)EPS的影響

        EPS是污泥的重要組成部分,可分為黏液層EPS(S-EPS)、松散結(jié)合EPS(LB-EPS)和緊密結(jié)合EPS(TB-EPS)[13].EPS主要由蛋白質(zhì)和多糖組成,這兩者可占其總質(zhì)量的70%~80%,是影響污泥脫水性能的主要因素[7,27].本研究為考察Fe(II)-PMS氧化對(duì)污泥EPS破解的影響,在優(yōu)化條件下氧化處理前后EPS各層中蛋白質(zhì)和多糖的變化如圖5所示.由圖可知,原始污泥蛋白質(zhì)和多糖含量分別為413.34和60.47mg/L,且主要存在于S-EPS和TB-EPS層中.經(jīng)Fe(II)-PMS氧化后,蛋白質(zhì)含量迅速下降至91.46mg/L;而多糖含量則輕微增加至65.14mg/L.鑒于蛋白質(zhì)含量大量減少的同時(shí)污泥脫水性能得到顯著改善,因此可推測(cè)出EPS中蛋白質(zhì)含量對(duì)污泥的脫水性能的改善具有負(fù)面的影響.

        圖5 Fe(II)-PMS氧化處理后蛋白質(zhì)和多糖在EPS各層中的濃度

        3 結(jié)論

        3.1 Fe(II)-PMS氧化能顯著改善污泥的脫水性能.優(yōu)化實(shí)驗(yàn)條件:pH為6.7,Fe(II)和PMS投量分別為60和120mg/gTSS.此時(shí),SCST值為11.28,CST減少率為91.13%.

        3.2 Fe(II)-PMS氧化有助于污泥穩(wěn)定性提高和組分溶出.在優(yōu)化條件下,VSS減少率為15.74%、上清液中TN和TOC的含量較初始值分別增加6.21和9.13倍.

        3.3 Fe(II)-PMS氧化處理污泥能有效破解和降解EPS(特別是蛋白質(zhì)),釋放出EPS結(jié)合水,進(jìn)而顯著改善污泥脫水性能.

        [1] 徐 鑫,濮文虹,時(shí)亞飛,等.活化過硫酸鹽對(duì)市政污泥調(diào)理效果的影響 [J]. 環(huán)境科學(xué), 2015,36(11):4202-4207.

        [3] 邢 奕,王志強(qiáng),洪 晨,等.芬頓試劑與DDBAC聯(lián)合調(diào)理污泥的工藝優(yōu)化 [J]. 中國環(huán)境科學(xué), 2015,35(4):1164-1172.

        [4] Wu C, Jin L Y, Zhang P Y, et al. Effects of potassium ferrate oxidation on sludge disintegration, dewaterability and anaerobic biodegradation [J]. International Biodeterioration & Biodegradation, 2015,102:137-142.

        [5] Liu J B, Yu D W, Zhang J, et al. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave- H2O2pretreatment [J]. Water Research, 2016,98:98-108.

        [6] Oncu N B, Balcioglu I A. Microwave-assisted chemical oxidation of biological waste sludge: Simultaneous micropollutant degradation and sludge solubilization [J]. Bioresource Technology, 2013,146(10):126-134.

        [7] Zhen G Y, Lu X Q, Zhao Y C, et al. Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation [J]. Bioresource Technology, 2012,116(4):259-265.

        [8] 朱思瑞,高乃云,魯 仙,等.熱激活過硫酸鹽氧化降解水中雙酚A [J].中國環(huán)境科學(xué), 2017,37(1):188-194.

        [9] 高 磊,顧小鋼,呂樹光,等.熱活化過硫酸鈉耦合甲酸技術(shù)研究—處理水溶液中四氯化碳與六價(jià)鉻污染[J].中國環(huán)境科學(xué), 2016,36(9):2645-2649.

        [10] 郭佑羅,關(guān)小紅,高乃云,等.紫外/過硫酸鹽工藝降解水中氯貝酸的研究[J]. 中國環(huán)境科學(xué), 2016,36(7):2014-2019.

        硫化鈉的過量添加會(huì)造成砷濾餅發(fā)生量的增大,提高硫化鈉的利用效率會(huì)減少硫化鈉的使用量,目前硫化鈉的添加方式是從硫化鈉添加槽通過泵接在反應(yīng)槽底部添加的方式,此方式可改為硫化氫直接吸入式,提高利用率。通過崗位操作人員對(duì)硫化ORP值(氧化還原電位)穩(wěn)定控制,均衡硫化鈉控制量,從而達(dá)到減少砷濾餅發(fā)生量的目的。

        [11] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science & Technology, 2003,37(20):4790-4797.

        [12] Ren W C, Zhou Z, Zhu Y Y, et al. Effect of sulfate radical oxidation on disintegration of waste activated sludge [J]. International Biodeterioration & Biodegradation, 2015,104: 384-390.

        [13] Zhou X, Wang Q L, Jiang G M, et al. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate [J]. Bioresource Technology, 2015,185:416-420.

        [14] Chen X Y, Wang W P, Xiao H, et al. Accelerated TiO2photocatalytic degradation of acid orange 7under visible light mediated by peroxymonosulfate [J]. Chemical Engineering Journal, 2012,193(12):290-295.

        [15] Rodríguez-Chueca J, Amor C, Silva T, et al. Treatment of winery wastewater by sulphate radicals: HSO5-/transition metal/UV-ALEDs [J]. Chemical Engineering Journal, 2017,310:473-483.

        [16] 武 辰.高錳酸鉀/高鐵酸鉀破解剩余污泥研究 [D].北京:北京林業(yè)大學(xué), 2014.

        [17] Buxton G V, Bydder M, Salmon G A. The reactivity of chlorine atoms in aqueous solution. Part II. The equilibrium SO4-+ Cl-reversible arrow Cl· + SO42-[J]. Physical Chemistry Chemical Physics, 1999,1(2):269-273.

        [18] Rastogi A, Ai-Abed S R, Dionysiou D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems [J]. Applied Catalysis B-Environmental, 2009,85(3/4):171-179.

        [19] Guan Y H, Ma J, Li X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system [J]. Environmental Science & Technology, 2011,45(21): 9308-9314.

        [20] Figueroa S, Vazquez L, Alvarez-Gallegos A. Decolorizing textile wastewater with Fenton’s reagent electrogenerated with a solar photovoltaic cell [J]. Water Research, 2009,43(2):283-294.

        [21] Cai C, Zhang Z, Zhong X, et al. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15catalyst for the degradation of Orange II in water [J]. Journal of Hazardous Materials, 2015,283:70-79.

        [22] Yu W B, Yang J K, Shi Y F, et al. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime [J]. Water Research, 2016,95:124-133.

        [23] Chen K F, Kao C M, Wu L C, et al. Methyl tert-butyl ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: Feasibility and kinetics studies [J]. Water Environment Research, 2009,81(7):687-694.

        [24] Liang C J, Bruell C J, Michael C M, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple [J]. Chemosphere, 2004,55(9):1213-1223.

        [25] Kim M S, Lee K M, Kim H E, et al. Disintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterability [J]. Environmental Science & Technology, 2016,50(13):7106-7115.

        [26] Pathak A, Dastidar M G, Sreekrishnan T R. Bioleaching of heavy metals from sewage sludge: A review [J]. Journal of Environmental Management, 2009,90(8):2343-2353.

        [27] Zhou X, Jiang G M, Wang Q L, et al. A review on sludge conditioning by sludge pretreatment with a focus on advanced oxidation [J]. RSC Advances, 2014,4(92):50644-50652.

        [28] Liu T, Chen Z L, Yu W Z, et al. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three dimensional excitation-emission matrix fluorescence spectroscopy [J]. Water Research, 2011, 45(3):2111-2121.

        [29] Zhen G Y, Lu X Q, Wang B Y, et al. Synergetic pretreatment of waste activated sludge by Fe(II)-activated persulfate oxidation under mild temperature for enhanced dewaterability [J]. Bioresource Technology, 2012,124(9):29-36.

        Conditioning of excess activate sludge by Fe(II)-activated peroxymonosulfate oxidation.

        LIU Chang-geng*, WU Bin, XIE Si-cai

        (School of Resources and Environmental Engineering, Panzhihua University, Panzhihua 617000, China)., 2017,37(10):3794~3799

        Fe(II)-activated peroxymonosulfate (Fe(II)-PMS) oxidation applied to condition excess activated sludge was investigated in this work. The results showed that Fe(II)-PMS oxidation could effectively improve sludge dewaterability. The optimal pH and dosages of Fe(II) and PMS were 6.7, 60mg/gTSS, and 120mg/gTSS, respectively, under which the standardized-capillary suction time (SCST=CST0/CST) and CST reduction were 11.28 and 91.13%, respectively.Fe(II)-PMS oxidation was also favor of sludge solubilization and enhanced stabilization. Under the optimum experimental conditions, VSS reduction was 15.74% and the concentrations of TN and TOC in the supernatant increased 6.21 and 9.13-fold compared to their initial values, respectively. In addition, Fe(II)-PMS oxidation was beneficial to destroy and degrade extracellular polymeric substances (EPS) (especially for proteins), which resulted in the release of EPS-bound water and subsequently improved sludge dewaterability significantly.

        peroxymonosulfate;dewaterability;excess activated sludge;capillary suction time

        X703.1

        A

        1000-6923(2017)10-3794-06

        劉昌庚(1985-),男,四川宜賓人,副教授,博士,主要從事高級(jí)氧化技術(shù)及大氣環(huán)境化學(xué)研究.發(fā)表論文20余篇.

        2017-03-17

        國家自然科學(xué)基金資助項(xiàng)目(21607088);攀枝花學(xué)院博士基金資助項(xiàng)目(0210600022);攀枝花市科技計(jì)劃資助項(xiàng)目(2015TX-8);干熱河谷特色生物資源開發(fā)四川省高校重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(GR-2017-E-04)

        * 責(zé)任作者, 副教授, changwyx@163.com

        猜你喜歡
        硫化鈉活性污泥硫酸鹽
        鐵/過硫酸鹽高級(jí)氧化體系強(qiáng)化方法的研究進(jìn)展
        云南化工(2021年5期)2021-12-21 07:41:16
        硫氫化鈉處理含銅砷廢酸的探討
        揮發(fā)性硫化物測(cè)定法中標(biāo)準(zhǔn)硫化鈉溶液的標(biāo)定
        紫外光分解銀硫代硫酸鹽絡(luò)合物的研究
        四川冶金(2019年5期)2019-12-23 09:04:48
        ICP-OES法測(cè)定硫酸鹽類鉛鋅礦石中的鉛量
        活性污泥系統(tǒng)ASM2d模型的自適應(yīng)模糊PID控制
        活性污泥系統(tǒng)ASM2d模型的自適應(yīng)模糊PID控制
        污水活性污泥處理過程的溶解氧增益調(diào)度控制
        硫酸鹽測(cè)定能力驗(yàn)證結(jié)果分析
        活性污泥對(duì)管式多孔α-Al2O3陶瓷膜支撐體性能影響的初步研究
        五月天综合在线| 国模冰莲自慰肥美胞极品人体图| 亚洲av无码一区二区乱孑伦as| 99久久免费看少妇高潮a片特黄| 一区二区三区放荡人妻| 在线观看高清视频一区二区三区| 激情综合五月| 国产精品人妻一码二码尿失禁| 人妻无码AⅤ不卡中文字幕| 亚洲一区二区三区av天堂| 中文字幕一区二区三区四区五区| 精产国品一二三产品蜜桃| 久久久久亚洲精品天堂| 日韩亚洲国产中文字幕| 久久久亚洲欧洲日产国码二区| 亚洲av成人无码久久精品| 国产成年无码aⅴ片在线观看| 毛片精品一区二区二区三区| 国产免费无遮挡吸奶头视频| 人妻av一区二区三区精品| 国产男女做爰猛烈视频网站| 亚洲av一区二区三区蜜桃| 一区二区三区国产| 中文人妻无码一区二区三区信息| 免费看男女啪啪的视频网站| 日韩性爱视频| 国产99久久亚洲综合精品| 国产亚洲曝欧美不卡精品| 日韩精品人妻系列中文字幕| 成人欧美一区二区三区1314| 少妇无码av无码去区钱| 日本在线一区二区三区视频| 色一情一乱一伦一视频免费看| 亚洲妓女综合网99| 日本一区二区久久精品亚洲中文无| 看日本全黄色免费a级| 真实国产老熟女粗口对白| 国产欧美激情一区二区三区| 久草手机视频在线观看| 天堂国精产品2023年| 亚洲日韩中文字幕在线播放|