沈云中
同濟(jì)大學(xué)測繪與地理信息學(xué)院,上海 200092
動(dòng)力學(xué)法的衛(wèi)星重力反演算法特點(diǎn)與改進(jìn)設(shè)想
沈云中
同濟(jì)大學(xué)測繪與地理信息學(xué)院,上海 200092
根據(jù)衛(wèi)星軌道計(jì)算的積分公式,導(dǎo)出了以參考軌道為初值的線性化解算地球重力場的觀測方程,給出了其系數(shù)矩陣的積分計(jì)算公式,闡明了動(dòng)力學(xué)法本質(zhì)上是觀測值相對(duì)于參考軌道的線性攝動(dòng)方法,因此其變分方程力模型參數(shù)的偏導(dǎo)數(shù)初值必定為0。在此公式的基礎(chǔ)上,分析了動(dòng)力學(xué)法觀測方程的主要特點(diǎn),即線性化誤差隨軌道弧段增長而快速增大,其觀測方程的性質(zhì)也隨弧段增長而變差,且積分計(jì)算誤差將是下一代重力衛(wèi)星數(shù)據(jù)處理的重要瓶頸問題。提出了進(jìn)一步提高動(dòng)力學(xué)法重力反演精度的方法,主要?dú)w結(jié)為:改進(jìn)以幾何軌道為初值的線性化方法以減小線性化誤差,改變參數(shù)化方式以改善觀測方程的性質(zhì),綜合應(yīng)用解析公式與數(shù)值積分公式以提高軌道計(jì)算精度。
衛(wèi)星重力反演;動(dòng)力學(xué)法;軌道積分;解析軌道;線性化方法
GRACE(gravity recovery and climate experiment)衛(wèi)星觀測數(shù)據(jù)在大地測量學(xué)等多個(gè)地球科學(xué)取得了廣泛應(yīng)用[1-4],利用GRACE數(shù)據(jù)反演高精度、高分辨率的地球重力場模型是這些應(yīng)用的基礎(chǔ)。目前,國際全球重力場模型中心ICGEM(International Centre for Global Earth Models)已經(jīng)發(fā)布的數(shù)十套GRACE時(shí)變重力場模型主要由動(dòng)力學(xué)法解算[5-11],部分采用短弧邊值法[12-14]和加速度法[15-16]解算,我國學(xué)者利用這些方法也解算了多種靜態(tài)與時(shí)變重力場模型[17-21]。這3種解算方法都以牛頓運(yùn)動(dòng)定律和萬有引力定律為基礎(chǔ),在理論上是等價(jià)的。本質(zhì)上都是根據(jù)衛(wèi)星位置、星間距離和速度觀測量(或其加速度和星間相對(duì)加速度導(dǎo)出量)相對(duì)于衛(wèi)星參考軌道(或其星間距離、速度和加速度導(dǎo)出量)的線性攝動(dòng)量建立線性觀測方程進(jìn)行求解。動(dòng)力學(xué)法以軌道起始點(diǎn)的狀態(tài)向量(3個(gè)坐標(biāo)和3個(gè)速度分量)為初值,利用先驗(yàn)力模型積分計(jì)算出整個(gè)弧段的參考軌道;積分外推導(dǎo)致線性化誤差隨軌道弧段的增長而迅速增大,且觀測方程系數(shù)矩陣的性質(zhì)也快速變差;需要通過迭代來減小線性化誤差的影響。短弧邊值法以軌道弧段兩個(gè)端點(diǎn)的位置向量為初值,利用先驗(yàn)力模型內(nèi)插解算出整個(gè)弧段參考軌道相對(duì)于幾何軌道的改正量。這樣求得參考軌道與幾何軌道非常接近,因此解算重力場模型時(shí)忽略計(jì)算保守力時(shí)參考軌道改正量的影響。然而,由于改正量的數(shù)目隨弧段增長而迅速增加,且改正量解算方程的穩(wěn)定性也迅速變差,因此短弧邊值法的弧段不能太長,通常只有2~3 h。加速度法將相鄰3個(gè)歷元的衛(wèi)星位置和星間距離觀測值進(jìn)行二階差分求得衛(wèi)星加速度和星間相對(duì)加速度,并表示成3個(gè)歷元對(duì)應(yīng)弧段參考軌道加權(quán)平均加速度的線性攝動(dòng)量,因此加速度法線性攝動(dòng)量的觀測方程形式相對(duì)簡單,然而差分計(jì)算必然放大觀測誤差,通常需要進(jìn)行濾波處理[22]。根據(jù)文獻(xiàn)[23]以幾何軌道為初值進(jìn)行線性化的思路,文獻(xiàn)[24]對(duì)保守力模型中的幾何軌道直接引入誤差改正數(shù),并以幾何軌道為初值進(jìn)行線性化,在解算重力場模型的同時(shí)估計(jì)軌道改正數(shù)。因此在解算地球重力場時(shí)不需要再計(jì)算參考軌道,且理論上更加嚴(yán)密和自洽,并用該線性化方法改進(jìn)了短弧邊值法和加速度法,解算了重力場模型[13-14,17]。
為了滿足相關(guān)學(xué)科的科學(xué)研究和全球氣候變化分析與災(zāi)害評(píng)估的需求,時(shí)變地球重力場需要達(dá)到100 km空間分辨率、1天至數(shù)天的時(shí)間分辨率且精度提高1個(gè)數(shù)量級(jí),因此,國際上正在研究新一代重力衛(wèi)星觀測計(jì)劃[25-27],我國不僅在研制低低跟蹤模式的重力衛(wèi)星[28],且也在研究下一代重力衛(wèi)星計(jì)劃[29]。下一代重力衛(wèi)星計(jì)劃采用兩對(duì)低低跟蹤重力衛(wèi)星進(jìn)行觀測,并采用激光干涉以納米級(jí)精度測定重力衛(wèi)星的星間距離,這需要改進(jìn)重力反演解算方法,必須將計(jì)算誤差控制在納米級(jí)精度。衛(wèi)星重力反演方法的發(fā)展主要在以下3個(gè)方面:①采用長弧重力反演。因長弧段積分不僅可平滑隨機(jī)誤差的影響,而且使微小的作用力產(chǎn)生可觀的位置變化,理論上可以解算更高精度的重力場模型,但需要構(gòu)建新的軌道計(jì)算方法,使軌道計(jì)算誤差能夠滿足納米級(jí)觀測精度的要求,并控制軌道積分誤差隨弧段長度的積累;②改進(jìn)參數(shù)化方式。其中,地球重力場采用點(diǎn)質(zhì)量模型表示,非保守力的偏差參數(shù)采用2次多項(xiàng)式或樣條模型表示,并將非保守力變換到慣性系時(shí)對(duì)姿態(tài)引入?yún)?shù)進(jìn)行改正;③構(gòu)建約束解模型,主要利用海洋區(qū)域和陸地水流域等不同區(qū)域質(zhì)量變化的頻譜特性構(gòu)建約束模型。此外,大氣和海洋混疊改正模型將是影響下一代重力衛(wèi)星解算精度重要因素,需要利用各種類型數(shù)據(jù)構(gòu)建更精確的改正模型。由于動(dòng)力學(xué)法是目前衛(wèi)星重力反演的主要方法,因此研究動(dòng)力學(xué)法的特點(diǎn)并合理改進(jìn),不僅對(duì)提高GRACE數(shù)據(jù)的重力反演精度有參考價(jià)值,而且對(duì)下一代重力衛(wèi)星的數(shù)據(jù)處理也有重要意義。本文主要基于理論模型,分析討論動(dòng)力學(xué)法反演地球重力場的特點(diǎn),在此基礎(chǔ)上提出一些改進(jìn)設(shè)想。
地球引力位V在地固坐標(biāo)系中可表示成如下球函數(shù)展開式
Snmsinmλ)Pnm(cosθ)
(1)
利用GRACE衛(wèi)星高精度的軌道、星間距離或速度,以及非保守力觀測量解算地球重力場的理論基礎(chǔ)是如式(2)所示的牛頓運(yùn)動(dòng)方程
(2)
式中,r為慣性坐標(biāo)系中的衛(wèi)星位置向量,是時(shí)間t的函數(shù);?V(r,u,t)/?r和f(r,dr/dt,p,t)分別為衛(wèi)星單位質(zhì)量所受的引力和其他攝動(dòng)力;a(r,u,p,t)為兩者之和;u為待估的地球重力場模型系數(shù);p為其他待估參數(shù)。在式(2)的力模型中,所有保守力都與衛(wèi)星位置有關(guān);但當(dāng)大氣阻力等非保守力用加速度計(jì)實(shí)測時(shí),式(2)右邊的力模型與衛(wèi)星速度無關(guān)。動(dòng)力學(xué)法和短弧邊值法都是以式(2)積分得到的衛(wèi)星速度和位置為基礎(chǔ)建立GRACE衛(wèi)星的位置和星間速度觀測方程;二者的區(qū)別主要是對(duì)6個(gè)積分常數(shù)和參考軌道的處理。
(3)
式中,t0和t為軌道的起始時(shí)刻和觀測時(shí)刻;上標(biāo)“·”表示對(duì)時(shí)間的一階導(dǎo)數(shù),參數(shù)x=(uT,pT)T。若將(3)式中的起始點(diǎn)初值、力模型參數(shù)用其近似值和改正數(shù)表示,則式(3)可線性化為
(4)
(5)
(6)
引入輔助量
(7)
則其對(duì)時(shí)間t的一階導(dǎo)數(shù)可表示為
(8)
在初始時(shí)刻t=t0時(shí),式(7)和式(8)積分的上下限相同,顯然有
(9)
將式(7)和式(8)分別代入式(4)和式(5)得
(10)
式中
(11)
由于在初始時(shí)刻式(9)為0,這表明攝動(dòng)量δx對(duì)式(10)中初始位置和速度的攝動(dòng)影響均為0。將式(10)的第一式的r(t)用軌道觀測值rg(t)和改正數(shù)vr(t)表示,則其觀測方程為
(rg(t)-r0(t))
(12)
(13)
式中,eAB(t)為A、B衛(wèi)星視線方向的單位向量。將式(10)的第2式代入式(13)就可求得星間速度的觀測方程。
不難驗(yàn)證,式(7)和式(8)就是動(dòng)力學(xué)法關(guān)于參數(shù)x的變分方程
(14)
滿足初值條件式(9)時(shí)的解。而且,式(11)也是動(dòng)力學(xué)法關(guān)于初始位置和速度的變分方程
(15)
滿足初值為單位陣時(shí)的解。由此可見,動(dòng)力學(xué)法本質(zhì)上是以參考軌道為初值的線性攝動(dòng)解,攝動(dòng)參數(shù)δx對(duì)起始點(diǎn)位置和速度的攝動(dòng)量影響為0必然導(dǎo)致變分方程式(14)的初值為0。文獻(xiàn)[30]所討論問題的本質(zhì)上并非是衛(wèi)星相對(duì)于參考軌道線性攝動(dòng)問題,因此認(rèn)為變分方程初值不應(yīng)該為0。
由動(dòng)力學(xué)法觀測方程式(12)和式(13)可以看出,GRACE數(shù)據(jù)解算地球重力場的核心是衛(wèi)星位置和速度的線性攝動(dòng)公式(10),以及參考軌道積分公式(6)和系數(shù)計(jì)算公式(7)、式(8)和式(11)。下面從線性化誤差、參數(shù)化方式和長弧段軌道積分三個(gè)方面討論算法的特點(diǎn)和改進(jìn)設(shè)想。
3.1 線性化誤差
(16)
(17)
(18)
3.2 參數(shù)化方式
(19)
由于短弧邊值法可直觀理解為軌道內(nèi)插問題,動(dòng)力學(xué)法解算初值參數(shù)屬于軌道外推問題,因此短弧邊值法觀測方程性質(zhì)應(yīng)該優(yōu)于動(dòng)力學(xué)法。考慮到迭代收斂后弧段中各點(diǎn)的軌道已經(jīng)固定,邊值公式已經(jīng)不受弧段長度的限制,因此用短弧邊值公式作最后一次解算,也有望進(jìn)一步提高解算結(jié)果的精度。
3.3 軌道積分方式
由于衛(wèi)星的力模型復(fù)雜,給出完整的軌道解析解非常困難,因此軌道數(shù)值積分對(duì)于動(dòng)力學(xué)法是不可避免的。盡管采用目前常用數(shù)值積分器積分1天的軌道精度能滿足目前GRACE重力反演的精度要求。然而下一代重力衛(wèi)星的激光干涉觀測精度將達(dá)到納米量級(jí),比目前的K波段微波測距精度提高約1000倍,因此需要更高的軌道積分精度。長弧重力反演計(jì)算可提高觀測方程的信噪比,有利于提高重力場參數(shù)的解算精度,但軌道積分精度必須要滿足長弧段解算的要求。因此,衛(wèi)星軌道的數(shù)值積分精度是下一代重力衛(wèi)星數(shù)據(jù)處理和長弧段重力反演的一個(gè)重要瓶頸問題。
式(3)的第1式是二重積分,利用分步積分可轉(zhuǎn)化成如下一重積分
(20)
外推系數(shù):19 494 601/11 404 800,-99 642 413/22 809 600,40 413 623/2 851 200,-4 955 916 683/159 667 200,278 428 507/5 702 400,-4 496 090 419/79 833 600,955 625 177/19 958 400,-2 374 517 119/79 833 600,1 050 348 479/79 833 600,-627 827 071/159 667 200,84 671/118 800,-4671/78 848
內(nèi)插系數(shù):-4139/79 833 600,19 567/22 809 600,-107 539/13 305 600,17 274 001/159 667 200,6 386 783/7 983 360,326 441/3 193 344,-53/399 168,-58 213/11 404 800,226 637/79 833 600,-4121/4 561 920,317/1 900 800,-317/22 809 600
(21)
式中
(22)
本文直接利用動(dòng)力學(xué)軌道的積分公式進(jìn)行線性化,導(dǎo)出了線性化觀測方程系數(shù)矩陣的積分計(jì)算公式,闡明了傳統(tǒng)動(dòng)力學(xué)方法本質(zhì)上是相對(duì)于參考軌道的線性攝動(dòng)問題,因此對(duì)力模型參數(shù)的偏導(dǎo)數(shù)初值必定為0。利用導(dǎo)出的積分公式分析了線性化誤差隨軌道弧長快速增大,線性觀測方程性質(zhì)也隨軌道弧長增長也變差等特點(diǎn)。建議通過迭代計(jì)算和進(jìn)一步改進(jìn)以幾何軌道為初值的線性化模型,減少長弧段重力反演的線性化誤差;通過改變初始速度單位改善初始狀態(tài)參數(shù)系數(shù)矩陣的性質(zhì),采用迭代收斂后軌道直接計(jì)算設(shè)計(jì)矩陣,改善線性觀測方程的性質(zhì)。考慮到下一代重力衛(wèi)星計(jì)劃采用高精度星間距離觀測數(shù)據(jù)和長弧段重力反演計(jì)算都需要高精度數(shù)值積分計(jì)算衛(wèi)星軌道,建議保守力模型采用內(nèi)插法計(jì)算,并將地球中心引力和C20項(xiàng)引力采用解析公式計(jì)算,其他保守力和非保守力采用數(shù)值積分公式計(jì)算,以提高衛(wèi)星軌道的計(jì)算精度。
本文并未涉及衛(wèi)星重力反演的星座和載荷指標(biāo)的優(yōu)化、非保守力改正模型的精化、大氣和海洋改正混疊影響等,這些問題都是下一代衛(wèi)星重力計(jì)劃需要研究的重要內(nèi)容。
[1] TAPLEY B D, BETTADPUR S, WATKINS M, et al. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results[J]. Geophysical Research Letters, 2004, 31(9): L09607.
[2] 許厚澤, 陸洋, 鐘敏, 等. 衛(wèi)星重力測量及其在地球物理環(huán)境變化監(jiān)測中的應(yīng)用[J]. 中國科學(xué)(地球科學(xué)): 2012, 42(6): 843-853.
XU Houze, LU Yang, ZHONG Min, et al. Satellite Gravity and Its Application to Monitoring Geophysical Environmental Change[J]. Scientia Sinica (Terrae), 2012, 42(6): 843-853.
[3] CHEN J L, WILSON C R, TAPLEY B D. Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet[J]. Science, 2006, 313(5795): 1958-1960. DOI: 10.1126/science.1129007.
[4] FENG Wei, ZHONG Min, LEMOINE J M, et al. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-based Measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118.
[5] DAHLE C, FLECHTNER F, GRUBER C, et al. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005[R]. Scientific Technical Report STR 12/02. Potsdam: Deutsches GeoForschungsZentrum GFZ, 2012. DOI: 10.2312/GFZ.b103-1202-25,GFZ.
[6] BETTADPUR S. Gravity Recovery and Climate Experiment UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005[M]. Austin: Center for Space Research, University of Texas, 2012.
[7] WATKINS M, YUAN D N. GRACE JPL Level-2 Processing Standards Document for Level-2 Product Release 05[M]. GRACE 327-744 (v 5.0). Pasadena, USA: Jet Propulsion Laboratory, 2012.
[8] MAYER-GüRR T, BEHZADPOUR S, ELLMER M, et al. ITSG-Grace2016-Monthly and Daily Gravity Field Solutions from GRACE[M/OL]. GFZ Data Services, 2016, http:∥doi.org/10.5880/icgem.2016.007.
[9] SAVE H, BETTADPUR S, TAPLEY B D. High-resolution CSR GRACE RL05 Mascons[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7547-7569.
[10] F?RSTE C, BRUINSMA S, ABRIKOSOV O, et al. EIGEN-6S4 a Time-variable Satellite-only Gravity Field Model to D/O 300 Based on LAGEOS, GRACE and GOCE Data from the Collaboration of GFZ Potsdam and GRGS Toulouse[R]. [S.l.]: GFZ, 2016,
[11] ZHOU Hao, LUO Zhicai, ZHOU Zebing, et al. HUST-GRACE2016s: A New GRACE Static Gravity Field Model Derived from a Modified Dynamic Approach over a 13-year Observation Period[J]. Advances in Space Research, 2017, 60(3): 597-611.
[12] MAYER-GüRR T, EICKER A, ILK K H. ITG-Grace02s: A GRACE Gravity Field Derived from Short Arcs of the Satellites Orbit[C]∥Proceedings of the 1st International Symposium of the International Gravity Field Service “Gravity Field of the Earth”. Istanbul: Harita Dergisi, 2007. 193-198.
[13] CHEN Qiujie, SHEN Yunzhong, ZHANG Xingfu, et al. Monthly Gravity Field Models Derived from GRACE Level 1B Data Using a Modified Short-arc Approach[J]. Journal of Geophysical Research, 2015, 120(3): 1804-1819.
[14] CHEN Qiujie, SHEN Yunzhong, CHEN Wu, et al. An Improved GRACE Monthly Gravity Field Solution By Modeling the Non-conservative Acceleration and Attitude Observation Errors[J]. Journal of Geodesy, 2016, 90(6): 503-523.
[15] DITMAR P, KUZNETSOV V, VAN ECK VAN DER SLUIJS A A, et al. ‘DEOS_CHAMP-01C_70’: A Model of the Earth’s Gravity Field Computed from Accelerations of the CHAMP Satellite[J]. Journal of Geodesy, 2006, 79(10-11): 586-601.
[16] LIU X, DITMAR P, SIEMES C, et al. DEOS Mass Transport Model (DMT-1) Based on GRACE Satellite Data: Methodology and Validation[J]. Geophysical Journal International, 2010, 181(2): 769-788.
[17] CHEN Qiujie, SHEN Yunzhong, CHEN Wu, et al. A Modified Acceleration-based Monthly Gravity Field Solution from GRACE Data[J]. Geophysical Journal International, 2015, 202(2): 1190-1206.
[18] 徐天河, 楊元喜. 利用CHAMP衛(wèi)星幾何法軌道恢復(fù)地球重力場模型[J]. 地球物理學(xué)報(bào), 2005, 48(2): 288-293.
XU Tianhe, YANG Yuanxi. CHAMP Gravity Field Recovery Using Kinematic Orbits[J]. Chinese Journal of Geophysics, 2005, 48(2): 288-293.
[19] 王長青, 許厚澤, 鐘敏, 等. 利用動(dòng)力學(xué)方法解算GRACE時(shí)變重力場研究[J]. 地球物理學(xué)報(bào), 2015, 58(3): 756-766.
WANG Changqing, XU Houze, ZHONG Min, et al. An Investigation on GRACE Temporal Gravity Field Recovery Using the Dynamic Approach[J]. Chinese Journal of Geophysics, 2015, 58(3): 756-766.
[20] 王正濤, 李建成, 姜衛(wèi)平, 等. 基于GRACE衛(wèi)星重力數(shù)據(jù)確定地球重力場模型WHU-GM-05[J]. 地球物理學(xué)報(bào), 2008, 51(5): 1364-1371.
WANG Zhengtao, LI Jiancheng, JIANG Weiping, et al. Determination of Earth Gravity Field Model WHU-GM-05 Using GRACE Gravity Data[J]. Chinese Journal of Geophysics, 2008, 51(5): 1364-1371.
[21] 肖云, 夏哲仁, 王興濤. 用GRACE星間速度恢復(fù)地球重力場[J]. 測繪學(xué)報(bào), 2007, 36(1): 19-25. DOI: 10.3321/j.issn:1001-1595.2007.01.004.
XIAO Yun, XIA Zheren, WANG Xingtao. Recovering the Earth Gravity Field from Inter-satellite Range-rate of GRACE[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1): 19-25. DOI: 10.3321/j.issn:1001-1595.2007.01.004.
[22] 寧津生, 鐘波, 羅志才, 等. 基于衛(wèi)星加速度恢復(fù)地球重力場的去相關(guān)濾波法[J]. 測繪學(xué)報(bào), 2010, 39(4): 331-337, 343.
NING Jinsheng, ZHONG Bo, LUO Zhicai, et al. Decorrelation Filtering Methods for Gravity Field Recovery Based on Satellite Acceleration Data[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4): 331-337, 343.
[23] XU Peiliang. Position and Velocity Perturbations for the Determination of Geopotential from Space Geodetic Measurements[J]. Celestial Mechanics and Dynamical Astronomy, 2008, 100(3): 231-249.
[24] SHEN Y, CHEN Q, HSU H, et al. A Modified Short Arc Approach for Recovering Gravity Field Model[C]∥Oral Presentation at the GRACE Science Team Meeting. Austin: Center of Space Research, University of Texas, 2013.
[25] FLECHTNER F, WATKINS M, MORTON P, et al. Status of the GRACE Follow-on Mission[C]∥Joint GSTM/SPP Final Colloquium. Potsdam, Germany: [s.n.], 2012.
[26] GRUBER T, MURB?CK M, PAIL R, et al. Earth System Mass Transport Mission 2 e. Motion2-proposal for an Earth Explorer 9 Mission[C]∥Asia Oceania Geoscience Society 13th Annual Meeting, Session SE01. Beijing: AOGS, 2016.
[27] LOOMIS B D, NEREM R S, LUTHCKE S B. Simulation Study of A Follow-on Gravity Mission to GRACE[J]. Journal of Geodesy, 2012, 86(5): 319-335. DOI: 10.1007/s00190-011-0521-8.
[28] 劉曉剛, 肖云, 李婧, 等. 低低衛(wèi)——衛(wèi)跟蹤模式中衛(wèi)星軌道高度和星間距離的指標(biāo)設(shè)計(jì)論證[J]. 地球物理學(xué)進(jìn)展, 2013, 28(5): 2247-2255.
LIU Xiaogang, XIAO Yun, LI Jing, et al. Demonstration on the Indexes Design of Satellite Orbit Height and Inter-satellite Range in the Low-low Satellite-to-satellite Tracking Mode[J]. Progress in Geophysics, 2013, 28(5): 2247-2255.
[29] 冉將軍, 許厚澤, 沈云中, 等. 新一代GRACE重力衛(wèi)星反演地球重力場的預(yù)期精度[J]. 地球物理學(xué)報(bào), 2012, 55(9): 2898-2908.
RAN Jiangjun, XU Houze, SHEN Yunzhong, et al. Expected Accuracy of the Global Gravity Field for Next GRACE Satellite Gravity Mission[J]. Chinese Journal of Geophysics, 2012, 55(9): 2898-2908.
[30] XU Peiliang. Zero Initial Partial Derivatives of Satellite Orbits with Respect to Force Parameters Violate the Physics of Motion of Celestial Bodies[J]. Science in China Series D: Earth Sciences, 2009, 52(4): 562-566.
[31] 陳秋杰, 沈云中, 張興福, 等. 基于GRACE衛(wèi)星數(shù)據(jù)的高精度全球靜態(tài)重力場模型[J]. 測繪學(xué)報(bào), 2016, 45(4): 396-403. DOI: 10.11947/j.AGCS.2016.20150422.
CHEN Qiujie, SHEN Yunzhong, ZHANG Xingfu, et al. GRACE Data-based High Accuracy Global Static Earth’s Gravity Field Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 396-403. DOI: 10.11947/j.AGCS.2016.20150422.
[32] XU Guochang. Orbits[M]. Berlin: Springer, 2008.
[33] ELLMER M, MAYER-GüRR T. High Precision Dynamic Orbit Integration for Spaceborne Gravimetry in View of GRACE Follow-on[J]. Advances in Space Research, 2017, 60(1): 1-13.
(責(zé)任編輯:張燕燕)
Algorithm Characteristics of Dynamic Approach-based Satellite Gravimetry and Its Improvement Proposals
SHEN Yunzhong
College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
By using the integration equation for computing satellite orbit, this paper derives the observational equation for computing gravity field model linearized with respect to the reference orbit, provides the integration equation of calculating the design matrices of the observational equation, and clarifies that the dynamic approach is in principle the perturbation method relative to the reference orbit, therefore the initial partial derivatives with respect to the force model parameters must be zero. Based on the derived formulae this paper analyzes the main characteristics of dynamic approach-based observational equation, i.e. the linearization error will rapidly increase and the property of observational equation becomes worse as the integration arc extends longer, and the numerical integration error will be the bottle-neck problem for the data processing of next generation of satellite gravity exploration. Then this paper proposes the methods for improving the accuracy of gravity recovery, which can be summarized as that refining the linearization method relative kinematic orbit to reduce the linearization error, modifying parameterization method to improve the property of observational equation, and combined using analytic formula and numerical integration formula to increase the accuracy of orbit computation.
satellite gravimetry; dynamic approach; orbit integration; analytic orbit; linearization method
The National Natural Science Foundation of China(No. 41474017); The Strategic Priority Research Program of the Chinese Academy of Sciences(No. XD1323030100); The Program of Application and Demonstration System of High Resolution Remote Sensing in Surveying and Mapping
沈云中.動(dòng)力學(xué)法的衛(wèi)星重力反演算法特點(diǎn)與改進(jìn)設(shè)想[J].測繪學(xué)報(bào),2017,46(10):1308-1315.
10.11947/j.AGCS.2017.20170380.
SHEN Yunzhong.Algorithm Characteristics of Dynamic Approach-based Satellite Gravimetry and Its Improvement Proposals[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1308-1315. DOI:10.11947/j.AGCS.2017.20170380.
P223
A
1001-1595(2017)10-1308-08
國家自然科學(xué)基金(41474017);中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(B類)(XDB23030100);高分遙感測繪應(yīng)用示范系統(tǒng)資助項(xiàng)目
2017-07-04
修回日期: 2017-08-11
沈云中(1962—),男,教授,研究方向?yàn)榇蟮販y量數(shù)據(jù)處理及其衛(wèi)星重力和衛(wèi)星定位應(yīng)用。
Author: SHEN Yunzhong(1962—),male,professor,majors in geodetic data processing and its application in satellite gravimetry and satellite positioning.
E-mail: yzshen@#edu.cn