亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        細(xì)菌群體感應(yīng)淬滅酶及其病害防治研究進(jìn)展

        2017-11-04 06:34:33范興輝王惠杉何杰華葉田陽芳陳少華
        生物技術(shù)通報(bào) 2017年10期
        關(guān)鍵詞:酯酶?;?/a>酰胺

        范興輝 王惠杉 何杰華 葉田 陽芳 陳少華

        (華南農(nóng)業(yè)大學(xué)亞熱帶農(nóng)業(yè)生物資源保護(hù)與利用國家重點(diǎn)實(shí)驗(yàn)室 廣東省微生物信號(hào)與作物病害防控重點(diǎn)實(shí)驗(yàn)室 群體微生物研究中心,廣州 510642)

        細(xì)菌群體感應(yīng)淬滅酶及其病害防治研究進(jìn)展

        范興輝 王惠杉 何杰華 葉田 陽芳 陳少華

        (華南農(nóng)業(yè)大學(xué)亞熱帶農(nóng)業(yè)生物資源保護(hù)與利用國家重點(diǎn)實(shí)驗(yàn)室 廣東省微生物信號(hào)與作物病害防控重點(diǎn)實(shí)驗(yàn)室 群體微生物研究中心,廣州 510642)

        微生物細(xì)胞間通過信號(hào)分子進(jìn)行信息交流的現(xiàn)象即群體感應(yīng)(Quorum sensing,QS),QS廣泛存在于微生物群體中,且可以調(diào)控特定基因尤其是很多致病基因的表達(dá)。群體感應(yīng)淬滅(Quorum quenching,QQ)是基于群體感應(yīng)現(xiàn)象提出的新型病害防治策略,即通過抑制信號(hào)分子的合成、監(jiān)測(cè)或?qū)π盘?hào)分子進(jìn)行酶降解、修飾的途徑來干擾群體感應(yīng)以達(dá)到防治病害的目的。利用群體感應(yīng)淬滅酶(Quorum quenching enzymes)降解微生物信號(hào)分子,是目前毒性最小、最為有效的群體感應(yīng)淬滅途徑。迄今為止,多種細(xì)菌信號(hào)分子的群體感應(yīng)淬滅酶都已有報(bào)道,其中,酰基高絲氨酸內(nèi)酯(N-acyl homoserine lactones,AHLs)和順-11-甲基-2-癸烯酸(cis-11-Methyl-2-dodecenoic acid)群體感應(yīng)淬滅酶研究最為深入。綜述并分析了群體感應(yīng)淬滅酶及其病害防治的研究現(xiàn)狀、存在的問題和未來研究方向,為今后發(fā)展新型綠色安全病害防控措施提供關(guān)鍵理論和技術(shù)支撐。

        群體感應(yīng);群體感應(yīng)淬滅酶;?;呓z氨酸內(nèi)酯;順-11-甲基-2-癸烯酸

        介導(dǎo)微生物群體感應(yīng)的化學(xué)信號(hào)分子主要分為3類:(1)在革蘭氏陰性細(xì)菌中,信號(hào)分子多為脂肪酸類的衍生物,如?;呓z氨酸內(nèi)酯類物質(zhì)(N-acyl homoserine lactones,AHLs)、被簡(jiǎn)稱為DSF的順式-11-甲基-2-十二碳烯酸(cis-11-Methyl-2-dodecenoic acid)等,其中,AHLs類物質(zhì)的研究最為廣泛且深入。(2)革蘭氏陽性菌的信號(hào)分子多為寡肽(Auto inducing peptide,AIP)。(3)除了以上幾種信號(hào)分子,介導(dǎo)微生物QS 調(diào)節(jié)的信號(hào)分子還包括自誘導(dǎo)劑AI-2、2-庚基-3-羥基-4(1H)-喹諾酮(PQS)、3-羥基-棕櫚酸甲酯(3-OH-PAME)、二烷基間苯二酚(DARs)[5]、α-吡喃酮[6]等。

        通過抑制信號(hào)分子的合成、積累、監(jiān)測(cè),或?qū)π盘?hào)分子進(jìn)行酶降解或修飾的機(jī)制來干擾群體感應(yīng)系統(tǒng),即群體感應(yīng)淬滅(Quorum quenching,QQ)。群體感應(yīng)淬滅不僅可以通過相應(yīng)的降解酶來實(shí)現(xiàn),也可以通過物理?xiàng)l件的改變來實(shí)現(xiàn)。研究發(fā)現(xiàn),AHLs在堿性條件下會(huì)出現(xiàn)高絲氨酸內(nèi)酯環(huán)結(jié)構(gòu)被破壞的現(xiàn)象,失去QS信號(hào)分子活性,且隨著pH值的增大和AHLs?;鶄?cè)鏈長(zhǎng)度的減少,破壞程度加深[7]。能夠降解信號(hào)分子,使其濃度低于臨界值,抑制病原菌相關(guān)毒力因子表達(dá)的酶,即群體感應(yīng)淬滅酶(Quorum quenching enzymes)。在不同生物體包括細(xì)菌、酵母菌和真核生物中均已發(fā)現(xiàn)群體感應(yīng)淬滅酶。在肺炎克雷伯桿菌(Klebsiella pneumoniae)中發(fā)現(xiàn)的AHLs降解酶AhlK,能夠?qū)⒏呓z氨酸內(nèi)酯的內(nèi)酯鍵打開,使其失去信號(hào)分子活性[8]。邱健等[9]首次篩選到一株具有降解AHLs活性的酵母菌,經(jīng)鑒定為紅冬孢酵母菌(Rhodosporidium toruloides),此菌產(chǎn)生的降解酶對(duì)短中長(zhǎng)鏈AHLs均具有較好的降解效果,即該酶底物譜較為廣泛,經(jīng)鑒定此酶為AHLs內(nèi)酯酶[10]。但是,關(guān)于編碼此酶的基因,尚未有詳細(xì)報(bào)道。Bar-Rogovsky等[11]報(bào)道,廣泛存在于哺乳動(dòng)物組織中的對(duì)氧磷酶(PONs)能有效水解AHLs。迄今為止,已報(bào)道的信號(hào)分子降解酶大多是在細(xì)菌中發(fā)現(xiàn)。本文重點(diǎn)闡述了微生物群體感應(yīng)淬滅酶研究現(xiàn)狀,旨為今后發(fā)展新型綠色安全病害防控措施提供關(guān)鍵理論和技術(shù)支撐。

        1 細(xì)菌信號(hào)分子降解酶的研究

        1.1 AHLs淬滅酶

        20世紀(jì)80年代,首次在革蘭氏陰性菌海洋細(xì)菌費(fèi)氏弧菌(Vibrio fischeri)中發(fā)現(xiàn)AHLs信號(hào)分子[12],在此之后,多種不同結(jié)構(gòu)的AHLs陸續(xù)被發(fā)現(xiàn)并報(bào)道。作為革蘭氏陰性菌的主要信號(hào)分子,大多數(shù)AHLs具有相同的高絲氨酸內(nèi)酯環(huán)結(jié)構(gòu)且都具有?;鶄?cè)鏈,但其?;鶄?cè)鏈長(zhǎng)度、飽和度存在差異。除此之外,還存在幾種結(jié)構(gòu)特殊的AHLs,如N-羧化的 AHLs[13]、肉桂酰基—高絲氨酸內(nèi)酯[14]、支鏈異戊酰基-高絲氨酸內(nèi)酯[15]、香豆?;?高絲氨酸內(nèi)酯[16]。但是,關(guān)于這幾類特殊結(jié)構(gòu)AHLs降解酶的研究報(bào)道較少。

        自2000年首次在芽孢桿菌(Bacillus cereus)分離出AHLs內(nèi)酯酶[17],在爭(zhēng)論貪噬菌(Variovorax paradoxus)分離出AHLs酰胺酶[18]以來,許多關(guān)于AHLs降解酶的報(bào)道相繼出現(xiàn)。根據(jù)AHLs淬滅酶催化機(jī)制,將其分為3類:AHLs內(nèi)酯酶、AHLs酰胺酶和氧化還原酶。已篩選出的AHLs降解酶大多屬于AHLs內(nèi)酯酶和AHLs酰胺酶。

        1.1.1 AHLs內(nèi)酯酶 由aiiA基因編碼的AiiA酶,是第一種被發(fā)現(xiàn)的群體感應(yīng)淬滅酶,經(jīng)鑒定此酶為AHLs內(nèi)酯酶[17]。除此之外,在其他一些細(xì)菌中也發(fā)現(xiàn)了AHLs內(nèi)酯酶。例如,在節(jié)桿菌(Arthrobacter sp.)中發(fā)現(xiàn)的 AhlD 酶[8],在土壤芽孢桿菌(Geobacillus kaustophilus)中發(fā)現(xiàn)的GKL酶[19]以及近期在動(dòng)性球菌(Planococcus sp.)中發(fā)現(xiàn)的AidP酶[20]等。各內(nèi)酯酶的系統(tǒng)進(jìn)化關(guān)系,如圖1所示。

        目前發(fā)現(xiàn)的AHLs內(nèi)酯酶有金屬β內(nèi)酰胺酶、α/β水解酶、對(duì)氧磷酶(PONs)、糖基水解酶和酰胺水解酶(圖1)。AHLs內(nèi)酯酶大多屬于金屬β內(nèi)酰胺酶,此類酶具有一個(gè)高度保守的的Zn2+結(jié)合域HXHXDH,Zn2+對(duì)內(nèi)酯酶活性具有決定性作用,但不同內(nèi)酯酶 Zn2+結(jié)合區(qū)域有所不同[17]。α/β 水解酶是一類結(jié)構(gòu)上相關(guān),具有多種不同催化功能的酶,這類酶有兩個(gè)共同特征:一個(gè)親核酸性組氨酸催化三分子和一個(gè)序列為Gly-X-Nuc-X-Gly 的親核基團(tuán),這兩個(gè)區(qū)域?qū)HL 降解活性至關(guān)重要[33]。對(duì)氧磷酶(PONs)發(fā)現(xiàn)于哺乳動(dòng)物組織中,對(duì)氧磷酶家族具有六葉螺旋槳折疊結(jié)構(gòu)及Ca2+催化位點(diǎn)[36]。

        圖1 AHLs內(nèi)酯酶系統(tǒng)進(jìn)化關(guān)系圖

        1.1.2 AHLs酰胺酶 AHLs酰胺酶破壞AHLs?;湹孽0锋I,使高絲氨酸內(nèi)酯環(huán)和?;鶄?cè)鏈分離生成脂肪酸和高絲氨酸內(nèi)酯。2000年Leadbetter &Greenberg[18]在爭(zhēng)論貪噬菌(Variovorax paradoxus)中首次發(fā)現(xiàn)AHLs酰胺酶。除了在細(xì)菌中發(fā)現(xiàn)AHL酰胺酶以外,在放線菌和淡水藻類中也有AHLs酰胺酶的發(fā)現(xiàn),Park等[37]在放線菌鏈霉菌(Streptomyces sp.)中發(fā)現(xiàn)酰胺酶AhlM,Romero等[38]在魚腥藻屬(Anabaena sp.)中發(fā)現(xiàn)由基因all3924 編碼的?;D(zhuǎn)移酶AiiC,這種藻類的細(xì)胞原液對(duì)長(zhǎng)鏈AHLs具有較好的降解效果。其他AHLs酰胺酶,見表1。

        表1 AHLs酰胺酶

        目前已經(jīng)發(fā)現(xiàn)的AHLs酰胺酶,絕大部分都屬于N末端親核(Ntn)水解酶。這類酶具有一個(gè)保守區(qū)域,該區(qū)域包含一個(gè)α亞單位和一個(gè)β 亞單位。β亞單位中熟化和催化作用所需要的N末端親核在AHLs?;D(zhuǎn)移酶中是高度保守的。定點(diǎn)突變顯示區(qū)域中保守的甘氨酸-絲氨酸對(duì)AHLs?;D(zhuǎn)移酶活性至關(guān)重要[41]。

        研究表明,在制藥工業(yè)中被廣泛利用的青霉素V?;D(zhuǎn)移酶(PVAs)表現(xiàn)出降解長(zhǎng)鏈AHLs的底物特異性。PVAs屬于Ntn水解酶超家族。外源性添加這些酶到銅綠假單胞菌(Pseudomonas aeruginosa)中大大減少了彈性蛋白酶和綠膿菌素的生產(chǎn)和生物膜形成,并增加了在急性感染的昆蟲模型中的存活率[49]。

        1.1.3 氧化還原酶 來自芽孢桿菌屬(Bacillus sp.)的細(xì)胞色素P450單加氧酶CYP102A1(P450BM-3),能夠催化氧化AHLs及其內(nèi)酯分解產(chǎn)物,AHLs氧化產(chǎn)物仍然具有信號(hào)分子活性,但是其活性顯著低于母體化合物[50]。在紅串紅球菌(Rhodococcus erythropolis)中發(fā)現(xiàn)氧化還原酶,其催化3-氧代-C(8-14)-HSLs還原成相應(yīng)的3-羥基-HSL,從而使信號(hào)分子失活,此菌也可以還原化合物N-(3-氧代-6-苯基己?;└呓z氨酸內(nèi)酯(含有芳族酰基鏈取代基)[51]。Chan等[52]從姜根際中分離出的伯克霍爾德桿菌(Burkholderia cepacia)可以將3-氧代-AHL還原成相應(yīng)的3-羥基化合物。

        1.2 DSF淬滅酶

        上世紀(jì)末,Barber等[53]首次檢測(cè)到DSF活性,并分析了rpf基因簇(病原致病因子的調(diào)控)。DSF信號(hào)首先在野油菜黃單胞菌中(Xanthomonas.campestris pv. campestris)得到鑒定,信號(hào)分子是順-11-甲基-2-癸烯酸[54]。迄今為止,許多DSF降解菌被篩選并鑒定,這些降解菌能夠降解DSF信號(hào)從而影響野油菜黃單胞菌毒力因子的表達(dá)。Newman等[55]在芽孢桿菌屬(Bacillus)、類芽孢桿菌屬(Paenibacillus)、微桿菌屬(Microbacterium)、葡萄球菌屬(Staphylococcus)、假單胞菌屬(Pseudomonas)細(xì)菌中均篩選到能快速降解DSF的菌株,并對(duì)這些菌株進(jìn)行了鑒定。除此之外,Caicedo等[56]在柑橘葉中分離出三株具有DSF降解活性的菌株,分別為Pseudomonas sp. SJ01、Pseudomonas sp. SJ02和Bacillus sp. SJ13。但是,目前還沒有文獻(xiàn)清楚報(bào)道DSF信號(hào)的淬滅機(jī)制。

        1.3 其他信號(hào)分子降解酶

        其他信號(hào)分子有2-庚基-3-羥基-4(1H)-喹諾酮(PQS),自誘導(dǎo)劑AI-2,3-羥基-棕櫚酸甲酯(3-OH-PAME)、二烷基間苯二酚(DARs)、α-吡喃酮等。其中二烷基間苯二酚(DARs)和α-吡喃酮為近幾年新發(fā)現(xiàn)的群體感應(yīng)信號(hào)分子,尚未有關(guān)于降解酶的研究報(bào)道。

        2-庚基 -3-羥基-4(1H)-喹諾酮(PQS)是銅綠假單胞菌(Pseudomonas aeruginosa)使用的群體感應(yīng)信號(hào)分子。細(xì)胞質(zhì)酶Hod酶能夠催化PQS轉(zhuǎn)化為N-辛?;彴被郊姿岷鸵谎趸?,將Hod酶添加到銅綠假單胞菌PAO1培養(yǎng)物中,可以降低PQS生物合成基因pqsA的表達(dá)[57]。從木糖氧化無色桿菌(Achromobacter xylosoxidans)菌株Q19分離出來的降解酶可以降解PQS,產(chǎn)生新的熒光化合物2-庚基 -2-羥基 -1,2-二氫喹啉 -3,4-二酮(HHQD),Q19也可氧化PQS同源物,產(chǎn)生相應(yīng)的2-羥基-1,2-二氫喹啉-3,4-二酮,但不能使PQS前體HHQ失活[58]。 紅 球 菌(Rhodococcus erythropolis)BG43 能夠降解PQS和PQS前體HHQ,進(jìn)一步研究表明,菌株BG43的環(huán)形質(zhì)粒pRLCBG43有兩個(gè)基因簇aqdA1B1C1和aqdA2B2C2,預(yù)測(cè)編碼水解酶黃素單加氧酶和雙加氧酶[59]。

        細(xì)菌種間交流信號(hào)分子AI-2是衍生自4,5-二羥基 -2,3-戊二酮(4,5-Dihydroxy-2,3-pentanedione,DPD)的一類化合物[60]。研究發(fā)現(xiàn),在體外條件下,大腸桿菌LsrK酶可以磷酸化AI-2[61]。Weiland-Braeuer等[62]通過構(gòu)建宏基因組文庫篩選出QQ-2蛋白,并發(fā)現(xiàn)QQ-2蛋白可以通過修改信號(hào)分子有效抑制Al-2調(diào)節(jié)的生物膜形成,QQ-2蛋白可以將Al-2還原為無QS活性的羥基衍生物。

        3-羥基-棕櫚酸甲酯(3-OH-PAME)是由細(xì)菌枯萎病菌(Ralstonia solanacearum)產(chǎn)生的信號(hào)分子,調(diào)控其毒力因子的表達(dá)。Shinohara等[63]在Ideonella sp. 0-0013菌株中發(fā)現(xiàn)的β-羥基棕櫚酸甲酯水解酶(β-HPMEH)可以降解3-OH-PAME,將3-OH-PAME分解為3-羥基-棕櫚酸和甲醇。Achari等[64]在植物體內(nèi)生菌中篩選出3株對(duì)3-OHPAME有降解活性的菌株,分別是嗜麥芽寡養(yǎng)單胞菌(Stenotrophomonas maltophilia)、銅綠假單胞菌(Pseudomonas aeruginosa)和類棒菌狀紅球菌(Rhodococcus corynebacterioides),這些菌株可以使青枯菌的致病力顯著下降。

        2 結(jié)語

        抗生素的濫用使得越來越多的致病菌產(chǎn)生抗藥性,甚至是多重抗藥性。因此,新型的防治策略的提出顯得十分重要。群體感應(yīng)淬滅是基于群體感應(yīng)機(jī)制提出的一種高效的生物防治策略。在病害防治過程中,不直接作用于致病菌,所以不會(huì)使致病菌產(chǎn)生抗藥性。在多種具有群體感應(yīng)淬滅作用的群體感應(yīng)抑制劑中,群體感應(yīng)淬滅酶是毒性最小、最為安全有效的。群體感應(yīng)淬滅酶的研究與應(yīng)用對(duì)于農(nóng)林業(yè)、水產(chǎn)養(yǎng)殖業(yè)、醫(yī)藥行業(yè)的發(fā)展具有重要意義。

        研究方向展望:(1)AHLs群體感應(yīng)淬滅酶的研究較為深入,但是要使群體感應(yīng)淬滅酶廣泛應(yīng)用于農(nóng)林牧漁業(yè)生產(chǎn)及醫(yī)療中還存在許多問題要解決,比如淬滅酶的穩(wěn)定性、催化效率、底物特異性、酶遞送和電位問題及是否存在副作用。(2)雖然目前AHLs群體感應(yīng)淬滅酶研究較為深入,但包括AHLs在內(nèi)的微生物群體感應(yīng)信號(hào)分子的新型淬滅酶基因的篩選和克隆以及淬滅酶作用機(jī)理的研究工作仍需進(jìn)行。(3)群體感應(yīng)廣泛存在于微生物群體中,但除少數(shù)模式細(xì)菌群體感應(yīng)系統(tǒng)有較為全面的研究外,其他重要病害致病細(xì)菌、真菌、放線菌的群體感應(yīng)系統(tǒng)研究并不深入。為此,應(yīng)該進(jìn)一步加深對(duì)于細(xì)菌、真菌、放線菌群體感應(yīng)系統(tǒng)的研究,如群體感應(yīng)系統(tǒng)信號(hào)通路、群體感應(yīng)信號(hào)的鑒定、群體感應(yīng)淬滅酶的篩選和應(yīng)用等,這將為細(xì)菌、真菌、放線菌病害提供新的防治策略,同時(shí),有利于發(fā)展新型生物防治技術(shù)。

        [1]Nealson KH. Autoinduction of bacterial luciferase. Occurrence,mechanism and significance[J]. Archives of Microbiology, 1977,112(1):73-79.

        [2]Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system[J]. Journal of Bacteriology, 1970, 104(1):313-322.

        [3]Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-tocell signals in the development of a bacterial biofilm[J]. Science,1998, 280(5361):295-298.

        [4]Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2):269-275.

        [5]Brameyer S, Kresovic D, Bode HB, et al. Dialkylresorcinols as bacterial signaling molecules[J]. Proc Natl Acad Sci USA, 2015,112(2):572-577.

        [6]Brameyer S, Bode HB, Heermann R. Languages and dialects:bacterial communication beyond homoserine lactones[J]. Trends in Microbiology, 2015, 23(9):521-523.

        [7]Yates EA, Philipp B, Buckley C, et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain lengthdependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa[J]. Infection and Immunity, 2002, 70(10):5635-5646.

        [8]Park SY, Lee SJ, Oh TK, et al. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp. , and predicted homologues in other bacteria[J]. Microbiology-Sgm, 2003, 149(6):1541-1550.

        [9]邱健, 賈振華, 馬宏, 等. 一株降解N-酰基高絲氨酸內(nèi)酯酵母菌菌株的分離鑒定及其降解特性[J]. 微生物學(xué)報(bào), 2007, 2:355-358.

        [10]羅利龍. 紅冬孢酵母中Ahl降解酶的分離純化[D]. 天津:河北工業(yè)大學(xué), 2010.

        [11]Bar-Rogovsky H, Hugenmatter A, Tawfik DS. The evolutionary origins of detoxifying enzymes:the mammalian serum paraoxonases(PONs)relate to bacterial homoserine lactonases[J]. Journal of Biological Chemistry, 2013, 288(33):23914-23927.

        [12]Eberhard A, Burlingame AL, Eberhard C, et al. Structural identification of autoinducer of Photobacterium fischeri luciferase[J]. Biochemistry, 1981, 20(9):2444-2449.

        [13]Zhang G, Zhang F, Ding G, et al. Acyl homoserine lactone-based quorum sensing in a Methanogenic archaeon[J]. ISME Journal,2012, 6(7):1336-1344.

        [14]Ahlgren NA, Harwood CS, Schaefer AL, et al. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia[J]. Proc Natl Acad Sci USA, 2011, 108(17):7183-7188.

        [15]Lindemann A, Pessi G, Schaefer AL, et al. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum[J]. Proc Natl Acad Sci USA, 2011, 108(40):16765-16770.

        [16]Schaefer AL, Greenberg EP, Oliver CM, et al. A new class of homoserine lactone quorum-sensing signals[J]. Nature, 2008,454(7204):595-596.

        [17]Dong Y, Xu J, Li X, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia Carotovora[J]. Proc Natl Acad Sci USA,2000, 97(7):3526-3531.

        [18]Leadbetter JR, Greenberg EP. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax Paradoxus[J].Journal of Bacteriology, 2000, 182(24):6921-6926.

        [19]Xue B, Chow JY, Baldansuren A, et al. Structural evidence of a productive active site architecture for an evolved quorumquenching GKL lactonase[J]. Biochemistry, 2013, 52(13):2359-2370.

        [20] See-Too WS, Ee R, Lim Y, et al. AidP, a novel N-acyl homoserine lactonase gene from antarctic Planococcus sp[J]. Scientific Reports, 2017, 7:42968.

        [21] Zhang HB, Wang LH, Zhang LH. Genetic control of quorumsensing signal turnover in Agrobacterium tumefaciens[J]. Proc Natl Acad Sci USA, 2002, 99(7):4638-4643.

        [22] Tang K, Su Y, Brackman G, et al. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda Olearia[J]. Appl Environ Microbiol, 2015, 81(2):774-782.

        [23] Wang W, Morohoshi T, Someya N, et al. AidC, a novel N-acylhomoserine lactonase from the potato root-associated cytophaga-flavobacteria-bacteroides(CFB)group bacterium Chryseobacterium sp. strain StRB126[J]. Appl Environ Microbiol, 2012, 78(22):7985-7992.

        [24]Morohoshi T, Tominaga Y, Someya N, et al. Complete genome sequence and characterization of the N-acylhomoserine lactonedegrading gene of the potato leaf-associated Solibacillus silvestris[J]. Journal of Bioscience and Bioengineering, 2012,113(1):20-25.

        [25]Krysciak D, Schmeisser C, Preuss S, et al. Involvement of multiple loci in quorum quenching of autoinducer l molecules in the nitrogen-fixing symbiont Rhizobium(Sinorhizobium)sp. strain NGR234[J]. Appl Environ Microbiol, 2011, 77(15):5089-5099.

        [26]Riaz K, Elmerich C, Raffoux A, et al. Metagenomics revealed a quorum quenching lactonase QlcA from yet unculturable soil bacteria[J]. Communications in Agricultural and Applied Biological Sciences, 2008, 73(2):3-6.

        [27]Chow JY, Wu L, Yew WS. Directed evolution of a quorumquenching lactonase from Mycobacterium avium subsp.paratuberculosis K-10 in the amidohydrolase superfamily[J].Biochemistry, 2009, 48(20):4344-4353.

        [28]Hong K, Koh C, Sam C, et al. Quorum quenching revisited-from signal decays to signalling confusion[J]. Sensors, 2012, 12(4):4661-4696.

        [29]Afriat L, Roodveldt C, Manco G, et al. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase[J]. Biochemistry, 2006, 45(46):13677-13686.

        [30]Hiblot J, Gotthard G, Chabriere E, et al. Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus[J]. PLoS One, 2012, 7 :e4702810.

        [31]Park SY, Hwang BJ, Shin MH, et al. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities[J]. FEMS Microbiology Letters, 2006, 261(1):102-108.

        [32]Wang W, Morohoshi T, Ikenoya M, et al. AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum[J]. Appl Environ Microbiol, 2010, 76(8):2524-2530.

        [33]Mei G, Yan X, Turak A, et al. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase[J]. Appl Environ Microbiol, 2010,76(15):4933-4942.

        [34]Schipper C, Hornung C, Bijtenhoorn P, et al. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa[J]. Appl Environ Microbiol, 2009, 75(1):224-233.

        [35]Garge SS, Nerurkar AS. Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp.Gs50[J]. PLoS One, 2016, 11:e016734412.

        [36]Harel M, Aharoni A, Gaidukov L, et al. Structure and evolution of the serum paraoxonase family of detoxifying and antiatheroscleroticenzymes[J]. Nature Structural & Molecular Biology,2004, 11(12):1253.

        [37]Park SY, Kang HO, Jang HS, et al. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching[J]. Appl Environ Microbiol,2005, 71(5):2632-2641.

        [38]Romero M, Diggle SP, Heeb S, et al. Quorum quenching activity in Anabaena sp. PCC 7120:Identification of AiiC, a novel AHL-acylase[J]. FEMS Microbiology Letters, 2008, 280(1):73-80.

        [39]Lin YH, Xu JL, Hu JY, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes[J]. Molecular Microbiology, 2003,47(3):849-860.

        [40]Huang JJ, Han JI, Zhang LH, et al. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1[J]. Appl Environ Microbiol,2003, 69(10):5941-5949.

        [41]Morohoshi T, Nakazawa S, Ebata A, et al. Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015[J]. Bioscience Biotechnology and Biochemistry, 2008, 72(7):1887-1893.

        [42]Chen C, Chen C, Liao C, et al. A probable aculeacin a acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity[J]. BMC Microbiology,2009, 9:89.

        [43]Huang JJ, Petersen A, Whiteley M, et al. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1[J]. Appl Environ Microbiol, 2006, 72(2):1190-1197.

        [44]Shepherd RW, Lindow SE. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology[J]. Appl Environ Microbiol, 2009, 75(1):45-53.

        [45]Terwagne M, Mirabella A, Lemaire J, et al. Quorum sensing and self-quorum quenching in the intracellular pathogen Brucellamelitensis[J]. PLoS One, 2013, 8 :e8251412.

        [46]Czajkowski R, Krzyzanowska D, Karczewska J, et al. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase[J]. Environ Microbiol Reports, 2011, 3(1):59-68.

        [47]Maisuria VB, Nerurkar AS. Interference of quorum sensing by Delftia sp. VM4 depends on the activity of a novel N-acylhomoserine lactone-acylase[J]. PLoS One, 2015, 10(9):e138034.

        [48]Nasuno E, Suzuki T, Suzuki R, et al. Novel quorum quenching enzymes identified from draft genome of Roseomonas sp.TAS13[J]. Genomics Data, 2017, 12:22-23.

        [49]Sunder AV, Utari PD, Ramasamy S, et al. Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa[J]. Applied Microbiology and Biotechnology, 2017, 6(101):2383-2395.

        [50]Chowdhary PK, Keshavan N, Nguyen HQ, et al. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines[J]. Biochemistry, 2007, 46(50):14429-14437.

        [51]Uroz S, Chhabra SR, Camara M, et al. N-acylhomoserine lactone quorum-ssensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities[J]. Microbiology-SGM, 2005, 151(10):3313-3322.

        [52]Chan K, Atkinson S, Mathee K, et al. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale(Ginger)rhizosphere:co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia[J]. BMC Microbiology, 2011, 11:51.

        [53]Barber CE, Tang JL, Feng JX, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule[J]. Molecular Microbiology,1997, 24(3):555-566.

        [54]Wang LH, He YW, Gao YF, et al. A bacterial cellcell communication signal with cross-kingdom structural analogues[J]. Mol Microbiol, 2004, 51(3):903-912.

        [55]Newman KL, Chatterjee S, Ho KA, et al. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-tocell signaling factors[J]. Molecular Plant-Microbe Interactions,2008, 21(3):326-334.

        [56]Caicedo JC, Villamizar S, Ferro MIT, et al. Bacteria from the citrus phylloplane can disrupt cell-cell signalling in Xanthomonas citri and reduce citrus canker disease severity[J]. Plant Pathology,2016, 65(5):782-791.

        [57]Pustelny C, Albers A, Bueldt-Karentzopoulos K, et al. Dioxygenasemediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa[J]. Chemistry & Biology, 2009, 16(12):1259-1267.

        [58]Soh EY, Chhabra SR, Halliday N, et al. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule[J]. Environ Microbiol, 2015, 17(11):4352-4365.

        [59]Mueller C, Birmes FS, Rueckert C, et al. Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation[J]. Appl Environ Microbiol, 2015, 81(22):7720-7729.

        [60]Ma R, Qiu S, Jiang Q, et al. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus[J]. Int J Med Microbiol, 2017, 307(4-5):257:267.

        [61]Roy V, Fernandes R, Tsao C, et al. Cross species quorum quenching using a native AI-2 processing enzyme[J]. ACS Chemical Biology, 2010, 5(2):223-232.

        [62]Weiland-Braeuer N, Kisch MJ, Pinnow N, et al. Highly effective inhibition of biofilm formation by the first metagenome-derived Al-2 quenching enzyme[J]. Front Microbiol, 2016, 7:1098.

        [63]Shinohara M, Nakajima N, Uehara Y. Purification and characterization of a novel esterase(beta-hydroxypalmitate methyl ester hydrolase)and prevention of the expression of virulence by Ralstonia solanacearum[J]. J Appl Microbiol, 2007, 1:152-162.

        [64]Achari GA, Ramesh R. Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester(3OH-PAME), a quorum sensing molecule of Ralstonia solanacearum[J]. Letters in Applied Microbiology, 2015, 60(5):447-455.

        Research Progress on Microbial Quorum Quenching Enzymes and Their Control of Plant Diseases

        FAN Xing-hui WANG Hui-shan HE Jie-hua YE Tian YANG Fang CHEN Shao-hua
        (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,Guangdong Province Key Laboratory of Microbial Signals and Disease Control,Integrative Microbiology Research Centre,South China Agricultural University,Guangzhou 510642)

        The phenomenon of information exchanging through signal molecules between microbial cells is the Quorum Sensing(QS).QS is widely present in microorganisms,and can modulate the expression of specific genes,especially virulence factors in pathogenic microorganisms. Quorum Quenching(QQ)is a new therapeutic strategy of plant diseases based on QS. QQ can be achieved by interfering QS from inhibiting the synthesis or detection of the signal molecules,or by enzyme-catalyzed degradation or modification of the signal molecules.Degrading signal molecules by using QQ enzymes is one of the most effective and nontoxic ways of QQ. So far,QQ enzymes of various microbial signaling molecules have been reported,especially N-acyl homoserine lactones(AHLs)and cis-11-methyl-2-dodecenoic acid were deeply investigated. In this review,we summarize and analyze the research status,deficiencies and the future development of QQ enzymes and their control of plant diseases,for laying a solid foundation for developing new,green and safe measures of disease control.

        quorum sensing;quorum quenching enzymes;N-acyl homoserine lactones;cis-11-methyl-2-dodecenoic acid

        10.13560/j.cnki.biotech.bull.1985.2017-0223

        微生物通過監(jiān)測(cè)胞外信號(hào)分子的濃度來感知群體密度的變化,當(dāng)其達(dá)到某一臨界密度值,啟動(dòng)目標(biāo)基因的表達(dá),協(xié)調(diào)群體行為,即群體感應(yīng)(Quorum sensing,QS)。在QS系統(tǒng)中,細(xì)菌合成、分泌、監(jiān)測(cè)的物質(zhì),即群體感應(yīng)信號(hào)分子,或稱為自誘導(dǎo)劑(Auto-inducers,AIs)[1]。20 世紀(jì) 80 年代研究發(fā)現(xiàn),海洋細(xì)菌費(fèi)氏弧菌(Vibrio fischeri)可以通過群體感應(yīng)來調(diào)節(jié)自身發(fā)光現(xiàn)象,這是人們首次發(fā)現(xiàn)的群體感應(yīng)現(xiàn)象[2]。群體感應(yīng)與許多微生物生物學(xué)功能的實(shí)現(xiàn)密切相關(guān),包括生物發(fā)光、共生現(xiàn)象、生物膜形成、抗生素合成、群體移動(dòng)性、質(zhì)粒轉(zhuǎn)移、孢子形成及基因交換等[3-4]。

        2017-03-21

        國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2015CB150600),廣東省杰出青年科學(xué)基金(2015A030306038),廣東省高校青年創(chuàng)新人才項(xiàng)目(2014KQNCX036)

        范興輝,女,碩士研究生,研究方向:微生物群體感應(yīng);E-mail:347037188@qq.com

        陳少華,男,教授,研究方向:微生物降解、微生物群體感應(yīng);E-mail:shchen@scau.edu.cn

        (責(zé)任編輯 狄艷紅)

        猜你喜歡
        酯酶?;?/a>酰胺
        地黃梓醇和乙酰膽堿酯酶作用的分子動(dòng)力學(xué)模擬
        雙酰胺類殺蟲劑Broflanilide
        三氟咪啶酰胺的合成工藝研究
        蜈蚣草化學(xué)成分及抑制乙酰膽堿酯酶生物活性研究
        新的藥根堿三唑的合成與抗菌以及乙酰膽酯酶抑制活性評(píng)價(jià)
        N-月桂?;劝彼猁}性能的pH依賴性
        2-氯-4-甲?;祀娴暮铣裳芯?/a>
        N-脂肪?;被猁}的合成、性能及應(yīng)用
        α-甲氧甲?;?γ-丁內(nèi)酯和α-乙氧甲?;?γ-丁內(nèi)酯的合成及表
        國外二硝酰胺銨的發(fā)展現(xiàn)狀
        日韩av无码成人无码免费| 免费国产自拍在线观看| 欧美日韩亚洲中文字幕二区| 亚洲有码转帖| 免费在线日韩| 午夜影院免费观看小视频| 欧美国产亚洲日韩在线二区| 亚洲旡码a∨一区二区三区| 999久久66久6只有精品| 中文字幕视频一区懂色| 欧美伦费免费全部午夜最新| 性高朝久久久久久久| 人妻精品久久中文字幕| av国产自拍在线观看| 在线亚洲高清揄拍自拍一品区| 亚洲精品国产第一区二区尤物| 亚洲精品国产综合久久一线| 午夜视频一区二区三区四区| 蜜桃日本免费观看mv| 国内少妇人妻丰满av| 亚洲日本人妻中文字幕| 中文字幕人妻少妇伦伦| 激情影院内射美女| 精品视频在线观看免费无码 | 日本视频一区二区三区在线| 国产三级av在线播放| 亚洲视频在线看| 肉丝高跟国产精品啪啪| 偷拍偷窥女厕一区二区视频| 一二三四在线观看免费视频| 亚洲一区二区高清精品| av天堂网手机在线观看| 色狠狠色噜噜av天堂一区| 欧美va免费精品高清在线| 大红酸枝极品老料颜色| 中文字幕人妻丝袜成熟乱| 久久精品亚洲中文字幕无码网站| 中文国产成人精品久久一区| 成人av综合资源在线| 人妻丰满熟妇av无码区不卡| 国产精品 精品国内自产拍|