李昌明 王曉玥 孫 波?
(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京 210008)
(2 中國(guó)科學(xué)院大學(xué),北京 100049)
不同氣候和土壤條件下秸稈腐解過(guò)程中養(yǎng)分的釋放特征及其影響因素*
李昌明1,2王曉玥1孫 波1?
(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京 210008)
(2 中國(guó)科學(xué)院大學(xué),北京 100049)
農(nóng)田土壤中秸稈腐解伴隨氮磷鉀養(yǎng)分的釋放是重要的生物地球化學(xué)過(guò)程,也是秸稈還田替代化肥養(yǎng)分的基礎(chǔ)。了解不同農(nóng)區(qū)秸稈分解過(guò)程中的養(yǎng)分釋放動(dòng)態(tài),揭示秸稈、氣候和土壤條件的交互作用機(jī)制,是制定秸稈還田合理措施的理論基礎(chǔ)?;诤疁貛?暖溫帶-中亞熱帶的黑土、潮土、紅壤互置試驗(yàn)平臺(tái),研究了小麥、玉米秸稈在3年腐解過(guò)程中養(yǎng)分釋放過(guò)程和影響因素。結(jié)果表明,秸稈中養(yǎng)分釋放速率的大小順序?yàn)镵>P>N;秸稈中氮素和磷素在寒溫帶以及在紅壤和潮土中表現(xiàn)為先富集再釋放特征,在暖溫帶、中亞熱帶以及黑土中表現(xiàn)為直接釋放特征;秸稈中鉀素均表現(xiàn)為直接快速釋放特征,在腐解0.5 a平均釋放率達(dá)89.5%。氣候和土壤條件主導(dǎo)了氮磷的釋放,其相對(duì)平均貢獻(xiàn)率分別為19.5%和15.2%。在腐解后期(2~3 a)氣候、土壤和秸稈因素對(duì)養(yǎng)分釋放的貢獻(xiàn)率<30%,說(shuō)明土壤生物因素可能起了主導(dǎo)作用。
秸稈;腐解過(guò)程;養(yǎng)分釋放;氣候條件;土壤類(lèi)型
有機(jī)物料(植物殘?bào)w、凋落物、有機(jī)肥等)腐解過(guò)程中釋放養(yǎng)分是維持土壤肥力的重要途徑[1]。有機(jī)物料中養(yǎng)分釋放主要表現(xiàn)為三種模式:直接釋放、富集-釋放、淋溶-富集-釋放[2]。土壤中微生物分解和元素淋溶控制了有機(jī)物料的養(yǎng)分釋放過(guò)程,影響因素包括有機(jī)物料的組成[3]、生物群落組成[4]、土壤類(lèi)型[5]、氣溫和降水[6]以及分解時(shí)間等。在對(duì)凋落物養(yǎng)分釋放的研究中,已揭示了不同凋落物種類(lèi)和氣候因子對(duì)養(yǎng)分釋放的影響[7],分析了典型凋落物在不同地區(qū)不同土壤條件中的養(yǎng)分釋放方式[5],但對(duì)凋落物種類(lèi)、氣候和土壤條件的交互作用機(jī)制仍不明確。
秸稈還田是提高土壤肥力、替代化學(xué)養(yǎng)分投入從而減施化肥的主要措施之一。我國(guó)秸稈資源豐富,年秸稈總產(chǎn)量為8.42×108t,其中玉米、小麥占總秸稈產(chǎn)量的2/3[8]。我國(guó)農(nóng)業(yè)主產(chǎn)區(qū)具有不同的氣候和土壤類(lèi)型,必然影響了不同類(lèi)型秸稈的腐解過(guò)程和養(yǎng)分釋放機(jī)制。本研究基于我國(guó)東部水熱梯度帶的典型土壤互置平臺(tái),研究玉米、小麥秸稈的腐解過(guò)程,揭示不同氣候和土壤條件下氮、磷、鉀養(yǎng)分的釋放特征,定量分析秸稈類(lèi)型、氣候和土壤條件對(duì)養(yǎng)分釋放的交互作用,為提出不同農(nóng)區(qū)的秸稈還田策略和養(yǎng)分資源綜合管理措施提供理論基礎(chǔ)。
2005年,選擇位于寒溫帶、暖溫帶和中亞熱帶的3個(gè)農(nóng)業(yè)生態(tài)試驗(yàn)站:海倫(HL),封丘(FQ)和鷹潭(YT),將3個(gè)氣候帶的典型土壤(黑土、潮土、紅壤)相互置換建立我國(guó)東部水熱梯度的土壤互置試驗(yàn)平臺(tái)[9]。黑土、潮土和紅壤分別屬于黏化濕潤(rùn)均腐土、淡色潮潤(rùn)雛形土和黏化濕潤(rùn)富鐵土。2008年在土壤互置試驗(yàn)平臺(tái)上布置秸稈腐解試驗(yàn),將玉米、小麥秸稈剪為5 cm長(zhǎng)度(其中玉米秸稈進(jìn)一步剪為細(xì)條),定量稱(chēng)取100 g后裝入2層200目尼龍網(wǎng)袋內(nèi)(10 cm寬×15 cm長(zhǎng)),于2008年5月在3個(gè)地點(diǎn)垂直埋入空白處理小區(qū)的表層土壤中,埋入深度為10~20 cm。采用尼龍網(wǎng)袋單獨(dú)放置秸稈研究腐解過(guò)程的目的是區(qū)分秸稈腐解微生物和土壤微生物群落結(jié)構(gòu)之間的差異[9],同時(shí)避免混合土壤影響對(duì)秸稈殘留量的測(cè)定[10]。試驗(yàn)區(qū)氣候條件及土壤和秸稈屬性見(jiàn)表1。
表1 試驗(yàn)區(qū)氣候和土壤條件以及采用的秸稈性質(zhì)Table 1 Climate and soil conditions at the experiment sites and properties of the straw tested
在腐解試驗(yàn)進(jìn)行至0.5、1、2和3年時(shí),分別取出3個(gè)重復(fù)的尼龍網(wǎng)袋,裝入塑料袋稱(chēng)取總重,于保溫盒低溫運(yùn)回實(shí)驗(yàn)室在-20 ℃冰箱保存。取部分殘留秸稈樣品在70 ℃烘干,測(cè)定含水量和氮、磷、鉀含量,分別采用半微量凱氏定氮法、鉬銻鈧比色法和HF-HClO4消煮―火焰光度計(jì)法測(cè)定氮、磷和鉀含量[11]。在上述采樣時(shí)間,采集空白處理小區(qū)的表層土壤(0~20 cm)樣品,分析土壤有機(jī)質(zhì)、全氮、全磷、全鉀。土壤有機(jī)質(zhì)采用重鉻酸鉀容量法,土壤全氮采用半微量凱氏定氮法,土壤全磷采用磷鉬藍(lán)分光光度法,土壤全鉀采用NaOH熔融―火焰光度計(jì)法[11]測(cè)定。
根據(jù)不同腐解時(shí)間的秸稈殘留量和養(yǎng)分含量計(jì)算各腐解階段的養(yǎng)分殘留量(Rt)、養(yǎng)分殘留率(Ft)、養(yǎng)分釋放量(Dt)、養(yǎng)分釋放率(Yt)和養(yǎng)分釋放速率常數(shù)(k):
式中,Rt為殘留秸稈養(yǎng)分總量(mg);Ft為殘留秸稈養(yǎng)分總量占初始秸稈養(yǎng)分總量的百分比(%);C0為初始秸稈的養(yǎng)分含量(mg g-1);Dt為秸稈腐解t年過(guò)程中的養(yǎng)分(N、P、K)釋放總量(mg);Yt為秸稈腐解t年過(guò)程中的養(yǎng)分(N、P、K)釋放量占初始秸稈養(yǎng)分總量的百分比(%);Ct為腐解t年后殘留秸稈中的養(yǎng)分含量(mg g-1);M0為初始秸稈的重量(g);Mt為腐解t年后殘留秸稈的重量(g);t為腐解時(shí)間(a);b為衰減方程常數(shù);e為自然對(duì)數(shù);k為養(yǎng)分釋放速率常數(shù)。
利用SPSS(version 19.0)進(jìn)行多因素方差分析(Multivariable-ANOVA),計(jì)算秸稈、氣候、土壤因子影響氮、磷、鉀釋放量的顯著性水平,基于第三類(lèi)平方和(TypeЩ sum of square)計(jì)算各影響因子對(duì)釋放量變異的貢獻(xiàn)率[4]。利用多元逐步回歸(Stepwise regression)建立氮、磷、鉀釋放速率與氣候、土壤及秸稈屬性間的回歸方程。氣候因子包括年均溫、相對(duì)濕度、年均降雨量,土壤因子包括pH、有機(jī)質(zhì)和全氮,秸稈因子包括全碳、全氮和C/N。
圖1表明,在黑土中,玉米和小麥秸稈氮素在不同氣候帶中大多表現(xiàn)為直接釋放過(guò)程。在潮土和紅壤中,小麥秸稈氮素在3個(gè)氣候帶大多表現(xiàn)為先富集后釋放過(guò)程;玉米秸稈氮素在寒溫帶表現(xiàn)為富集過(guò)程,在暖溫帶和中亞熱帶大多為直接釋放過(guò)程,僅在中亞熱帶紅壤中表現(xiàn)為淋溶-富集-釋放過(guò)程。腐解第3年,在暖溫帶和中亞熱帶,玉米秸稈氮素在三種土壤中的平均累積凈釋放率為53.9%±12.1%、小麥秸稈為48.9%±8.5%。在寒溫帶,小麥秸稈在三種土壤中的平均釋放率為22.1%±10.6%;玉米秸稈在潮土、紅壤中的平均富集率為20.7%±2.8%,在黑土中的釋放率為39.0%±0.7%。
圖1 不同氣候和土壤條件下小麥和玉米秸稈氮素殘留率(FtN)隨腐解時(shí)間的變化(圖中數(shù)據(jù)為平均值,誤差線為標(biāo)準(zhǔn)誤)Fig. 1 Variation of N residual rate(FtN,percentage of total nitrogen in wheat straw or maize stalk residue to that in the straw applied)with decomposition going on relative to soil and climate(All the data in the figure are mean plus standard error)
圖2表明,在黑土中,玉米、小麥秸稈磷素在不同氣候帶中大多表現(xiàn)為直接釋放過(guò)程,只有小麥秸稈在寒溫帶表現(xiàn)出先富集后釋放過(guò)程。在潮土和紅壤中,小麥秸稈磷素在不同氣候帶中大多表現(xiàn)出先富集后釋放過(guò)程;玉米秸稈磷素在寒溫帶也表現(xiàn)為富集過(guò)程,但在暖溫帶和中亞熱帶大多表現(xiàn)為直接釋放過(guò)程;玉米秸稈磷素在中亞熱帶的紅壤中出現(xiàn)淋溶-富集-釋放過(guò)程。三年腐解期間,在暖溫帶和中亞熱帶,玉米秸稈磷素在三種土壤中的平均累積凈釋放率為56.5%±11.5%、小麥秸稈為41.5%±8.4%。在寒溫帶,小麥秸稈磷素在三種土壤中的平均釋放率為24.0%±8.1%;玉米秸稈磷素在潮土和紅壤中的平均富集率為9.03%±0.59%,在黑土中的釋放率為19.9%±0.8%。
小麥和玉米秸稈的鉀素在不同氣候和土壤中均表現(xiàn)為快速直接釋放過(guò)程,在腐解初期的0.5 a,其平均釋放率已達(dá)89.5%±1.1%。在腐解第3年,玉米和小麥秸稈鉀素的平均凈釋放率分別為96.5%±13.7%和96.2%±13.6%。總體上,小麥和玉米秸稈中氮素和磷素釋放過(guò)程較為相似,在不同氣候和土壤中表現(xiàn)出富集、富集-釋放和直接釋放3種類(lèi)型,而秸稈鉀素均為直接釋放過(guò)程,而且秸稈鉀的平均釋放速率大于氮素和磷素。
圖2 不同氣候和土壤條件下小麥和玉米秸稈磷素釋放百分比(FtP)隨腐解時(shí)間的變化(圖中數(shù)據(jù)為平均值,誤差線為標(biāo)準(zhǔn)誤)Fig. 2 Variation of P residual rate(FtP,percentage of total phosphorus in wheat straw or maize stalk residue to that in the straw applied)with decomposition going on relative to soil and climate(All the data in the figure are mean plus standard error)
利用衰減指數(shù)方程擬合了秸稈養(yǎng)分殘留量(Rt)與腐解時(shí)間(t)的關(guān)系,擬合結(jié)果(表2)表明:不同氣候和土壤中秸稈氮素和磷素的釋放率大多不能用衰減指數(shù)方程進(jìn)行擬合,平均方程擬合優(yōu)度(r2)分別為0.616±0.060和0.543±0.069。在不同氣候和土壤中,秸稈鉀素釋放率擬合均達(dá)顯著水平,其平均方程擬合優(yōu)度(R2)為0.99。玉米和小麥秸稈鉀素的平均釋放速率常數(shù)(k)分別為4.33±0.23和4.65±0.40,兩種秸稈之間的差異不顯著。在3個(gè)氣候帶中,秸稈鉀素的k值總體上表現(xiàn)為暖溫帶(5.20±0.30)>中亞熱帶(4.47±0.44)>寒溫帶(3.79±0.22);在3種土壤中,k值總體上表現(xiàn)為紅壤(5.03±0.43)>黑土(4.40±0.44)>潮土(4.03±0.24)。
圖3 不同氣候和土壤條件下小麥和玉米秸稈鉀素釋放百分比(FtK)隨腐解時(shí)間的變化(圖中數(shù)據(jù)為平均值,誤差線為標(biāo)準(zhǔn)誤)Fig. 3 Variation of K residual rate(FtK,percentage of total potassium in wheat straw or maize stalk residue to that in the straw applied)with decomposition going on relative to soil and climate(All the data in the figure are mean plus standard error)
表3表明,在腐解前期(0.5 a,1 a)氣候和土壤顯著影響了秸稈氮素釋放量,其貢獻(xiàn)率分別為26.3%±4.65%和26.3%±2.15%,秸稈條件的影響不顯著。在腐解后期(2 a,3 a),氣候條件成為秸稈氮素釋放量的主導(dǎo)影響因素(貢獻(xiàn)率為12.7%±3.64%),土壤條件的影響下降(貢獻(xiàn)率為7.01%±0.25%),而秸稈條件也有較小但顯著的影響(貢獻(xiàn)率為3.08%±1.67%)??傮w上,秸稈、氣候和土壤對(duì)秸稈氮素釋放量的交互作用影響較小,在腐解后期(2 a,3 a)平均貢獻(xiàn)率為1.23%±0.28%。
同樣地,氣候和土壤顯著影響了秸稈磷素釋放量,但其影響隨腐解時(shí)間而下降。其中氣候條件的貢獻(xiàn)率由腐解前期(0.5 a,1 a)的26.9%±0.2%下降為后期(2 a,3 a)的12.2%±1.7%,土壤條件的貢獻(xiàn)率由24.3%±0.2%下降為3.31%±1.43%。秸稈條件對(duì)秸稈磷素釋放量的影響較小,在腐解前期影響顯著(貢獻(xiàn)率為6.91%),在腐解后期影響
不顯著。秸稈、氣候和土壤對(duì)秸稈磷素釋放率的交互作用影響也較小,在腐解后期(2 a,3 a)平均貢獻(xiàn)率為1.85%±0.39%。
表2 玉米和小麥秸稈氮、磷、鉀素殘留量的衰減指數(shù)擬合方程Table 2 The exponential decay equation fitting attenuations of residual rates of N,P and K in maize stalk and wheat straw during the 3-year decomposition
在不同氣候和土壤中,秸稈鉀素釋放量?jī)H受到秸稈條件的顯著影響,但其貢獻(xiàn)率很小,僅為2.23%±0.07%,這可能與秸稈鉀素的快速釋放有關(guān)。
逐步回歸分析結(jié)果顯示(表4),秸稈氮素釋放率受到秸稈碳氮比、土壤全氮、年均溫的顯著影響;磷素釋放率受到相對(duì)濕度、土壤全氮、秸稈氮磷比的顯著影響;而秸稈中鉀素的釋放率受到秸稈碳氮比、秸稈氮磷比和相對(duì)濕度的顯著影響。說(shuō)明氣候、土壤和秸稈屬性共同制約著秸稈氮素和磷素的釋放率,而秸稈屬性和氣候條件控制了秸稈鉀素的釋放率。
表3 玉米和小麥秸稈三年腐解期間氣候、土壤和秸稈條件影響?zhàn)B分釋放量的多因素方差分析Table 3 Multivariable ANOVA of effects of climate,soil and straw conditions on nutrient release amount during the 3-year maize stalk and wheat straw decomposition
秸稈在土壤中腐解釋放氮、磷、鉀養(yǎng)分的過(guò)程一般表現(xiàn)為三種模式:淋溶-富集-釋放、富集-釋放、直接釋放[2,12]。本文基于在3個(gè)氣候帶設(shè)置的3種典型土壤的置換試驗(yàn)平臺(tái),通過(guò)玉米和小麥秸稈的3年腐解試驗(yàn)發(fā)現(xiàn),氮素釋放隨氣候和土壤條件變化表現(xiàn)出淋溶-富集-釋放、富集-釋放和直接釋放三種模式(圖1),磷素釋放表現(xiàn)出富集-釋放和直接釋放兩種模式(圖2),而鉀素釋放僅表現(xiàn)出直接快速釋放模式(圖3)。氣候和土壤條件顯著影響了氮素和磷素的釋放,而秸稈屬性顯著影響了鉀素的釋放,這些因素的影響程度隨腐解時(shí)間而變化。
表4 玉米和小麥秸稈氮、磷、鉀素釋放率與氣候、土壤、秸稈因素間的逐步回歸方程Table 4 Stepwise regression equations of nutrient release rate of maize stalk and wheat straw with climate,soil and straw factors during the 3-year decomposition
受到氣候和土壤條件的影響,在玉米和小麥秸稈3年腐解期間,氮和磷素釋放主要表現(xiàn)出先富集后釋放和直接釋放兩種模式(圖1,圖2);在中亞熱帶紅壤玉米秸稈氮和磷素出現(xiàn)淋溶-富集-釋放過(guò)程。秸稈氮素主要以蛋白質(zhì)形式存在,在腐解前期大量礦化后以銨的形式釋放到土壤中[13],因此出現(xiàn)腐解前期的短暫淋溶特征。在寒溫帶,潮土和紅壤中的玉米秸稈氮素表現(xiàn)出富集過(guò)程,小麥秸稈氮素雖然表現(xiàn)出先富集后釋放特征,但其釋放量也較少;而在暖溫帶和中亞熱帶玉米和小麥秸稈氮素在富集3年均表現(xiàn)為凈釋放。寒溫帶(海倫)秸稈氮素釋放量少甚至富集可能與低溫少雨限制了微生物代謝活性有關(guān)[7,14]。在低溫地區(qū),特別是在氮磷養(yǎng)分缺乏的土壤中,秸稈腐解微生物群落需要先蓄積氮磷養(yǎng)分,滿(mǎn)足低溫下群落的繁殖,達(dá)到一定養(yǎng)分含量閾值后,腐解微生物群落才能分泌足夠數(shù)量和活性的胞外酶啟動(dòng)對(duì)秸稈的大量分解并釋放氮磷養(yǎng)分,因此在低溫區(qū)的貧瘠土壤中秸稈氮磷釋放表現(xiàn)為先富集后釋放模式。對(duì)高山森林凋落物的腐解研究也發(fā)現(xiàn),其分解過(guò)程中氮素和磷素均存在富集現(xiàn)象[15]。但在氣溫較高的暖溫帶(封丘年均溫13.9 ℃)和中亞熱帶(鷹潭年均溫17.8 ℃),微生物活性較強(qiáng)[16],秸稈氮磷釋放快;加之中亞熱帶降雨較多,秸稈氮磷表現(xiàn)出直接釋放或者淋溶-短暫腐解-釋放模式。Agehara和Warncke[17]研究也發(fā)現(xiàn)增加土壤溫度和濕度顯著提高了有機(jī)物料中氮素的釋放速率,促進(jìn)了養(yǎng)分的凈釋放。在本研究中,氣候條件對(duì)秸稈氮素和磷素釋放量的影響最大(平均貢獻(xiàn)率均為19.5%),因此在制定不同區(qū)域的秸稈還田替代化肥措施時(shí),首先需要考慮氣候條件的適宜性。
土壤通氣性、pH、氧化還原強(qiáng)度(Eh)以及養(yǎng)分狀況均影響了秸稈腐解過(guò)程中養(yǎng)分的釋放[5,18]。本研究結(jié)果表明,在相同氣候帶條件下,黑土中氮磷大多表現(xiàn)為直接釋放模式,而潮土和紅壤中大多表現(xiàn)為先富集后釋放模式(圖1,圖2)。土壤中微生物群落可以進(jìn)入秸稈表面形成代謝活性中心[19],秸稈周?chē)耐寥揽梢詾槲⑸锾峁B(yǎng)分[5],由于黑土中氮、磷含量遠(yuǎn)高于潮土和紅壤,因此促進(jìn)了秸稈的腐解和秸稈養(yǎng)分的釋放。玉米秸稈氮磷在寒溫帶的潮土和紅壤中表現(xiàn)為富集過(guò)程,這與低溫下秸稈分解慢有關(guān),而且潮土中豐富的鈣離子和紅壤中的鐵、鋁離子可與秸稈分解釋放的磷形成復(fù)合物[20],從而減慢磷素的釋放。另一方面,秸稈可能吸附從土壤中遷移至尼龍網(wǎng)袋中的氮磷養(yǎng)分[21],而土壤自生固氮菌的侵入也會(huì)導(dǎo)致秸稈氮素濃度升高[22]。在本研究中,土壤條件對(duì)玉米、小麥秸稈氮、磷釋放量的影響僅次于氣候條件(平均貢獻(xiàn)率分別為16.6%和14.8%),因此需要針對(duì)不同土壤類(lèi)型確定不同氣候區(qū)替代化肥氮磷養(yǎng)分的秸稈還田量。
已有的大量研究表明,有機(jī)物料碳氮比、碳磷比[12]、多酚類(lèi)物質(zhì)和木質(zhì)素含量[13]及其與氮含量的比值[24]是控制有機(jī)物料腐解和養(yǎng)分釋放的重要因素。Parton等[25]發(fā)現(xiàn)在長(zhǎng)期(10年)和跨氣候帶尺度上,凋落物中氮素含量是控制其氮素釋放模式的首要因素。本研究發(fā)現(xiàn)秸稈碳氮比和氮磷比分別控制了氮素和磷素的釋放量,同時(shí)其他氣候條件(年均溫、相對(duì)濕度)和土壤條件(土壤全氮)也影響了氮素和磷素的釋放率(表4)。秸稈屬性對(duì)秸稈氮、磷釋放量的影響較氣候和土壤條件小,同時(shí)在腐解后期(2 a)秸稈化學(xué)組成出現(xiàn)趨同趨勢(shì)[26],因此秸稈屬性在腐解后期對(duì)養(yǎng)分釋放的影響下降。與秸稈氮、磷的釋放過(guò)程不同,秸稈鉀素表現(xiàn)出直接釋放特征(圖3),在腐解0.5 a時(shí),鉀素平均釋放量達(dá)89.5%,這一快速釋放過(guò)程受到相對(duì)濕度、秸稈碳氮比及氮磷比的影響,但其相對(duì)作用較?。ū?)。宋莉等[27]研究發(fā)現(xiàn),油菜和紫云英秸稈還田90天后鉀素釋放率達(dá)到95.1%~97.2%,與本研究結(jié)果相似。這可能與有機(jī)物料中鉀素以無(wú)機(jī)鹽(非細(xì)胞結(jié)構(gòu)性物質(zhì))形式存在有關(guān)[20]。總體上,不同氣候和土壤中秸稈鉀素釋放率顯著高于秸稈氮、磷釋放率,這與秸稈中氮素和磷素以有機(jī)態(tài)或細(xì)胞壁成分存在有關(guān)[28]。此外,在腐解腐解后期(2~3 a),氣候(年均溫、相對(duì)濕度、年均降雨量)、土壤(pH、有機(jī)質(zhì)、全氮)和秸稈條件(碳氮比、氮磷比、全氮)對(duì)養(yǎng)分釋放量變異的解釋率低于30%,說(shuō)明其他氣候、土壤和秸稈因子,以及土壤生物群落共同調(diào)控了秸稈的養(yǎng)分釋放[9,29],因此需要進(jìn)一步研究生物因素與其他環(huán)境因素對(duì)秸稈養(yǎng)分釋放的交互作用。
在寒溫帶、暖溫帶和中亞熱帶的黑土、潮土和紅壤中,玉米和小麥秸稈分解過(guò)程中養(yǎng)分釋放率總體上表現(xiàn)出K>P≈N。秸稈氮和磷素釋放主要表現(xiàn)出先富集后釋放和直接釋放兩種模式,而鉀素釋放主要表現(xiàn)為直接快速釋放過(guò)程。氣候和土壤條件(年均溫,相對(duì)濕度,土壤全氮含量)顯著影響了秸稈氮素和磷素養(yǎng)分的釋放,兩者對(duì)釋放量變化的貢獻(xiàn)率隨腐解時(shí)間而下降;秸稈屬性(秸稈碳氮比,秸稈氮磷比)顯著影響了鉀素釋放,但其貢獻(xiàn)率很小。
[1] Berg B,McClaugherty C. Plant litter:Decomposition,humus formation,carbon sequestration. Heidelberg:Springer,2013
[2] 王瑾,黃建輝. 暖溫帶地區(qū)主要樹(shù)種葉片凋落物分解過(guò)程中主要元素釋放的比較. 植物生態(tài)學(xué)報(bào),2001,25(3):375—380 Wang J,Huang J H. Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China(In Chinese). Chinese Journal of Plant Ecology,2001,25(3):375—380
[3] Talbot J M,Treseder K K. Interactions among lignin,cellulose,and nitrogen drive litter chemistry-decay relationships. Ecology,2012,93(2):345—354
[4] Cleveland C C,Reed S C,Keller A B,et al. Litter quality versus soil microbial community controls over decomposition:A quantitative analysis. Oecologia,2014,174(1):283-294
[5] Vesterdal L. Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Canadian Journal of Forest Research,1999,29(1):95—105
[6] Aerts R. Climate,leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:A triangular relationship. Oikos,1997,79(3):439—449
[7] Berger T W,Duboc O,Djukic I,et al. Decomposition of beech(Fagus sylvatica)and pine(Pinusnigra)litter along an Alpine elevation gradient:Decay and nutrient release. Geoderma,2015,251/252:92—104
[8] 畢于運(yùn),高春雨,王亞靜,等. 中國(guó)秸稈資源數(shù)量估算. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(12):211—219 Bi Y Y,Gao C Y,Wang Y J,et al. Estimation of straw resources in China(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2009,25(12):211—219
[9] Sun B,Wang X Y,Wang F,et al. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Applied & Environmental Microbiology,2013,79(11):3327—3335
[10] 遲鳳琴,匡恩俊,宿慶瑞,等. 不同還田方式下有機(jī)物料有機(jī)碳分解規(guī)律研究. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,41(2):60—65 Chi F Q,Kuang E J,Su Q R,et al. Study on organic carbon decomposition regularity of organic materials in different incorporation methods(In Chinese). Journal of Northeast Agricultural University,2010,41(2):60—65
[11] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000 Lu R K. Analytical methods for soil and agro-chemistry(In Chinese). Beijing:China Agricultural Science of Technology Press,2000
[12] Blair J M. Nitrogen,sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biology & Biochemistry,1988,20(5):693—701
[13] 寧東峰,馬衛(wèi)萍,孫文彥,等. 華北地區(qū)棉田翻壓冬綠肥腐解及養(yǎng)分釋放規(guī)律研究. 華北農(nóng)學(xué)報(bào),2011,26(6):164—167 Ning D F,Ma W P,Sun W Y,et al. Study on regulars of decomposition and nutrients releasing of green manure ploughed in cotton field in North Plain of China(In Chinese). Acta Agriculturae Boreali-Sinica,2011,26(6):164—167
[14] Liu S,Wang F,Xue K,et al. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry. Environmental Microbiology,2015,17(3):566—576
[15] 劉瑞龍,楊萬(wàn)勤,譚波,等. 土壤動(dòng)物對(duì)川西亞高山和高山森林凋落葉第一年不同分解時(shí)期 N 和 P 元素動(dòng)態(tài)的影響. 植物生態(tài)學(xué)報(bào),2013,37(12):1080—1090 Liu R L,Yang W Q,Tan B,et al. Effects of soil fauna on N and P dynamics at different stages during the first year of litter decomposition in subalpine and alpine forests of western Sichuan(In Chinese). Chinese Journal of Plant Ecology,2013,37(12):1080—1090
[16] Zhao M,Xue K,Wang F,et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. The ISME Journal,2014,8(10):2045—2055
[17] Agehara S,Warncke D D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Science Society of America Journal,2005,69(6):1844—1855
[18] McLatchey G P,Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil. Journal of Environmental Quality,1998,27(5):1268—1274
[19] Kuzyakov Y,Blagodatskaya E. Microbial hotspots and hot moments in soil:Concept & review. Soil Biology &Biochemistry,2015,83:184—199
[20] Bragazza L,SiffiC,Iacumin P,et al. Mass loss and nutrient release during litter decay in peatland:The role of microbial adaptability to litter chemistry. Soil Biology & Biochemistry,2007,39(1):257—267
[21] 趙娜,趙護(hù)兵,魚(yú)昌為,等. 旱地豆科綠肥腐解及養(yǎng)分釋放動(dòng)態(tài)研究. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2011,17(5):1179—1187 Zhao N,Zhao H B,Yu C W,et al. Nutrient releases of leguminous green manures in rainfed lands(In Chinese). Journal of Plant Nutrition and Fertilizer,2011,17(5):1179—1187
[22] He X,Zhao S,Yang S,et al. Role of nitrogen fixing trees in mixed forest Ⅲ. Leaf litter decomposition and its N release of nitrogen fixing tree species. Chinese Journal of Applied Ecology,1999(4):404—406
[23] Constantinides M,F(xiàn)ownes J H. Nitrogen mineralization from leaves and litter of tropical plants:Relationship to nitrogen,lignin and soluble polyphenol concentrations.Soil Biology & Biochemistry,1994,26(1):49—55
[24] Mafongoya P L,Giller K E,Palm C A. Decomposition and nitrogen release patterns of tree prunings and litter.Agroforestry Systems,1997,38(1/3):77—97
[25] Parton W,Silver W L,Burke I C,et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science,2007,315(5810):361—364
[26] Wang X Y,Sun B,Mao J D,et al. Structural convergence of maize and wheat straw during twoyear decomposition under different climate conditions.Environmental Science and Technology,2012,46:7159—7165
[27] 宋莉,韓上,魯劍巍,等. 油菜秸稈、紫云英綠肥及其不同比例配施還田的腐解及養(yǎng)分釋放規(guī)律研究. 中國(guó)土壤與肥料,2015(3):100—104 Song L,Han S,Lu J W,et al. Study on characteristics of decomposition and nutrients releasing of different proportional mixture of rape straw and Chinese milk vetch in rice field(In Chinese). Soil and Fertilizer Sciences in China,2015(3):100—104
[28] 戴志剛,魯劍巍,李小坤,等. 不同作物還田秸稈的養(yǎng)分釋放特征試驗(yàn). 農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):272—276 Dai Z G,Lu J W,Li X K,et al. Nutrient release characteristics of different crop straws manure(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2010,26(6):272—276
[29] Schimel J,Schaeffer S M. Microbial control over carbon cycling in soil. Frontiers in Microbiology,2012,3:348
Characteristics of Nutrient Release and Its Affecting Factors during Plant Residue Decomposition under Different Climate and Soil Conditions
LI Changming1,2WANG Xiaoyue1SUN Bo1?
(1State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing210008,China)
(2University of Chinese Academy of Sciences,Beijing100049,China)
【Objective】Nutrient release during the decomposition of organic materials in soils is an important process in the nutrient element biogeochemical cycle,which could be used as substitute for chemical fertilizer. It is a fundamental to build the best straw returning practices to know the coupling characteristics and mechanism for nutrient release during straw decomposition under different climate and soil conditions.【Method】In this study,we transplanted neutral black soil(Phaeozem),alkaline chao soil(Cambisol)and acidic red soil(Acrisol)in cold-temperate,warm-temperate and mid-subtropical zones,respectively and setup the Soil Reciprocal Transplant Experiment. Wheat and maize straws were packed in 200-mesh nylon bags and buried at the depth of 10~20 cm in three types of soils in parallel in three climate regions,and then sampled at 0.5-,1-,2- and 3-years of decomposition. The effects of climate,soil and straw condition on nitrogen(N),phosphorus(P)and potassium(K)release associated with the decomposition were examined.【Result】The results showed similar releasing patterns for nitrogen and phosphorus. In cold temperature zone,the N and P nutrients released in the pattern of an enrichment stage followed by a release stage,while in warm temperature and subtropical zones they showed a continuously release pattern. The N and P released directly in Phaeozem but enriched firstly then released in Cambisol and Acrisol. The K were released directly during the 3-year decomposition,and the mean K release rate(FtK,percentage of total K in wheat straw or maize stalk residue to that in the straw applied)amounted to 89.5%±1.1% in the first half year. During the 3-year decomposition,the nutrient release rate decreased followed the sequence of K>P≈N. Climate conditions contributed to 19.5%±5.3% and 19.5%±5.0% of variation for N and P release amount,while soil conditions to 16.6%±6.5% and 13.8%±7.0%,respectively.Meanwhile the contribution of climate and soil conditions to the variation of nitrogen and phosphorus release amount decreased with the decomposition going on. The K release was significantly but slightly affected by the straw conditions which contributed to only about 2.23%±0.07% of variation. Among the interaction effect of these factors,the climate × straw and soil × straw affected significantly the N and P release amount. At later decomposition stages(2-3 years of decomposition),the total contribution of all factors(climate,soil and straw)to the variation of the nutrient release was less than 30%,which suggested that the other environmental factors,especially the biological factor,may play an important role during the process of nutrient releasing. The stepwise regression equations between nutrient release rate and climate,soil and straw factors wereYtN= -3.41 -0.40C/N +0.49TN +0.43AT(R2=0.67,p=0.001),YtP= -83.73 +0.49RH +0.42TN+0.25N/P(R2= 0.47,p=0.003),andYtK= 2 574.39 -0.87C/N -0.33N/P -0.30RH(R2=0.62,p=0.002)for N,P and K,respectively. In which,AT stands for annual mean temperature;RH for relative humidity;C/N for carbon/nitrogen in straw;TN for soil total nitrogen content;N/P for nitrogen/phosphorus in straw.【Conclusion】In general,during the 3-year decomposition of wheat and maize straw under different climate and soil conditions,the N and P were released mainly in the pattern of an enrichment stage followed by a release stage,or in a continuously release pattern. However,the K was released all in a direct and faster pattern. The climate and soil conditions are the main controlling factors for N and P release,while the straw quality was the main factor influencing the K release.
Straw;Decomposition;Nutrient release;Climate condition;Soil type
Q143;S154.36
A
10.11766/trxb201612080226
* 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0200309)、中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專(zhuān)項(xiàng)(XDB15030200)、中國(guó)科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃(KFJ-SW-STS-142)資助 Supported by National Key R&D Project of China(No. 2016YDFD0200300),Strategic Priority Research Program of the Chinese Academy of Sciences(No. XDB15030200)and Science and Technology Service Network Initiative(No. KFJ-SW-STS-142)
? 通訊作者 Corresponding author,E-mail:bsun@issas.ac.cn
李昌明(1987—),男,甘肅蘭州人,博士研究生,主要從事土壤生態(tài)環(huán)境研究。E-mail:churmi@163.com
2016-12-08;收到修改稿:2017-03-24;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-05-04
(責(zé)任編輯:陳德明)