陳 標, 滿玉蓉, 高柳玲, 潘 慶
(華南農業(yè)大學 海洋學院, 廣州 510642)
AMPK調控能量代謝研究進展
陳 標, 滿玉蓉, 高柳玲, 潘 慶
(華南農業(yè)大學 海洋學院, 廣州 510642)
腺苷酸激活蛋白激酶(AMP-activated protein kinase, AMPK)作為重要的能量代謝激酶,廣泛存在于真核生物,在能量代謝調控中起重要作用。肝臟激酶B1(Liver kinase B1, LKB1)和鈣調素依賴蛋白激酶(Calmodulin-dependent protein kinases β,CaMKKβ)可激活AMPK。激活的AMPK通過對脂肪、蛋白質和糖類代謝的調控維持體內能量平衡。另外,AMPK調控因子激活劑與抑制劑、細胞因子可通過上調或下調AMPK表達,調控能量物質代謝。
AMPK; 能量代謝; 激活劑與抑制劑; 細胞因子
AbstractAMP-activated protein kinase (AMPK) is widely existed in eukaryotes and has vital function in energy metabolism. AMPK could be activated by Liver kinase B1 (LKB1) and calmodulin-dependent protein kinases β (CaMKKβ), and it regulates the metabolism of fat, protein and glucose to balance the energy metabolism. Moreover, activator, inhibitor and cytokines regulate energy metabolism through up-regulation or down-regulation of AMPK expression.
KeywordsAMPK; energy metabolism; activator and inhibitor; cytokines
AMPK是一種重要的細胞能量傳感器,能維持細胞能量平衡,在調節(jié)能量代謝中起重要作用[1]。它主要通過對能量物質氧化、合成及轉錄關鍵酶活性調控,實現(xiàn)對能量物質代謝調控[2-3]。目前,有關AMPK調控能量代謝機制尚未完全清楚[1],在水產經濟動物能量代謝調控方面研究更少,因此,有必要進一步深入研究AMPK調控魚類能量代謝相關機制,為深入理解能量物質吸收利用以及飼料配方優(yōu)化等方面提供理論基礎。本文對AMPK調控能量代謝相關機制及研究現(xiàn)狀進行綜述。
AMPK是由α、β、γ亞基組成的異源三聚體,α為催化亞基,β、γ為調節(jié)亞基[4],每個亞基由不同基因型組成(α1、α2;β1、β2;γ1、γ2、γ3),不同亞基之間12種組合構成復雜的復合體[5]。其中,α亞基分為兩個功能區(qū):N端為催化核心區(qū),C端為β、γ亞基結合區(qū);β亞基包含兩個保守區(qū):糖原結合區(qū)與α、γ亞基結合區(qū)域;γ亞基包含4個串行重復CBS區(qū)域,該區(qū)域與AMPK和AMP連接有關[6]。AMPK各亞基組織分布不同,其中α亞基主要分布于肝臟、腎臟、腦、心臟、骨骼??;β亞基主要分布于肝臟和骨骼??;γ亞基在大多數組織中均有表達[7]。
1978年證實AMPK上游激酶存在[8],而直到近些年才發(fā)現(xiàn)LKB1和CaMKKβ可以磷酸化Thr-172,進而激活細胞中AMPK活性[9-12]。LKB1主要分布于肝臟和肌肉等外周組織,CaMKKβ主要分布于中樞神經系統(tǒng)[13]。研究表明,體外培養(yǎng)細胞和體內骨骼肌細胞中AMPK都需要LKB1激活[10],且LKB1活性表達需要AMP與AMPK結合[14]。CaMKKβ活性表達主要依賴于細胞內鈣離子濃度變化,進而調控Thr-172磷酸化[15]。LKB1和CaMKKβ調控AMPK活性途徑如圖1。
圖1 AMPK蛋白激酶信號通路代謝調控[16]
AMPK為細胞能量代謝中樞,主要通過調控脂肪、蛋白質與糖合成與轉化,維持細胞內能量代謝平衡[17-19],在細胞能量代謝過程起重要作用,具體調控途徑如圖2。
圖2 AMPK蛋白激酶調控能量代謝[4]
AMPK對細胞脂肪代謝起著重要的作用,并且受營養(yǎng)物質及細胞因子等因素的影響[20]。AMPK對脂肪代謝調控,主要通過調節(jié)脂代謝轉錄因子,實現(xiàn)脂肪氧化、合成及轉錄關鍵酶基因表達調控,其轉錄因子主要為過氧化物酶體增殖物激活受體(Phosphatidy inositol 3-kinase, PPAR)、固醇調節(jié)元件結合蛋白(Sterol regulatory element binding protein 1c, SREBP-1c)和碳水化合物反應元件結合蛋白(Carbohydate responsive element-binding protein, ChREBP)[2-3]。侯祥紅通過添加不同濃度共軛亞麻酸(Conjugated linoleic acid, CLA)于體外培養(yǎng)人體肝癌細胞HepG2,結果顯示隨著CLA濃度升高,AMPKα磷酸化逐漸下降,同時乙酰輔酶A羧化酶(Acetyl-CoA carboxylase, ACC)表達水平升高,增加了HepG2細胞的脂質沉積[21]。王瑾通過棕櫚酸鈉和大麻素Ⅰ型受體抑制劑ZH-101-S處理Hep-2細胞,發(fā)現(xiàn)磷酸化的AMPK,可以增強線粒體氧化作用,發(fā)揮減脂作用[22]。李心慰通過研究非酯化脂肪酸(Non-esterified fatty acids, NEFAs)調控奶牛肝細胞脂肪代謝AMPK代謝信號機制,表明NEFAs可以上調LKB1,促進AMPKα磷酸化與PPARα表達及轉錄活性,上調脂氧化基因表達[13]。同時,激活的AMPKα抑制SREBP-1c和ChREBP的表達和轉錄活性,下調脂合成基因的表達。另外,Park等發(fā)現(xiàn)亞麻酸可以激活小鼠肝臟中AMPK活性,抑制SREBP-1c表達,減少脂肪沉淀[23]。
激活的AMPK可以促進蛋白質分解,維持機體內能量的平衡。激活的AMPK主要通過調控因子真核延長因子2激酶(EEF2K)調節(jié)真核延長因子-2(eEF-2)、結節(jié)性硬化復合體2(TSC2)、哺乳動物雷帕霉素靶目標(mTOR),調控蛋白質合成與代謝[18]。馬延超發(fā)現(xiàn)AMPK活化后,可以降低大鼠絲氨酸/蘇氨酸蛋白激酶(AKT)磷酸化,活化Akt-FoxO信號通路,調控mafbx、murf1 表達,促進骨骼肌蛋白質降解[24]。Garcia-pereto研究顯示熱量限制作用可以激活AMPK-PI3K-AKT-eNOS通路[25]。Librán-Pérez等通過分析攝食不同脂肪水平飼料的虹鱒,首次證明虹鱒魚下丘腦存在AMPK,mTOR及AKT調控蛋白,并發(fā)現(xiàn)投喂高脂飼料的虹鱒魚饑餓3 h,AMPK磷酸化水平降低而mTOR磷酸化水平上升,AMPK與mTOR之間存在負調控關系[26]。此外,Zhou等也表明Ciclopirox olamine (CPX)可以通過激活AMPK,抑制mTORC1信號通路[27]。
AMPK對糖代謝調控主要通過促進葡萄糖攝取及降低血糖作用,維持體內能量物質平衡。研究表明,激活的AMPK參與調控肝臟糖異生作用,抑制肝臟中G6Pase啟動子活性與葡萄糖產生[28]。另外,激活的AMPK可以抑制肝細胞中磷酸丙酮酸羧化酶(phosphoenolpyruvate carboxykinase, PEPCK)調控糖異生途徑[19]。鄒豐發(fā)現(xiàn)黃氏多糖(APS)在體外可活化小鼠骨骼肌細胞系C2C12的AMPK,并主要通過AMPK途徑增加其葡萄糖攝取,同時APS也能增加小鼠骨骼肌細胞系C2C12細胞高糖狀態(tài)下的AMPK活性,提高細胞的葡萄糖攝取[29]。Jin等發(fā)現(xiàn)黃酮苷提取物可以刺激AMPK和ACC通路磷酸化,并提高IR-HepG2細胞對葡萄糖的消耗[30]。張夏南研究表明荸薺提取物能夠顯著激活AMPK蛋白磷酸化、抑制小鼠肝臟pgc-1α和pepck表達,促進葡萄糖代謝[31]。另外,Magnoni首次在魚類骨骼肌中發(fā)現(xiàn),AMPK可以潛在刺激糖類吸收與利用[32]。
AMPK對能量代謝調控主要是通過調控能量物質合成與氧化分解,維持細胞內能量代謝平衡。目前,關于AMPK調控因子的研究主要集中于激活劑與抑制劑、細胞因子等對AMPK活性調控。
廖波通過研究激活劑5-氨基-4-咪哇梭基酞氨核普(5-aminoimidazole-4-carboxamide ribonucleoside, AICAR)和抑制劑8-溴-腺甘一磷酸(Br8-AMP)對豬肝細胞中AMPK活性影響,發(fā)現(xiàn)豬肝細胞在AICAR作用30和60 min后,AMPK活性分別升高8.11%和46.20%,而豬肝細胞在Br8-AMP作用30和60 min后AMPK活性分別降低9.13%和22.39%[33]。Jung等發(fā)現(xiàn)添加AICAR和二甲雙胍后能提高人肝癌細胞和小鼠原代肝細胞SREBP-1活性[34]。馮學敏研究了氟西汀對小鼠肝臟和肝臟原代細胞脂肪代謝影響,結果表明氟西汀可以引起AMPK表達下調[35]。宋科標發(fā)現(xiàn)羅漢果苷元具有較好的激活AMPKa的藥理活性作用[36]。Deng等通過研究AMPK抑制劑對牛肝細胞脂代謝影響,發(fā)現(xiàn)添加AMPK抑制劑能降低ppara、chrebp表達,抑制脂肪合成[37]。
有關激活劑與抑制劑在魚類AMPK調控能量代謝的研究較少。Lau 等通過在培養(yǎng)基中添加激活劑AICAR,發(fā)現(xiàn)AICAR能夠顯著提高金魚肝細胞中AMPKα磷酸化及活性[38]。另外,培養(yǎng)基中添加AICAR能增加斑馬魚囊胚細胞中AMPKα磷酸化水平并降低mTOR轉錄表達水平[39]。
有關細胞因子調控AMPK活性的研究,主要通過瘦素、脂聯(lián)素、胰島素、生長素等激素,在整體水平上對能量平衡進行調節(jié)[11, 40],但這些激素或細胞因子調節(jié)AMPK具體分子機制尚未清楚[1]。
瘦素主要在動物脂肪組織中產生[41],瘦素含量和體脂肪與饑餓狀態(tài)有一定關系[42]。目前,關于瘦素對AMPK的調控已在不同種類硬骨魚中進行研究,如大馬哈魚[43]、虹鱒魚[44]、條紋黑鱸[44]。Minokoshi研究表明,瘦素可以促進AMPK磷酸化,抑制acc表達,刺激脂肪氧化[45]。宋玉峰等通過研究瘦素對黃顙魚肝臟脂肪代謝影響,表明瘦素可以降低肝臟組織脂肪含量并下調脂肪合成相關酶活性及轉錄因子表達[46]。Song等發(fā)現(xiàn)腹腔注射瘦素能夠顯著降低黃顙魚肝臟脂肪含量,同時,瘦素可以降低黃顙魚肝細胞中TG濃度,提高pparγ、cpt-1表達量,減少肝細胞脂肪沉積[47]。
脂聯(lián)素具有調節(jié)代謝作用,能促進游離脂肪酸的氧化,降低血液中甘油三酯濃度,進而調控能量平衡[48]。Yoon等研究發(fā)現(xiàn)脂聯(lián)素可以激活小鼠肌肉細胞中AMPK及PPAR活性,同時促進aco、cpt1和fabp3表達量,提高肌肉細胞中脂肪氧化水平[49]。Gan等指出脂聯(lián)素可以通過激活AMPK/ACC2通路抑制雞脂肪細胞的脂肪合成[50]。Chen 等在細胞水平研究脂聯(lián)素對脂代謝影響,發(fā)現(xiàn)脂聯(lián)素能夠上調奶牛肝細胞AMPK磷酸化及SREBP-1c, ChREBP表達水平,促進脂肪氧化與脂肪累積[51]。Awazawa等發(fā)現(xiàn)脂聯(lián)素可以通過AdipoR1/LKB1/AMPK通路抑制SREBP1c表達,調控肝細胞脂肪合成[52]。有關脂聯(lián)素在魚類能量代謝通路的研究較少,Sanchez-aurmaches等研究結果顯示,脂聯(lián)素可以激活虹鱒魚AKT通路,影響脂肪酸攝取與氧化,同時也發(fā)現(xiàn)在不同生理條件下脂聯(lián)素表現(xiàn)出不同調控作用[53]。
胰島素是體內唯一的降低血糖激素,同時可以促進糖、脂、蛋白質合成。丁紅研通過研究胰島素對牛肝細胞脂代謝的影響,結果表明肝細胞經過胰島素處理,AMPK磷酸化水平降低,SREBP-1c 和ChREBP轉錄活性及表達水平增加,同時上調脂肪合成相關基因表達,促進脂肪合成[54]。Zheng等通過在黃顙魚腹腔分別注射濃度為0.1和1 μg/g胰島素,發(fā)現(xiàn)不同梯度組黃顙魚肝臟中PPARα1表達量差異顯著,在黃顙魚肝細胞培養(yǎng)基中添加濃度為100和1000 nmol/L胰島素,發(fā)現(xiàn)添加胰島素實驗組pparα1表達量顯著低于對照組[55]。
AMPK廣泛存在于真核細胞中,在能量代謝調控中起重要作用。通過AMPK分子結構、上下游靶基因、活性調節(jié)方面研究的開展,對AMPK功能及代謝調控機理已有初步認知。然而,目前有關AMPK調控脂肪代謝研究尚存在一些亟須解決問題:1)有關AMPK調控脂肪能量代謝研究主要集中于相關轉錄因子活性及表達,今后應結合分子生物學、生物化學等多種技術手段在細胞與整體水平上深入研究相關代謝調控機理。 2)AMPK調控脂肪代謝在水產經濟動物中研究較少,應加大水產經濟動物AMPK調控脂肪代謝相關研究,推進水產經濟動物脂肪代謝調控機理認知,將為水產經濟動物飼料配方優(yōu)化及肉質調控提供理論依據。
[1]HARDIE D G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function [J]. Genes & Development, 2011, 25(18): 1895-1908.
[2]LI Y, XU S, MIHAYLOVA M M, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice [J]. Cell Metabolism, 2011, 13(4): 376-388.
[3]KAWAGUCHI T, OSATOMI K, YAMASHITA H, et al. Mechanism for fatty acid "sparing" effect on glucose-induced transcription regulation of carbohydrate-responsive element-binding protein by amp-activated protein kinase [J]. Journal of Biological Chemistry, 2002, 277(6): 3829-3835.
[4]HARDIE D G, ROSS F A, HAWLEY S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis [J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 251-262.
[5]HARDIE D G. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status [J]. Endocrinology, 2003, 144(12): 5179-5183.
[6]HARDIE D G, HAWLEY S A, SCOTT J. AMP-activated protein kinase-development of the energy sensor concept [J]. The Journal of Physiology, 2006, 574(1): 7-15.
[7]DYCK J R, KUDO N, BARR A J, et al. Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5-AMP activated protein kinase [J]. European Journal of Biochemistry, 1999, 262(1): 184-190.
[8]INGEBRITSEN T S, LEE H S, PARKER R A, et al. Reversible modulation of the activities of both liver microsomal hydroxymethylglutaryl coenzyme A reductase and its inactivating enzyme. Evidence for regulation by phosphorylation-dephosphorylation [J]. Biochemical and Biophysical Research Communications, 1978, 81(4): 1268-1277.
[9]HURLEY R L, ANDERSON K A, FRANZONE J M, et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases [J]. Journal of Biological Chemistry, 2005, 280(32): 29060-29066.
[10]SAKAMOTO K, ZARRINPASHNEH E, BUDAS G R, et al. Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1 [J]. American Journal of Physiology-Endocrinology and Metabolism, 2006, 290(5): E780-E788.
[11]KAHN B B, ALQUIER T, CARLING D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism [J]. Cell Metabolism, 2005, 1(1): 15-25.
[12]LIZCANO J M, G?RANSSON O, TOTH R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1 [J]. The EMBO journal, 2004, 23(4): 833-843.
[13]李心慰. 乙酸、非酯化脂肪酸、生長激素和催乳素調控奶牛肝細胞脂代謝的信號機制 [D].長春:吉林大學, 2013.
[14]HAWLEY S A, BOUDEAU J, REID J L, et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade [J]. Journal of Biology, 2003, 2(4): 28.
[15]HAWLEY S A, PAN D A, MUSTARD K J, et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase [J]. Cell metabolism, 2005, 2(1): 9-19.
[16]LONG Y C, ZIERATH J R. AMP-activated protein kinase signaling in metabolic regulation [J]. Journal of Clinical Investigation, 2006, 116(7): 1776.
[17]HARDIE D G. The AMP-activated protein kinase pathway-new players upstream and downstream [J]. Journal of Cell Science, 2004, 117(23): 5479-5487.
[18]CHAN A Y, DYCK J R. Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis: a potential strategy to prevent the development of cardiac hypertrophy [J]. Canadian Journal of Physiology and Pharmacology, 2005, 83(1): 24-28.
[19]ANDREELLI F, FORETZ M, KNAUF C, et al. Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin [J]. Endocrinology, 2006, 147(5): 2432-2441.
[20]TOWLER M C, HARDIE D G. AMP-activated protein kinase in metabolic control and insulin signaling [J]. Circulation Research, 2007, 100(3): 328-341.
[21]侯祥紅. 共軛亞油酸對HepG2細胞脂質代謝的影響及其機制研究 [D]. 西安:第四軍醫(yī)大學, 2009.
[22]王 瑾. 外周大麻素Ⅰ型受體抑制劑的篩選及減肥作用機制的研究 [D]. 鎮(zhèn)江:江蘇大學, 2016.
[23]PARK K G, MIN A K, KOH E H, et al. Alpha-lipoic acid decreases hepatic lipogenesis through adenosine mono phosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways [J]. Hepatology, 2008, 48(5): 1477-1486.
[24]馬延超. 運動活化AMPK對骨骼肌蛋白質分解通路Akt-FoxO的影響 [D]. 北京:北京體育大學, 2009.
[27]ZHOU H, SHANG C, WANG M, et al. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK [J]. Biochemical Pharmacology, 2016, 116: 39-50.
[28]BERGERON R, RUSSELL R R, YOUNG L H, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats [J]. American Journal of Physiology-Endocrinology and Metabolism, 1999, 276(5 Pt 1): E938-E944.
[29]鄒 豐. 黃芪多糖改善2型糖尿病糖代謝及其對AMPK活性的影響 [D]. 武漢: 武漢大學, 2010.
[30]JIN M N, SHI G R, TANG S A , et al. Flavonoids fromTetrastigmaobtectumenhancing glucose consumption in insulin-resistance HepG2 cells via activating AMPK [J]. Fitoterapia, 2013, 90: 240-246.
[31]張夏南. 楊梅果實酚類物質提取物降糖活性及相關機理研究 [D]. 杭州:浙江大學,2016.
[32]MAGNONI L J, VRASKOU Y, PALSTRA A P, et al. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells [J]. Plos One, 2012, 7(2): e31219.
[33]廖 波. 豬肝細胞的分離培養(yǎng)和AMPK活性調控的研究 [D]. 雅安:四川農業(yè)大學, 2003.
[34]JUNG E J, KWON S W, JUNG B H, et al. Role of the AMPK/SREBP-1 pathway in the development of orotic acid-induced fatty liver [J]. Journal of Lipid Research, 2011, 52(9): 1617-1625.
[35]馮學敏. 抗抑郁藥氟西汀對小鼠肝臟脂質代謝影響及其機制研究 [D]. 南京:南京醫(yī)科大學, 2012.
[36]宋科標. 羅漢果苷元結構修飾及其激活AMPK磷酸化的構效關系研究 [D]. 上海:華東理工大學,2016.
[37]DENG Q, LIU G, LIU L, et al. BHBA influences bovine hepatic lipid metabolism via AMPK signaling pathway [J]. Journal of Cellular Biochemistry, 2015, 116(6): 1070-1079.
[38]LAU G Y, RICHARDS J G. AMP-activated protein kinase plays a role in initiating metabolic rate suppression in goldfish hepatocytes [J]. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 2011, 181(7): 927-939.
[39]BREMER K, KOCHA K M, SNIDER T, et al. Sensing and responding to energetic stress: the role of the AMPK-PGC1α-NRF1 axis in control of mitochondrial biogenesis in fish [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2015, 199: 4-12.
[41]BARB C R, HAUSMAN G J, HOUSEKNECHT K L. Biology of leptin in the pig [J]. Domestic Animal Endocrinology, 2001, 21(4): 297-317.
[42]KOLACZYNSKI J W, CONSIDINE R V, OHANNESIAN J, et al. Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not ketones themselves [J]. Diabetes, 1996, 45(11): 1511-1515.
[43]MURASHITA K, UJI S, YAMAMOTO T, et al. Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchusmykiss) [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2008, 150(4): 377-384.
[44]R?NNESTAD I, NILSEN T O, MURASHITA K, et al. Leptin and leptin receptor genes in Atlantic salmon: cloning, phylogeny, tissue distribution and expression correlated to long-term feeding status [J]. General and Comparative Endocrinology, 2010, 168(1): 55-70.
[45]MINOKOSHI Y, KIM Y B, PERONI O D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nature, 2002, 415(6869): 339-343.
[46]宋玉峰, 吳 坤, 羅 智, 等. 瘦素對黃顙魚肝臟脂肪代謝的影響. [C].長沙:2014年中國水產學會學術年會摘要集, 2014: 150.
[47]SONG Y F, WU K, TAN X Y, et al. Effects of recombinant human leptin administration on hepatic lipid metabolism in yellow catfishPelteobagrusfulvidraco: in vivo and in vitro studies [J]. General and Comparative Endocrinology, 2015, 212:92-99.
[48]TOMAS E, TSAO T S, SAHA A K, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation [J]. Proceedings of the National Academy of Sciences, 2002, 99(25): 16309-16313.
[49]YOON M J, LEE G Y, CHUNG J J, et al. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha [J]. Diabetes, 2006, 55(9): 2562-2570.
[50]GAN L, YAN J, LIU Z J, et al. Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ACC2 pathway in chicken adipocyte [J]. Journal of Cellular Biochemistry, 2015, 116(6): 1090-1100.
[51]CHEN H, ZHANG L, LI X W, et al. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes [J]. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138:445-454.
[52]AWAZAWA M, UEKI K, INABE K, et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway [J]. Biochemical and Biophysical Research Communications, 2009, 382(1): 51-56.
[54]丁紅研. 胰島素、胰高血糖素通過AMPK信號通路調控犢牛肝細胞脂代謝的機制 [D]. 長春:吉林大學, 2014.
[55]ZHENG J L, ZHUO M Q, LUO Z, et al. Peroxisome proliferator-activated receptor alpha1 in yellow catfishPelteobagrusfulvidraco: molecular characterization, mRNA tissue expression and transcriptional regulation by insulin in vivo and in vitro [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2015, 183:58-66.
The progress of AMPK in energy metabolism
CHEN Biao, MAN Yu-rong, GAO Liu-ling, PAN Qing
(College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China)
Q555
A
2095-1736(2017)05-0078-05
2016-09-22;
2016-10-13
廣東省科技廳研發(fā)與產業(yè)化項目(2013B090500028); 廣州市科技計劃項目(2014YZ-00208)
陳 標,博士研究生,主要研究方向為水產經濟動物營養(yǎng)與飼料,E-mail: chenbiao11@mails.ucas.ac.cn
潘 慶,教授,博士研究生導師,主要研究方向為水產經濟動物營養(yǎng)與飼料,E-mail: qpan@scau.edu.cn
doi∶10.3969/j.issn.2095-1736.2017.05.078