亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        撞擊流反應(yīng)器內(nèi)流場(chǎng)特性研究進(jìn)展

        2017-10-20 06:11:10張建偉張志剛馮穎施博文
        化工進(jìn)展 2017年10期
        關(guān)鍵詞:研究

        張建偉,張志剛,馮穎,施博文

        ?

        撞擊流反應(yīng)器內(nèi)流場(chǎng)特性研究進(jìn)展

        張建偉,張志剛,馮穎,施博文

        (沈陽(yáng)化工大學(xué)能源與動(dòng)力工程學(xué)院,遼寧沈陽(yáng) 110142)

        綜述了國(guó)內(nèi)外撞擊流反應(yīng)器內(nèi)流場(chǎng)速度和脈動(dòng)振蕩特性的研究進(jìn)展。目前,對(duì)非限制撞擊流反應(yīng)器內(nèi)撞擊流體的徑向速度發(fā)展及軸向速度與撞擊駐點(diǎn)的脈動(dòng)特性都有了系統(tǒng)研究,對(duì)撞擊駐點(diǎn)的振蕩模式進(jìn)行了劃分,并得出大量適用于不同噴嘴間距的速度關(guān)聯(lián)式,但對(duì)駐點(diǎn)振蕩模式的產(chǎn)生機(jī)理還沒有明確解釋。層流狀態(tài)下隨著雷諾數(shù)增大,眾多學(xué)者對(duì)受限撞擊流反應(yīng)器內(nèi)流型的流動(dòng)模式進(jìn)行了劃分,提出了出現(xiàn)吞噬流模式的臨界參數(shù)關(guān)聯(lián)式,由于結(jié)構(gòu)等參數(shù)的變化當(dāng)前還沒有普遍適用控制流型模式變化的關(guān)聯(lián)式。在浸沒撞擊流反應(yīng)器內(nèi)用非線性分析法確定撞擊區(qū)并劃分了流場(chǎng)區(qū)域,但目前尚不能揭示湍流狀態(tài)下流場(chǎng)能量分布與速度信號(hào)等的變化規(guī)律。最后作者對(duì)撞擊流反應(yīng)器內(nèi)部流場(chǎng)結(jié)構(gòu)的研究前景進(jìn)行了展望。

        撞擊流反應(yīng)器;流場(chǎng)特性;脈動(dòng)振蕩;速度場(chǎng)

        撞擊流技術(shù)在相間傳遞方面具有獨(dú)特性質(zhì),現(xiàn)已成為工業(yè)應(yīng)用上的一種重要流動(dòng)形式,不乏國(guó)內(nèi)外學(xué)者對(duì)其進(jìn)行研究[1-4],已廣泛應(yīng)用于混合[5]、干燥[6]、吸收[7]、燃燒[8]、結(jié)晶[9]、超細(xì)粉體制備[10]等領(lǐng)域。但受撞擊流場(chǎng)流動(dòng)的復(fù)雜性影響,目前對(duì)撞擊流的研究還是以關(guān)注工業(yè)應(yīng)用中的湍流規(guī)律為主,而對(duì)于其基本流場(chǎng)流動(dòng)結(jié)構(gòu)研究很少。因此,很有必要把對(duì)撞擊流的研究重點(diǎn)從工業(yè)應(yīng)用轉(zhuǎn)移到基本流動(dòng)的實(shí)驗(yàn)和數(shù)值模擬研究上來[11]。本文作者對(duì)撞擊流反應(yīng)器流場(chǎng)流動(dòng)規(guī)律的研究進(jìn)展進(jìn)行了 綜述。

        經(jīng)過幾十年的發(fā)展,撞擊流的結(jié)構(gòu)形式不斷完善,尤其在進(jìn)入21世紀(jì)以來,流體力學(xué)實(shí)驗(yàn)和CFD模擬手段日新月異,對(duì)撞擊流的研究發(fā)展起到了巨大的推動(dòng)作用,其分類和研究領(lǐng)域也趨于多元 化[12]。其中屠功毅[13]對(duì)撞擊流的發(fā)展形式進(jìn)行了分類,如表1。

        表1 撞擊流分類

        1 速度特性研究進(jìn)展

        眾所周知,推動(dòng)力、相介面積和傳遞系數(shù)是決定熱質(zhì)傳遞的3要素,提高推動(dòng)力和增加相介面積受材質(zhì)、過程特性和適用場(chǎng)合的限制,而傳遞系數(shù)與相對(duì)速度的1/3~1/4次冪成正比。因此,提高相間相對(duì)速度是強(qiáng)化傳遞過程最有效的途徑[14]。

        1.1 徑向速度特性及其擴(kuò)展率

        在撞擊流反應(yīng)器中,撞擊后流體的徑向流動(dòng)形態(tài)及擴(kuò)展對(duì)大尺度渦結(jié)構(gòu)的產(chǎn)生和發(fā)展有顯著影響,而這些大尺度渦結(jié)構(gòu)直接影響化工過程中的混合單元。因此,通過研究反應(yīng)器內(nèi)徑向流動(dòng)特性來優(yōu)化其幾何結(jié)構(gòu)和操作參數(shù)對(duì)提高混合效率具有重要意義。

        由上可見,研究者獲得了不同研究體系下的徑向速度關(guān)聯(lián)式,這表明徑向射流發(fā)展受徑向距離、入口初速度、噴嘴間距和直徑的影響也不相同;并且四噴嘴結(jié)構(gòu)流場(chǎng)的速度特性也不是兩噴嘴結(jié)構(gòu)流場(chǎng)的簡(jiǎn)單疊加。目前學(xué)者們對(duì)撞擊流反應(yīng)器的研究主要集中在兩噴嘴和四噴嘴結(jié)構(gòu)形式,而工業(yè)生產(chǎn)中存在因兩不等量物料對(duì)撞造成“噴嘴堵塞”等問題,為此重視開發(fā)研究三噴嘴結(jié)構(gòu)撞擊流反應(yīng)器或可解決這一問題。

        有學(xué)者認(rèn)為彎曲壁面內(nèi)兩流體的初始動(dòng)量比決定了流體撞擊位置和撞擊后的流動(dòng)方向,其徑向射流擴(kuò)展率為0.15;而平面壁面射流撞擊流的徑向射流擴(kuò)展率在=20時(shí)為0.2、=240時(shí)為0.3,約為自由圓射流的3倍[21-23]。以上受實(shí)驗(yàn)條件影響得出不同結(jié)論,而徑向射流擴(kuò)展率的大小不僅反映流場(chǎng)特性還直接影響混合效果,為對(duì)擴(kuò)展率有更全面系統(tǒng)的認(rèn)識(shí),李偉鋒等[18]在同一體系內(nèi)(= 0.5~100)發(fā)現(xiàn)擴(kuò)展率在0.5<<8時(shí)緩慢增長(zhǎng)到0.15左右,在8<<20時(shí)快速增至0.3左右,是自由圓射流的1.5~3倍。

        綜上,撞擊流徑向射流擴(kuò)展率隨噴嘴間距增大而增大,且比自由圓射流的徑向射流擴(kuò)展更快。另外在模擬預(yù)測(cè)實(shí)驗(yàn)時(shí),受撞擊流駐點(diǎn)不穩(wěn)定性影 響[24-25],采用穩(wěn)態(tài)數(shù)值模擬方法存在一定誤差,而選取RNG模型較Standard和RNG模型可獲得精度更高的預(yù)報(bào)擴(kuò)展率。

        1.2 軸向速度特性

        另外,在數(shù)值計(jì)算時(shí)模型的選擇和網(wǎng)格的劃分都對(duì)計(jì)算精度有很大影響[30],因此尋找一個(gè)高精度的預(yù)測(cè)模型對(duì)研究復(fù)雜的撞擊流場(chǎng)是很有必要的。但眾多研究表明,DNS僅適用于低雷諾數(shù)下,而RANS對(duì)預(yù)測(cè)不夠準(zhǔn)確,相對(duì)而言LES精度更高并逐漸成為模擬撞擊流場(chǎng)的主流模型[31-33]。ABDEL-FATTAH[34]嘗試用v2-湍流模型模擬撞擊駐點(diǎn)處速度、壓力等分布情況,相比Standard-和RNG 模型與實(shí)驗(yàn)結(jié)果更接近。

        2 脈動(dòng)振蕩特性研究進(jìn)展

        撞擊流反應(yīng)器內(nèi)流場(chǎng)流動(dòng)結(jié)構(gòu)是極其復(fù)雜的,其中撞擊面的不穩(wěn)定性和駐點(diǎn)偏移是撞擊流反應(yīng)器中不可忽視的重要現(xiàn)象,認(rèn)識(shí)并控制這種往復(fù)振蕩不僅能確保整個(gè)流場(chǎng)的均勻發(fā)展,還可以增加裝置的穩(wěn)定性和使用壽命。

        2.1 振蕩理論的提出與發(fā)展

        表2 撞擊流反應(yīng)器的徑向速度經(jīng)驗(yàn)關(guān)聯(lián)式

        2.2 操作參數(shù)對(duì)駐點(diǎn)振蕩特性的影響

        在以上振蕩理論的基礎(chǔ)上,研究者對(duì)駐點(diǎn)振蕩區(qū)間及其影響參數(shù)進(jìn)行了系統(tǒng)分析,發(fā)現(xiàn)在不同噴嘴間距范圍內(nèi)駐點(diǎn)偏移量受氣速比、噴嘴直徑等因素的影響有所不同,下文按噴嘴間距由小到大順序進(jìn)行綜述。

        小噴嘴間距時(shí),低雷諾數(shù)下兩對(duì)稱噴嘴產(chǎn)生的流場(chǎng)和駐點(diǎn)位置關(guān)于噴嘴間距中心面對(duì)稱,但改變氣速比導(dǎo)致撞擊面彎曲、駐點(diǎn)偏移并有回流產(chǎn)生,同時(shí)鋒面變化隨雷諾數(shù)的增大滯后現(xiàn)象明顯[40];而且噴嘴間距(=2)微小偏差能使撞擊面偏移中心0.15[26]。另外,李偉鋒等[29]考察噴嘴間距、氣速比和出口速度分布發(fā)現(xiàn),駐點(diǎn)偏移量隨噴嘴間距 (<2)增大或氣速比減小而增大,邊界層厚度大的“禮帽”分布對(duì)駐點(diǎn)偏移量更大。

        中等噴嘴間距時(shí),李偉鋒等[24]總結(jié)OGAWA 等[21,23,41]研究,針對(duì)不同間距下駐點(diǎn)位置是否由動(dòng)量比決定的問題研究了不同氣速比下(2<<10)的駐點(diǎn)偏移規(guī)律,認(rèn)為2<<8時(shí),駐點(diǎn)對(duì)氣速比的變化反應(yīng)靈敏且近似呈線性變 化[42],<2或>8時(shí)駐點(diǎn)隨氣速比變化不明顯且與氣速比有非線性關(guān)系。其中,文獻(xiàn)[41]實(shí)驗(yàn)條件=4.3,處于駐點(diǎn)受氣速比影響敏感范圍;而文獻(xiàn)[21]實(shí)驗(yàn)條件=240處于不敏感范圍。由以上可見不同間距下駐點(diǎn)受動(dòng)量比影響不同。另外,有報(bào)道三角形噴嘴撞擊流的駐點(diǎn)偏移量與氣速比呈正比[43]。

        綜上,大噴嘴間距撞擊流駐點(diǎn)偏移量受噴嘴直徑、間距及氣速比影響較大,而對(duì)中、小噴嘴間距情況研究卻未考察噴嘴直徑對(duì)其變化,僅得出間距及氣速比對(duì)駐點(diǎn)偏移的影響規(guī)律,可在今后研究中綜合考察參數(shù)變化對(duì)流場(chǎng)不穩(wěn)定性的影響。

        2.3 外界干擾對(duì)脈動(dòng)及振蕩頻率的影響

        學(xué)者在考察參數(shù)變化對(duì)流場(chǎng)脈動(dòng)影響方面已做了大量工作,但影響流場(chǎng)脈動(dòng)的不只是一些人為可控的參數(shù)因素,還有實(shí)驗(yàn)設(shè)備自身產(chǎn)生的不可消除的干擾因素等。

        如單束射流撞擊平板時(shí)產(chǎn)生的低頻主頻分量和高頻分量分別是由射流管路的機(jī)械振動(dòng)和渦流湍動(dòng)造成的[45]。而且實(shí)驗(yàn)裝置自身產(chǎn)生的擾動(dòng)影響了流場(chǎng)振蕩頻率,特別是在脈動(dòng)振幅達(dá)到臨界值時(shí)對(duì)流場(chǎng)有調(diào)制作用[46]。另外,王亭杰等[45,47]認(rèn)為低頻區(qū)的射流脈動(dòng)頻率等同于往復(fù)泵的脈動(dòng)頻率,且脈動(dòng)頻率范圍是由高壓泵的幾何結(jié)構(gòu)決定,且在高氣速時(shí)平面撞擊流的偏轉(zhuǎn)振蕩頻率可達(dá)226Hz。

        可見射流脈動(dòng)頻率不僅受撞擊面不穩(wěn)定性的影響,而且與泵的工作頻率、管路的振動(dòng)及渦流湍動(dòng)的強(qiáng)弱都有著密切聯(lián)系。但由于泵及管路等裝置自身因素難以消除,而為進(jìn)一步探究這些因素對(duì)振蕩頻率的影響,LI等[48]將激勵(lì)因素引入撞擊流反應(yīng)器,發(fā)現(xiàn)激勵(lì)引起撞擊面沿軸向周期性振蕩且振蕩頻率等于激勵(lì)頻率,并在文獻(xiàn)[49]中報(bào)道了聲波激勵(lì)對(duì)撞擊流的振蕩影響,發(fā)現(xiàn)水平振蕩區(qū)(≤4)的振蕩頻率等于聲波激勵(lì)頻率。以上實(shí)驗(yàn)驗(yàn)證了外界激勵(lì)在一定條件下能對(duì)振蕩振幅產(chǎn)生明顯影響,這為研究流場(chǎng)的脈動(dòng)規(guī)律拓寬分析方向但同時(shí)也為揭示脈動(dòng)本質(zhì)帶來更大挑戰(zhàn)。

        2.4 受限空間撞擊流反應(yīng)器的流場(chǎng)振蕩特性

        隨撞擊流反應(yīng)器的多元化發(fā)展,學(xué)者們?cè)O(shè)計(jì)了一類限制撞擊流體在反應(yīng)腔內(nèi)自由擴(kuò)散的反應(yīng)器,這類反應(yīng)器多用于快速微觀混合的單元過程,在尺寸上基本都采用微型結(jié)構(gòu)。其中,受限撞擊流反應(yīng)器(CIJR)和T型撞擊流反應(yīng)器是目前最常見的。

        2.4.1 受限撞擊流反應(yīng)器(CIJR)流場(chǎng)振蕩特性

        對(duì)于CIJR,低雷諾數(shù)時(shí)鋒面擺動(dòng)頻率受撞擊面的沖擊反饋?zhàn)饔枚3址€(wěn)定,并與平均速度03/2成正比,較非受限撞擊流反應(yīng)器高;受空間限制撞擊破碎產(chǎn)生的漩渦增強(qiáng)了流場(chǎng)混沌和湍流效應(yīng),尤其在脈動(dòng)頻率接近撞擊流自身振蕩頻率時(shí),脈動(dòng)對(duì)流場(chǎng)影響作用最為顯著[52-50]。而LIU等[53]則對(duì)流場(chǎng)速度進(jìn)行分析并用直接測(cè)量結(jié)果驗(yàn)證CFD模型的微尺度湍流流動(dòng),發(fā)現(xiàn)-模型對(duì)湍流預(yù)測(cè)不準(zhǔn)確。

        另外為深入認(rèn)識(shí)流場(chǎng)流動(dòng)形態(tài),研究者對(duì)不同雷諾數(shù)下撞擊后流場(chǎng)進(jìn)行了相應(yīng)的流型劃分,并模擬發(fā)現(xiàn)二維、三維撞擊流場(chǎng)經(jīng)歷的流型有所差別。

        學(xué)者發(fā)現(xiàn)<100時(shí)反應(yīng)器內(nèi)兩股流體經(jīng)撞擊壓縮變形后各自穩(wěn)定地呈分離流模式;增大至120左右,駐點(diǎn)難以穩(wěn)定在對(duì)置噴嘴間的幾何中心,撞擊面呈“S”形擺動(dòng),出現(xiàn)動(dòng)態(tài)混沌模式;并認(rèn)為撞擊面邊緣的擺動(dòng)與撞擊駐點(diǎn)的振蕩存在關(guān) 聯(lián)[54-57]。之后LI等[58]細(xì)分完善了撞擊流振蕩區(qū),發(fā)現(xiàn)在>300時(shí)自持振蕩模式變?yōu)榱藷o規(guī)則振蕩模式。在層流狀態(tài)下的二維受限反應(yīng)器內(nèi)隨雷諾數(shù)和噴嘴間距比的增大,流場(chǎng)依次經(jīng)歷了穩(wěn)定區(qū)、周期性碰撞區(qū)、隨機(jī)碰撞區(qū);而三維圓撞擊流場(chǎng)只有穩(wěn)定區(qū)和隨機(jī)碰撞區(qū),且撞擊面穩(wěn)定性主要受雷諾數(shù)影響[59-60]。

        2.4.2 T型撞擊流反應(yīng)器的流場(chǎng)振蕩特性

        隨受限反應(yīng)器結(jié)構(gòu)的多樣化發(fā)展,眾多學(xué)者對(duì)用于快速微觀混合的T型受限撞擊流反應(yīng)器內(nèi)流動(dòng)形態(tài)進(jìn)行研究,并將流場(chǎng)依次劃分為比較穩(wěn)定的分離流模式(<50)、渦流模式、吞噬流模式和振蕩模式等[61-65]。其中,渦流模式處于分離流模式和吞噬流模式之間,在實(shí)驗(yàn)中難以辨別而僅在模擬中發(fā)現(xiàn)。吞噬流模式由ENGLER等[61]在T型反應(yīng)器中發(fā)現(xiàn)并經(jīng)BOTHE等[65-66]驗(yàn)證。不穩(wěn)定的振蕩模式約出現(xiàn)在≥195時(shí),后經(jīng)學(xué)者細(xì)分為周期性振蕩(240<<400)、擬周期振蕩(400<<500)和混亂振蕩(>500)[62-64];而屠功毅[13]則發(fā)現(xiàn)230<<400時(shí)出現(xiàn)周期性的非對(duì)稱振蕩模式,400<<480為對(duì)稱與非對(duì)稱振蕩周期的轉(zhuǎn)化區(qū)。另外研究表明,未充分發(fā)展的入口速度將導(dǎo)致出現(xiàn)吞噬流模式及振蕩模式的雷諾數(shù)增大[13,67]。

        目前學(xué)者對(duì)流場(chǎng)結(jié)構(gòu)的研究不斷深入細(xì)化,受實(shí)驗(yàn)體系、流場(chǎng)穩(wěn)定性、數(shù)據(jù)采集等因素影響,在流型劃分方面存在部分差異,但在影響流型發(fā)展轉(zhuǎn)變的認(rèn)識(shí)上基本是一致的。

        為探究撞擊區(qū)上部空間、射流間距和寬高比對(duì)流場(chǎng)振蕩影響,SULTAN等[68-69]改進(jìn)T型反應(yīng)器(圖1),發(fā)現(xiàn)在撞擊點(diǎn)下游形成旋轉(zhuǎn)的渦街并將其命名為“自持混沌流模式”,但這種自持振蕩與之前T型反應(yīng)器的振蕩模式不同;同時(shí)GAO等[33,70]在圓形T型反應(yīng)器內(nèi)也發(fā)現(xiàn)的變化影響了流場(chǎng)駐點(diǎn)的偏移。

        圖1 T型撞擊流反應(yīng)器

        通過對(duì)T型反應(yīng)器流場(chǎng)結(jié)構(gòu)的研究認(rèn)識(shí),學(xué)者們發(fā)現(xiàn)當(dāng)流體處于吞噬流模式時(shí)具有良好的微觀混合效果,為使流體處于該模式而獲得較好混合效果,ENGLER等[61,71]提出了渦流模式轉(zhuǎn)向吞噬流模式的臨界參數(shù)的關(guān)聯(lián)式(表3)。但在后續(xù)研究中,CHERLO等[72]發(fā)現(xiàn)反應(yīng)器入口寬度或?qū)挾刃∮谏疃葧r(shí),需要增大雷諾數(shù)才有可能出現(xiàn)吞噬流模式,同時(shí)POOLE等[68,73]也發(fā)現(xiàn)文獻(xiàn)[71]中的關(guān)聯(lián)式在許多工況下也不適用。

        由上述可見,反應(yīng)器結(jié)構(gòu)對(duì)流型模式變化有著顯著影響,而且隨反應(yīng)器結(jié)構(gòu)的多元化發(fā)展,要想得出一個(gè)普遍適用控制流型模式變化的關(guān)聯(lián)式是十分困難的。

        以上研究者對(duì)受限空間撞擊流反應(yīng)器內(nèi)流場(chǎng)流型和脈動(dòng)振蕩模式進(jìn)行研究劃分,得出對(duì)應(yīng)流型轉(zhuǎn)變的臨界條件及關(guān)聯(lián)式,并對(duì)在工業(yè)中應(yīng)用較好的流型進(jìn)行著重研究,已初步形成該類反應(yīng)器的流場(chǎng)理論體系,為今后研究及轉(zhuǎn)化應(yīng)用提供參考和理論指導(dǎo)。但以上研究多局限于層流狀態(tài),因湍流結(jié)構(gòu)的復(fù)雜性,目前對(duì)湍流狀態(tài)下流型結(jié)構(gòu)的研究報(bào)道較少。

        2.5 浸沒撞擊流反應(yīng)器的流場(chǎng)振蕩特性

        我國(guó)伍沅教授等[74-75]為研究液體介質(zhì)在撞擊流反應(yīng)器中的應(yīng)用提出了液體連續(xù)相撞擊流反應(yīng)器,設(shè)計(jì)了浸沒循環(huán)撞擊流反應(yīng)器(SCISR)(圖2)和立式循環(huán)撞擊流反應(yīng)器(VCISR),并考察了其在微觀混合及超細(xì)粉體制備方面的性能;之后楊俠等[76]對(duì)VCISR的混合性能進(jìn)行了大量研究工作。

        圖2 浸沒循環(huán)撞擊流反應(yīng)器

        張建偉等[77-78]則用希爾伯特-黃變換、小波變換等非線性方法對(duì)SCISR撞擊區(qū)流場(chǎng)的非線性和混沌特性進(jìn)行研究,分析流場(chǎng)信號(hào)發(fā)現(xiàn)流體粒子產(chǎn)生的能量集中在低頻區(qū),找到能量分布與流型轉(zhuǎn)變之間的對(duì)應(yīng)關(guān)系,把流場(chǎng)劃分為中心區(qū)、渦旋區(qū)和回流區(qū);在分析撞擊流壓力波動(dòng)信號(hào)時(shí)發(fā)現(xiàn)撞擊區(qū)流體具有混沌特性、壓力波動(dòng)信號(hào)具有多重分形特性,得到了撞擊區(qū)的徑向范圍約為0.33倍導(dǎo)流筒直徑,并認(rèn)為是撞擊區(qū)粒子脈動(dòng)產(chǎn)生的不同尺度漩渦造成了混沌[79-82]。SUN等[83]從功率譜上發(fā)現(xiàn)浸沒循環(huán)撞擊流反應(yīng)器內(nèi)壓力波動(dòng)主要集中在1000Hz以下,且波動(dòng)強(qiáng)度隨撞擊速度增大而增大。

        由于這種靠導(dǎo)流筒內(nèi)螺旋槳旋轉(zhuǎn)提供的推動(dòng)力無法滿足較大撞擊強(qiáng)度要求,對(duì)此張建偉等[84-85]設(shè)計(jì)了對(duì)置撞擊流反應(yīng)器(圖3),發(fā)現(xiàn)撞擊后流體含能大尺度結(jié)構(gòu)基本集中在非穩(wěn)定徑向射流附近的低階模態(tài),而駐點(diǎn)振蕩幅值集中在0.1~0.范圍內(nèi)且沒有固定周期,并建立了振幅與噴嘴間距的聯(lián)系。

        表3 渦流模式轉(zhuǎn)向吞噬流模式的臨界參數(shù)關(guān)聯(lián)式

        圖3 浸沒對(duì)置撞擊流反應(yīng)器

        通過利用以上非線性等方法的研究分析,目前對(duì)液體介質(zhì)在撞擊流反應(yīng)器中的流場(chǎng)能量分布、流型轉(zhuǎn)變和壓力波動(dòng)、駐點(diǎn)振蕩等特性有了整體了解,但對(duì)劇烈湍動(dòng)的撞擊區(qū)仍缺乏全面認(rèn)識(shí)。另外,針對(duì)3種物料反應(yīng)及兩不等量物料撞擊造成的“噴嘴堵塞”問題,作者對(duì)水平三向撞擊流反應(yīng)器進(jìn)行研究,發(fā)現(xiàn)一種新的流型——漏斗徑向射流[86],但受噴嘴結(jié)構(gòu)水平布置的影響,目前的實(shí)驗(yàn)條件很難全面收集這種流型信息。

        3 結(jié)語(yǔ)與研究展望

        綜上,隨實(shí)驗(yàn)手段及模擬方法的不斷發(fā)展,人們對(duì)撞擊流反應(yīng)器內(nèi)流場(chǎng)流動(dòng)規(guī)律有了深入認(rèn)識(shí)。由于現(xiàn)有的湍流理論體系還不能解釋撞擊區(qū)復(fù)雜無序的流動(dòng)機(jī)理,限制了撞擊流技術(shù)的發(fā)展應(yīng)用,對(duì)此可嘗試建立非線性分析等方法完善湍流理論來揭示這種復(fù)雜湍流的規(guī)律。而且,對(duì)流場(chǎng)結(jié)構(gòu)的研究不能只局限于改變實(shí)驗(yàn)條件,應(yīng)全面分析影響流場(chǎng)的外界參數(shù),尤其應(yīng)重視實(shí)驗(yàn)裝置自身振動(dòng)等因素對(duì)流型變化的影響。其次,目前對(duì)撞擊流反應(yīng)器的研究多以單組對(duì)置撞擊結(jié)構(gòu)為主,而對(duì)多組同時(shí)撞擊時(shí)流場(chǎng)擴(kuò)展的運(yùn)動(dòng)規(guī)律鮮有報(bào)道。針對(duì)工業(yè)應(yīng)用反饋提出的噴嘴堵塞問題以及多物料反應(yīng)需求,迫切需要開發(fā)研究多噴嘴排列或協(xié)同其他元件的新型裝置。另外,僅依靠當(dāng)前實(shí)驗(yàn)手段檢測(cè)、收集的流場(chǎng)信息并不完整,將計(jì)算流體力學(xué)與先進(jìn)PIV、PLIF技術(shù)有機(jī)結(jié)合,使實(shí)驗(yàn)與模擬互相驗(yàn)證,不斷促進(jìn)流場(chǎng)規(guī)律的研究。

        [1] CHAMPION M,LIBBY P A. Comparison between theory and experiment for turbulence on opposed streams[J]. Physics of Fluids,1993,5(9):2301-2303.

        [2] CHAMPION M,LIBBY P A. Asymptotic analysis of stagnating turbulent flows[J]. AIAA Journal,1991,29(1):16-24.

        [3] STAN G,JOHNSON D A. Experimental and numerical analysis of turbulent opposed impinging jets[J]. AIAA Journal,2001,39(10): 1901-1908.

        [4] LINDSTEDT R P,LUFF D S,WHITELAW J H. Velocity and strain-rate characteristics of opposed isothermal flows[J]. Flow Turbulence and Combustion,2005,74(2):169-194.

        [5] AMIR H H,AMIR R,MOHAMMAD R E. Comparison of different modeling strategies for simulation of carbon dioxide absorption in a coaxial impinging streams absorber[J]. Separation Science and Technology,2011,46(1):105-118.

        [6] 張濤,杜敏,周賓,等. 氣固同軸撞擊流干燥試驗(yàn)研究[J]. 工程熱物理學(xué)報(bào),2011,32(11):1910-1912.

        ZHANG Tao,DU Min,ZHOU Bin,et al. Experimental study on coaxial gas-solid two impinging stream drying[J]. Journal of Engineering Thermophysics,2011,32(11):1910-1912.

        [7] BERMAN Y,TANKLEVSKY A,OREN Y,et al. Modeling and experimental studies of SO2absorption in coaxial cylinders with impinging streams(Ⅱ)[J]. Chemical Engineering Science,2000,55(5):1023-1038.

        [8] PITT G J,MILLWARD G R. Coal and modern coal processing:an introduction[M]. New York:Academic Press,1979.

        [9] 伍沅,周玉新,郭嘉,等. 液體連續(xù)相撞擊流強(qiáng)化過程特性及相關(guān)技術(shù)裝備的研發(fā)和應(yīng)用[J]. 化工進(jìn)展,2011,30(3):463-472.

        WU Yuan,ZHOU Yuxin,GUO Jia,et al. Features of LIS intensifying processes and development and applications of related technical devices[J]. Chemical Industry and Engineering Progress,2011,30(3):463-472.

        [10] 伍沅,陳煜. 撞擊流反應(yīng)制取“超細(xì)”白炭黑[J]. 化工學(xué)報(bào),2003,54(10):1381-1386.

        WU Yuan,CHEN Yu. Preparation of “ultra-fine”white carbon block in submerged circulative impinging stream reactor[J]. Journal of Chemical Industry and Engineering,2003,54(10):1381-1386.

        [11] 蔣貴豐. 氣相圓湍撞擊流結(jié)構(gòu)特性的實(shí)驗(yàn)研究[D]. 武漢:華中科技大學(xué),2012.

        JIANG Guifeng. Experimental Investigation of the characteristics of flow structures in round turbulent impinging streams[D]. Wuhan:Huazhong University of Science and Technology,2012.

        [12] 梁騰波,白凈,張璐,等. 撞擊流技術(shù)在化學(xué)工程領(lǐng)域的研究與應(yīng)用進(jìn)展[J]. 石油化工,2016,45(3),360-367.

        LIANG Tengbo,BAI Jing,ZHANG Lu,et al. Advances in application of impinging stream technology to chemical engineering[J]. Petrochemical Technology,2016,45(3),360-367.

        [13] 屠功毅. 平面撞擊流反應(yīng)器流動(dòng)模式、混合機(jī)理及過程強(qiáng)化研究[D]. 上海:華東理工大學(xué),2015.

        TU Gongyi. Study on flow regimes,mixing mechanism and enhancement in planar opposed jets reactors[D]. Shanghai:East China University of Science and Technology,2015.

        [14] 伍沅. 撞擊流定義芻議[J]. 化學(xué)工程,2008,36(9):79-82.

        WU Yuan. A opinion on the definition of impinging stream[J]. Chemical Engineering(China),2008,36(9):79-82.

        [15] TAMIR A. 撞擊流反應(yīng)器:原理和應(yīng)用[M]. 伍沅譯. 北京:化學(xué)工業(yè)出版社,1996.

        TAMIR A. Impinging-stream reactors——fundamentals and applications[M]. WU Yuan translate. Beijing:Chemical Industry Press,1996

        [16] 孫志剛,李偉鋒,劉海峰.小噴嘴間距撞擊流的徑向射流速度分布[J]. 燃燒科學(xué)與技術(shù),2010,16(2):165-169.

        SUN Zhigang,LI Weifeng,LIU Haifeng. Radial jet velocity distribution of two closely opposed jets[J]. Journal of Combustion Science and Technology,2010,16(2):165-169.

        [17] 劉海峰,劉輝,龔欣,等. 大噴嘴間距對(duì)置撞擊流徑向速度分布[J]. 華東理工大學(xué)學(xué)報(bào),2000,26(2):168-171.

        LIU Haifeng,LIU Hui,GONG Xin,et al. Radial velocity of wide spaced impinging streams[J]. Journal of East China University of Science and Technology,2000,26(2):168-171.

        [18] 李偉鋒,孫志剛,劉海峰,等. 兩噴嘴對(duì)置撞擊流徑向射流流動(dòng)特征[J]. 化工學(xué)報(bào),2009,60(10):2453-2459.

        LI Weifeng,SUN Zhigang,LIU Haifeng,et al. Flow characteristics of radial jet from two opposed jets[J]. Journal of Chemical Industry and Engineering,2009,60(10):2453-2459.

        [19] 楊俠,余蓓,萬攀,等. 小噴嘴中心距撞擊流反應(yīng)器流場(chǎng)徑向速度分布特征[C]//高等學(xué)校工程熱物理全國(guó)學(xué)術(shù)會(huì)議,2014.

        YANG Xia,YU Bei,WAN Pan,et al. The radial velocity distribution characteristics of flow field in three unifrom jets reactor[C]//National Academic Conference of University on Engineering Thermal Physics,2014.

        [20] 楊俠,余蓓,郭釗,等. 多噴嘴對(duì)置式撞擊流反應(yīng)器流場(chǎng)的數(shù)值模擬[J]. 化工進(jìn)展,2013,32(7):1480-1483,1501.

        YANG Xia,YU Bei,GUO Zhao,et al. Numerical simulation of the flow field in multi-nozzle opposed imping stream reactor[J]. Chemical Industry and Engineering Progress,2013,32(7):1480-1483,1501.

        [21] REW H,PARK S. The interaction of two opposing asymmetric curved jets[J]. Experiments in Fluids,1988,6(4):243-252.

        [22] GILBERT B L. Turbulence measurements in a two-dimensional upwash[J]. AIAA Journal,1988,26(1):10-14.

        [23] KIND R,SUTHANTHIRAN K. The interaction of opposing plane turbulent wall jets[J]. Journal of Fluid Mechanics,1973,58(2):389-402.

        [24] 李偉鋒,孫志剛,劉海峰,等.兩噴嘴對(duì)置撞擊流駐點(diǎn)偏移規(guī)律[J]. 化工學(xué)報(bào),2008,59(1):46-52.

        LI Weifeng,SUN Zhigang,LIU Haifeng,et al. Stagnation point offset of two opposed jets[J]. Journal of Chemical Industry and Engineering,2008,59(1):46-52.

        [25] 孫志剛,李偉鋒,劉海峰,等. 平面撞擊流振蕩特性[J]. 化工學(xué)報(bào),2009,60(2):338-344.

        SUN Zhigang,LI Weifeng,LIU Haifeng,et al. Oscillation characteristics of two planar opposed jets[J]. Journal of Chemical Industry and Engineering,2009,60(2):338-344.

        [26] KOSTIUK L W,BRAY K N C,CHENG R K. Experimental study of premixed turbulent combustion in opposed streams (Ⅰ)[J]. Nonreacting Flow Field Combustion and Flame,1993,92:377-395.

        [27] 張建偉,董鑫,馬紅越,等. 雙噴嘴水平對(duì)置撞擊流混合器內(nèi)湍流流動(dòng)及混沌特性[J]. 化工進(jìn)展,2015,34(7):1832-1840.

        ZHANG Jianwei,DONG Xin,MA Hongyue,et al. Turbulence flow and chaotic characteristic in the dual nozzle opposed impinging stream mixer[J].Chemical Industry and Engineering Progress,2015,34(7):1832-1840.

        [28] CHAMPION M,LIBBY P A. Reynolds stress description of opposed and impinging turbulent jets (Ⅰ):closely spaced opposed jets[J]. Physics of Fluids,1993(1):203-216.

        [29] 李偉鋒,孫志剛,劉海峰,等. 小間距兩噴嘴對(duì)置撞擊流流場(chǎng)的數(shù)值模擬與實(shí)驗(yàn)研究[J]. 化工學(xué)報(bào),2007,58(6):1385-1390.

        LI Weifeng,SUN Zhigang,LIU Haifeng,et al.Numerical simulation and experimental study on flow field of two closely spaced opposed jets[J].Journal of Chemical Industry and Engineering,2007,58(6): 1385-1390.

        [30] RADHAKRISHNAN S,BELLAN J. Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of two-phase volumetrically dilute flow with evaporation[J]. Journal of Fluid Mechanics,2013,719:230-267.

        [31] LI Z P,BAO Y Y,GAO Z M. PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks[J]. Chem. Eng. Sci.,2011,66(6):1219-1231.

        [32] SU W T,LI X B,LI F C,et al. Comparisons of LES and RANS computations with PIV experiments on a cylindrical cavity flow[J]. Adv. Mech. Eng.,2013,2(5):10-15.

        [33] 于永久. 高速撞擊流反應(yīng)器內(nèi)流動(dòng)特性的實(shí)驗(yàn)研究和數(shù)值模擬[D]. 北京:北京化工大學(xué),2014.

        YU Yongjiu. Experimental investingation and numerical simulation of flow characteristics in confined impinging jets reactor[D]. Beijing:Beijing University of Chemical Technology,2014.

        [34] ABDEL-FATTAH A. Numerical simulation of isothermal flow in axisymmetric turbulent opposed jets[J]. Aerospace Science and Technology,2011,15:283-293.

        [35] POWELL A. Aerodynamic noise and the plane boundary[J]. The Journal of the Acoustical Society of America,1960,32:982-990.

        [36] NOSSEIR N,PELED U,HILDEBRAND G. Pressure field generated by jet on jet impingement[J]. AIChE J.,1968,25(10):78-84.

        [37] DENSHCHIKOV V A,KONDRAT'EV V N,ROMASHOV A N. Interaction between two opposed jets fluid dynamics interaction between two opposed jets[J]. Fluid Dynamics,1978,6:924-926.

        [38] DENSHCHIKOV V A, KONDRAT' ev V N,ROMASHOV A N. Auto-oscillations of planar colliding jets fluid dynamics interaction between two opposed jets[J]. Fluid Dynamics,1983,3:460-463.

        [39] OREN Y,ABDA M,TAMIR A. Mass transfer in an electrochemical reactor with two interacting jets[J]. Journal of Applied Electrochemistry,1992,22(10):950-958.

        [40] CIANI A W,KREUTNER C E,F(xiàn)ROUZAKIS K,et al. An experimental and numerical study of the structure and stability of laminar opposed-jet flows[J]. Computers & Fluids,2010,39(1):114-124.

        [41] OGAWA N,MAKI H,HIJIKATA K. Studies on opposed turbulent jets(impact position and turbulent component in jet center)[J]. JSME International Journal,1992,35(2):205-217.

        [42] LI Weifeng,YAO Tianliang,WANG Fuchen. Study on factors influencing stagnation point offset of turbulent opposed jets[J]. AIChE Journal,2010,56(10):2513-2522.

        [43] KIYAN Parham,ESMAEIL Esmaeilzadeh,UGUR Atiko,et al. A numerical study of turbulent opposed impinging jets issuing from triangular nozzles with different geometries[J]. Heat and Mass Transfer,2011,47(4):427-437.

        [44] 許建良,李偉鋒,曹顯奎,等. 不對(duì)稱撞擊流的實(shí)驗(yàn)研究與數(shù)值模擬[J]. 化工學(xué)報(bào),2006,57(2):288-291.

        XU Jianliang,LI Weifeng,CAO Xiankui,et al. Experimental research and numerical simulation of asymmetric impinging streams[J]. Journal of Chemical Industry and Engineering,2006,57(2):288-291.

        [45] 王亭杰,肖帥剛,崔愛莉,等. 射流撞擊過程中的高頻壓力脈動(dòng)特性[J]. 化工學(xué)報(bào),2001,52(2):153-157.

        WANG Tingjie,XIAO Shuaigang,CUI Aili,et al. Characteristics of dynamic pressure in impinging jet[J]. Journal of Chemical Industry and Engineering,2001,52(2):153-157.

        [46] ICARDI M,GAVI E,MARCHISIO D L,et al. Investigation of the flow field in a three-dimensional confined impinging jets reactor by means of micropiv and DNS[J]. Chemical Engineering Journal,2011,166(1):294-305.

        [47] HASSABALLA M,Ziada S. Self-excited oscillations of two opposing planar air jets[J]. Physics of Fluids,2015,27(1):014109.

        [48] LI W F, QIAN W W,YU G S,et al. Experimental study of oscillation behaviors in confined impinging jets reactor under excitation[J]. AIChE Journal,2015,61(1):333-341.

        [49] LI W F,HUANG G F,TU G Y,et al. Experimental study of planar opposed jets with acoustic excitation[J]. Physics of Fluids,2013,25(1):441-452.

        [50] JOHNSON D A. Experimental and numerical examination of confined laminar opposed jets:momentum balancing[J]. International Communications in Heat and Mass Transfer,2000,27(4):443-463.

        [51] ICARDI M,GAVI E,MARCHISIO D L,et al. Validation of LES predictions for turbulent flow in a confined impinging jets reactor[J]. Applied Mathematical Modelling,2011,35:1591-1602.

        [52] ERKOC E,SANTOS R J,DIAS M M,et al. Enhancing the RIM process with pulsation technology:CFD study[C]//Proceedings of European Congress of Chemical Engineering(ECCE-6),Copenhagen,2007:16-20.

        [53] LIU Y,OLSEN M G,F(xiàn)OX R O. Turbulence in a microscale planar confined impinging-jets reactor[J]. Lab on a Chip,2009,9(8):1110-1118.

        [54] FONTE C P,SULTAN M A,SANTOS R J,et al. Flow imbalance and Reynolds number impact on mixing in confined impinging jets[J]. Chemical Engineering Journal,2015,260:316-330.

        [55] TUCKER C L,SUH N P. Mixing for reaction injection molding(Ⅰ):impingement mixing of liquids[J]. Polymer Eng. & Science,1980,20(13):875-886.

        [56] WOOD P,HRYMAK A,YEO R,et al. Experimental and computational studies of the fluid mechanics in an opposed jet mixing head[J]. Physics of Fluids A:Fluid Dynamics,1991,3(5):1362-1368.

        [57] SANTOS R J,ERKOC E,DIAS M M,et al. Hydrodynamics of the mixing chamber in RIM:PIV flow-field characterization[J]. AIChE Journal,2008,54(5):1153-1163.

        [58] LI W F,DU K J,YU G S,et al. Experimental study of flow regimes in three-dimensional confined impinging jets reactor[J].AIChE Journal,2014,60(8):3033-3045.

        [59] SAKAMON Devahastin,ARUN S Mujumdar. A numerical study of flow and mixing characteristics of laminar confined impinging streams[J]. Chemical Engineering Journal,2002,85(85):215-223.

        [60] PAWLOWSKI R P,SALINGER A G,SHADID J N,et al. Bifurcation and stability analysis of laminar isothermal counter flowing jets[J]. Journal of Fluid Mechanics,2006,551(9):117-139.

        [61] ENGLER M,KOCKMAIM N,KIEFER T,et al. Numerical and experimental investigations on liquid mixing in static micromixers[J]. Chemical Engineering Journal,2004,101(1):315-322.

        [62] THOMAS S,AMEEL T A. An experimental investigation of moderate Reynolds number flow in a T-channel[J]. Experimental in Fluids,2010,49(6):1231-1245.

        [63] THOMAS S,AMEEL T,GUILKEY J. Mixing kinematics of moderate Reynolds number flows in a T-channel[J]. Physics of Fluids,2010,22(1):96-102.

        [64] DREHER S,KOCKMAIM N,WOIAS P. Characterization of laminar transient flow regimes and mixing in T-shaped micromixers[J]. Heat Transfer Engineering,2009,30(1):91-100.

        [65] BOTHE D,STEMICH C,WAMECKE H. Fluid mixing in a T-shaped micro-mixer[J]. Chemical Engineering Science,2006,61:2950-2958.

        [66] HOFFMANN M,SCHLTITER M,RABIGER N. Experimental investigation of liquid-liquid mixing In T-shaped micro-mixers using μ-LlF and μ-PIV[J]. Chemical Engineering Science,2006,61(9):2968-2976.

        [67] FANI A,CAMARRI S,SALVETTI M V. Investigation of the steady engulfment regime in a three-dimensional T-mixer[J]. Physics of Fluids,2013,25(6):064102.

        [68] SULTAN M A,F(xiàn)ONTE C P,DIAS M M,et al. Experimental study of flow regime and mixing in T-jets mixers[J]. Chemical Engineering Science,2012,73(19):388-399.

        [69] SULTAN M A,KRUPA K,F(xiàn)ONTE C P,et al. High-throughput T-jets mixers:an innovative scale-up concept[J]. Chemical Engineering & Technology,2013,36(2):323-331.

        [70] GAO Zhengming,HAN Jing,BAO Yuyun,et al. Micromixing efficiency in a T-shaped confined impinging jet reactor[J]. Chinese Journal of Chemical Engineering,2015,33:350-355.

        [71] SOLEYMANI A,YOUSEFI H,TURUNEN I. Dimensionless number for identification of flow patterns inside a T-micromixer[J]. Chemical Engineering Science,2008,63:5291-5297.

        [72] CHERLO S K R,PUSHPAVANAM S. Effect of depth on onset of engulfment in rectangular micro-channels[J]. Chemical Engineering Science,2010,65(24):6486-6490.

        [73] POOLE R J,ALFATEH M,GAUNTLETT A R. Bifurcation in a T-channel junction:effects of aspect ratio and shear-thinning[J]. Chemical Engineering Science,2013,104:839-848.

        [74] 伍沅. 浸沒循環(huán)撞擊流反應(yīng)器:00230326.4[P]. 2002-01-30.

        WU Yuan. Submerged circulative impinging stream reactor:ZL00230326.4[P]. 2002-01-30

        [75] 伍沅,周玉新. 立式循環(huán)撞擊流反應(yīng)器:200520094814.2[P]. 2006-08-30.

        WU Yuan,ZHOU Lixin.Vertical circulative impinging stream reactor:ZL200520094814.2[P]. 2006-08-30.

        [76] 楊俠,劉豐良,毛志慧,等. 立式循環(huán)撞擊流反應(yīng)器不同撞擊間距下混合性能分析[J]. 化工進(jìn)展,2012,31(6):1210-1214.

        YANG Xia,LIU Fengliang,MAO Zhihui,et al. Mixing performance of a vertical circulative impinging stream reactor with different spacing[J].Chemical Industry and Engineering Progress,2012,31(6):1210-1214.

        [77] 張建偉,苗超. 撞擊流混合器速度信號(hào)的Hilbert-Huang變換分析[J]. 實(shí)驗(yàn)流體力學(xué),2010,24(4):66-70.

        ZHANG Jianwei,MIAO Chao. Hilbert-Huang transform of velocity signal in impinging stream mixer[J]. Journal of Experiments in Fluid Mechanics,2010,24(4):66-70.

        [78] 張建偉,殷婉君,孫熙同,等. 基于希爾伯特-黃變換的撞擊流混合器濃度場(chǎng)特性分析[J]. 高?;瘜W(xué)工程學(xué)報(bào),2014,28(5):971-978.

        ZHANG Jianwei,YIN Wanjun,SUN Xitong,et al.Research on concentration field in an impinging stream mixer using Hilbert-Huang transform[J]. Journal of Chemical Engineering of Chinese Universities,2014,28(5):971-978.

        [79] 張建偉,焦麗. 撞擊流反應(yīng)器壓力波動(dòng)的多尺度多分形特征分析[J]. 化工學(xué)報(bào),2006,57(7):1553-1559.

        ZHANG Jianwei,JIAO Li. Multi-scale and multi-fractal characteristics of pressure signals in SCISR[J]. Journal of Chemical Industry and Engineering(China),2006,57(7):1553-1559.

        [80] 張建偉,焦麗. 基于撞擊流混合器壓力波動(dòng)信號(hào)的小波多重分形奇異譜[J]. 過程工程學(xué)報(bào),2006,6(4):627-632.

        ZHANG Jianwei,JIAO Li.Wavelet multi-fractal singularity spectrum:application to pressure fluctuation in an impinging stream mixer[J].The Chinese Journal of Process Engineering,2006,6(4):627-632.

        [81] 張建偉,伍沅,舒安慶,等. 浸沒循環(huán)撞擊流反應(yīng)器的壓力脈動(dòng)特性[J]. 化工學(xué)報(bào),2005,56(2):266-269.

        ZHANG Jianwei,WU Yuan,SHU Anqing,et al. Characteristics of pressure fluctuation in submerged circulative impinging stream reactor[J]. Journal of Chemical Industry and Engineering(China),2005,56(2):266-269.

        [82] 張建偉,汪洋,湯慧華,等. 浸沒循環(huán)撞擊流反應(yīng)器撞擊區(qū)壓力波動(dòng)的混沌分析[J]. 化工學(xué)報(bào),2005,56(12):2309-2314.

        ZHANG Jianwei,WANG Yang,TANG Huihua,et al. Chaotic analysis of pressure fluctuations in impinging region of SCISR[J]. Journal of Chemical Industry and Engineering(China),2005,56(12):2309-2314.

        [83] SUN Huaiyu,WU Yuan,XU Chenghai. Pressure fluctuation in the submerged circulative impinging stream reactor[J]. Chinese J. Chemical Engineering,2006,14(4):428-434

        [84] 張建偉,馬紅越,董鑫,等. 水平對(duì)置雙向液體撞擊流的振蕩特性[J]. 化工學(xué)報(bào),2015,66(4):1310-1317.

        ZHANG Jianwei,MA Hongyue,DONG Xin,et al. Oscillation characteristics of two horizontal opposed liquid-liquid impinging streams[J]. CIESC Journal,2015,66(4):1310-1317.

        [85] 張建偉,張學(xué)良,馮穎,等. 水平對(duì)置撞擊流的POD分析及混合特性[J]. 過程工程學(xué)報(bào),2016,16(1):26-33.

        ZHANG Jianwei,ZHANG Xueliang,F(xiàn)ENG Ying,et al. POD analysis and mixing characteristics of impinging streams from two opposite nozzles[J]. The Chinese Journal of Process Engineering,2016,16(1):26-33.

        [86] 張建偉,王諾成,馮穎,等. 基于PLIF的水平三向撞擊流徑向流型的研究[J]. 高?;瘜W(xué)工程學(xué)報(bào),2016,30(3):723-729.

        ZHANG Jianwei,WANG Nuocheng,F(xiàn)ENG Ying,et al.Study on radial stream patterns in three-jet impinging stream mixers using planar laser induced fluorescence[J]. Journal of Chemical Engineering of Chinese Universities,2016,30(3):723-729.

        Research progress of flow field characteristics in impinging stream reactor

        ZHANG Jianwei,ZHANG Zhigang,F(xiàn)ENG Ying,SHI Bowen

        (College of Energy and Power Engineering,Shenyang University of Chemical Technology,Shenyang 110142,Liaoning,China)

        The features of velocity field and pressure fluctuation in impinging stream reactor were summarized in the paper. The radial velocity, axial velocity and oscillation behavior in the unconfined impinging stream reactor were studied systematically. The oscillatory modes of the stagnation points were divided. And a large number of velocity correlation formulas suitable for different nozzle distance were obtained, but the mechanism of oscillation was not clearly explained. With the increase of the Reynolds number in the laminar flow state, many scholars had divided the flow type in the confined impinging stream reactor, and proposed the critical parameter correlation of engulfment flow. Due to the change of the structure parameters, there was no universally applicable correlation. The impinging zone and the flow field pattern were determined by non-linear analysis in the submerged impinging stream reactor. However, the mechanism of energy distribution and velocity signal in the turbulent flow field cannot be revealed. The trends of research on flow field in impinging stream reactor were also pointed out.

        impinging stream reactor;flow characteristics; fluctuation and oscillation;velocity field

        TQ052

        A

        1000–6613(2017)10–3540–09

        10.16085/j.issn.1000-6613.2016-2101

        2016-11-15;

        2017-03-14。

        國(guó)家自然科學(xué)基金項(xiàng)目(21476141)。

        張建偉(1964—),男,博士,教授。E-mail:zhangjianwei64@163.com。

        猜你喜歡
        研究
        FMS與YBT相關(guān)性的實(shí)證研究
        2020年國(guó)內(nèi)翻譯研究述評(píng)
        遼代千人邑研究述論
        視錯(cuò)覺在平面設(shè)計(jì)中的應(yīng)用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        關(guān)于遼朝“一國(guó)兩制”研究的回顧與思考
        EMA伺服控制系統(tǒng)研究
        基于聲、光、磁、觸摸多功能控制的研究
        電子制作(2018年11期)2018-08-04 03:26:04
        新版C-NCAP側(cè)面碰撞假人損傷研究
        關(guān)于反傾銷會(huì)計(jì)研究的思考
        焊接膜層脫落的攻關(guān)研究
        電子制作(2017年23期)2017-02-02 07:17:19
        亚洲中文字幕无码二区在线| 久久精品丝袜高跟鞋| 国精品人妻无码一区二区三区性色| 人妻丝袜无码国产一区| 亚洲毛片αv无线播放一区| 日本久久一区二区三区高清| 国产激情视频在线观看大全| 久久精品国产亚洲av蜜桃av| 亚洲精品中文字幕导航| 欧美变态另类刺激| 国产午夜福利精品久久2021| 国产成年无码AⅤ片日日爱| 国产久色在线拍揄自揄拍| 成人久久久精品乱码一区二区三区| 无码熟妇人妻av在线网站| v一区无码内射国产| 亚洲AV伊人久久综合密臀性色| 日韩美女人妻一区二区三区| 亚洲精品中文字幕91| 日本女优在线一区二区三区 | 偷拍韩国美女洗澡一区二区三区 | 少妇一区二区三区乱码| 国产亚洲一区二区三区 | 富婆如狼似虎找黑人老外| 国产一区二区三区视频大全| 亚洲国产精品久久婷婷| 18禁黄久久久aaa片| 国产V日韩V亚洲欧美久久| 五十路在线中文字幕在线中文字幕| 久久99精品久久久久久琪琪| 国产性一交一乱一伦一色一情| 国产精品欧美韩国日本久久| 国内精品毛片av在线播放| 精品国产精品国产偷麻豆| 麻豆精品久久久久久久99蜜桃| 成人国产自拍在线播放| 国产在线一区二区三区四区| 青青草原精品99久久精品66| 啪啪网站免费观看| 日本一区二区三区在线视频观看 | 日本办公室三级在线看|