李春輝,汪婷,梁漢東*,施云云,曹慶一
汞同位素自然庫存研究進展
李春輝1,2,汪婷1,梁漢東1,2*,施云云1,曹慶一1
1. 中國礦業(yè)大學(xué)(北京)//煤炭資源與安全開采國家重點實驗室,北京 100083;2. 中國礦業(yè)大學(xué)(北京)地球科學(xué)與測繪工程學(xué)院,北京 100083
汞同位素自然庫存作為對汞污染源進行準(zhǔn)確示蹤的基礎(chǔ),對其進行完善仍是汞同位素研究領(lǐng)域的工作重點。汞存在7種穩(wěn)定同位素且兼具質(zhì)量分餾和非質(zhì)量分餾效應(yīng),通過汞同位素對污染源、汞遷移轉(zhuǎn)化過程進行示蹤成為理想途徑。庫存數(shù)據(jù)作為汞同位素研究的基礎(chǔ),借助多道接收電感耦合等離子質(zhì)譜儀(MC-ICPMS)對汞同位素進行精確測試,汞同位素庫存研究領(lǐng)域取得了顯著成果。表現(xiàn)如下:自然界不同庫存汞同位素數(shù)據(jù)庫已經(jīng)初步建立;不同環(huán)境汞同位素組成差異顯著且同一環(huán)境下不同樣品同位素組成也各不相同,對其形成機理有了初步認(rèn)知;依據(jù)汞同位素在不同環(huán)境的分餾特點及不同庫存同位素組成特征,研究者開始對汞污染源進行示蹤探索并取得了成功;自然界一些涉及汞遷移、轉(zhuǎn)化的過程,同位素分餾特征已被掌握,特別是奇數(shù)非質(zhì)量分餾的典型過程(光致還原、吸附)已被用于判別汞的地球化學(xué)遷移轉(zhuǎn)化過程。涉及煤火的表生態(tài)汞的遷移轉(zhuǎn)化是復(fù)雜的,部分汞具有二次釋放特性,其中汞同位素產(chǎn)生的分餾效應(yīng)無疑使通過同位素研究對汞污染源進行準(zhǔn)確示蹤變得困難,因此涉及煤火的表生態(tài)汞地球化學(xué)特征可作為汞同位素研究領(lǐng)域的一個新的方向。
汞同位素;分餾效應(yīng);自然庫存;地球化學(xué)示蹤
汞(Hg)又名水銀,具有較高的毒性,其環(huán)境污染具有全球性(Bergquist et al.,2007a;Lamborg et al.,2002),已被中國、歐盟、美國環(huán)境保護署、聯(lián)合國環(huán)境規(guī)劃署、世界衛(wèi)生組織等國家、機構(gòu)列為優(yōu)先控制污染物。工業(yè)革命以來,人類活動(如化石燃料燃燒、有色金屬冶煉等)加劇了全球范圍內(nèi)的汞污染(Selin,2009)。不像其他重金屬,汞能以零價氣態(tài)形式存在大氣中約1年(Lindberg et al.,2007),因此汞的長距離遷移能對偏遠(yuǎn)地區(qū)生態(tài)系統(tǒng)產(chǎn)生影響。因此,認(rèn)知環(huán)境中汞的來源、轉(zhuǎn)化形式和轉(zhuǎn)化軌跡對汞污染修復(fù)和維持汞環(huán)境平衡至關(guān)重要。
因在自然界存在形態(tài)不同,汞毒性差異很大,其中甲基汞具有高神經(jīng)毒性、致癌性、心血管毒性、生殖毒性、免疫系統(tǒng)效應(yīng)和腎臟毒性等(Zahir et al.,2005)。更重要的是,自然界中的汞可經(jīng)過甲基化轉(zhuǎn)化成具有生物累積性的甲基汞,可通過食物進入人體,對人體具有較大危害(Feng et al.,2008;Louis et al.,2007)。例如:發(fā)生于日本水俁灣的水俁病事件,截至2001年3月,已確認(rèn)水俁病患者2955人,死亡1784人;遭受甲基汞暴露的婦女可以將體內(nèi)積累的甲基汞通過臍帶傳遞給胎兒,母體頭發(fā)汞含量增加 1 μg?g-1,胎兒智商(IQ)平均下降 0.18(Daniel et al.,2007)。
汞的遷移性、生物利用效率和毒性隨著汞存在價態(tài)和有機物形態(tài)的不同而不同,氧化還原反應(yīng)類型制約著汞形態(tài)的形成,無論是生物因素或非生物因素都能影響反應(yīng)物與生成物之間的汞同位素比值(Fitzgerald et al.,2005)。此外,汞同位素兼具質(zhì)量分餾與非質(zhì)量分餾特性,自然界樣品汞同位素組成(比值)存在差異,因此汞同位素可作為汞污染源、汞生物地球化學(xué)反應(yīng)與過程的理想示蹤劑。汞同位素庫存是一定環(huán)境內(nèi)單一對象或部分的汞同位素組成(比值)的集合。自然汞同位素庫存,作為汞同位素研究領(lǐng)域的基礎(chǔ)至關(guān)重要,不僅為判斷汞地球化學(xué)的轉(zhuǎn)化過程提供基礎(chǔ)數(shù)據(jù),而且可為汞污染源示蹤可靠性提供依據(jù)?,F(xiàn)階段,汞同位素研究主要集中于自然界汞同位素庫存的完善及其形成機理分析,為今后汞同位素實際應(yīng)用提供基礎(chǔ)數(shù)據(jù)與理論依據(jù)。汞同位素由于其在環(huán)境、地球化學(xué)領(lǐng)域具有較好的利用前景和價值,已成為同位素研究領(lǐng)域的熱點。本文回顧了近年來國內(nèi)外在汞同位素庫存研究領(lǐng)域所取得的重要進展。
1.1 汞同位素表示方法
汞在自然界中存在 7種穩(wěn)定同位素:196Hg、198Hg、199Hg、200Hg、201Hg、202Hg 和204Hg,其平均豐度分別為 0.15%、9.97%、16.87%、23.10%、13.18%、29.86%和6.87%(Buchachachenko et al.,2007)。汞同位素的表示方法有比值法(R)和相對比值法(δ),自然界汞同位素變化較小,導(dǎo)致R值冗長繁瑣而不便比較,故在實際工作中采用樣品的δ值(即樣品同位素比值相對于標(biāo)準(zhǔn)物質(zhì)同位素比值的千分比)來表示樣品的同位素組成(馮新斌等,2015):
其中,xxx分別指199、200、201、202、204。鑒于豐度很低,目前鮮有δ196Hg報道。自2007年以來,汞同位素的非質(zhì)量分餾效應(yīng)已被多個試驗所證實(Estrade et al.,2009;Kritee et al.,2008;Paplo et al.,2009),汞是自然界少數(shù)存在同位素非質(zhì)量分餾的金屬元素之一。汞同位素的非質(zhì)量分餾用△xxxHg(‰)表示,代表實測汞同位素值與基于理論質(zhì)量分餾定律計算值的偏差。根據(jù)同位素質(zhì)量分餾定律所確定的動力學(xué)分餾和平衡參數(shù)(Young et al.,2002),汞同位素非質(zhì)量分餾可根據(jù)以下公式計算(Blum et al.,2007):
偶數(shù)汞同位素非質(zhì)量分餾以 ΔxxxHg(‰)表示,xxx分別指 196、198、200、202和 204。由于202Hg/198Hg值在質(zhì)量分餾中被應(yīng)用,同時202Hg/198Hg在非質(zhì)量分餾中也有計算,因此其他的偶數(shù)同位素也可發(fā)生同樣的分餾方式。由于第一代多道接收電感耦合等離子質(zhì)譜儀(MC-ICPMS)檢測線低且196Hg豐度較低,偶數(shù)同位素中只有△200Hg和△204Hg有見報道。偶數(shù)汞同位素非質(zhì)量分餾可根據(jù)以下公式計算(Cai et al.,2016):
δxxxHg=[(xxxHg/200Hg)樣品/(xxxHg/200Hg)標(biāo)準(zhǔn)-1]×1000‰
δxxxHg=[(xxxHg/202Hg)樣品/(xxxHg/202Hg)標(biāo)準(zhǔn)-1]×1000‰
xxx代表 198、199、200、201。Δ198/200Hg和Δ200/202Hg可以依據(jù)以下公式進行計算(Young et al.,2002):
同時偶數(shù)汞同位素非質(zhì)量分餾也可使用同一基準(zhǔn)(198Hg、199Hg)進行計算,計算公式(Young et al.,2002)如下:
1.2 汞同位素測試
自20世紀(jì)初,研究者采用比重法(Br?nsted et al.,1920)、中子活化(NAA)(Kumar et al.,1994)、氣體質(zhì)譜儀、Q-ICP-MS法、ICP-TOF-MS法和single-collector ICP-MS法等技術(shù)(尹潤生等,2010)對汞同位素組成進行研究。然而,由于自然界樣品汞含量普遍較低,上述方法均未能有效識別自然界汞同位素組成,嚴(yán)重制約著汞同位素研究的進展。此后,熱電離質(zhì)譜儀(TIMS)和多道接收電感耦合等離子質(zhì)譜儀(MC-ICPMS)研發(fā)成功,使汞同位素研究領(lǐng)域取得了顯著進步。由于汞的第一電離能非常高(約10.44 eV),而TIMS僅對第一電離能小于8 eV的元素適用,因此汞同位素測試通常采用MC-ICPMS。相比TIMS,它的等離子體源近8000 K高溫,可將幾乎所有元素離子化。MC-ICPMS的精度可達±0.1‰(2δ),優(yōu)于其他質(zhì)譜儀1~2個數(shù)量級(Lauretta et al.,2001)。質(zhì)量歧視效應(yīng)指在同位素分析過程中儀器和分析程序引起的分餾效應(yīng)。汞同位素的質(zhì)量歧視矯校正法分為3種:(1)樣品-標(biāo)樣交叉法(尹潤生等,2010);(2)元素內(nèi)標(biāo)法(Blum et al.,2007);(3)同位素雙稀釋劑法(Foucher et al.,2006;Mead,2010)。
2.1 質(zhì)量分餾
汞同位素平衡分餾是指當(dāng)體系處于同位素平衡時,汞同位素在各物相間的分餾。其具有如下特點:重同位素通常富集在能態(tài)較低的物相中,如0~22 ℃時汞的液氣分餾系數(shù) α202/198值(1.00086±0.00022)低于 22 ℃下的 α202/198值(1.0067±0.0011)(Estrade et al.,2009;Ghosh et al.,2013);吸附過程重同位素傾向于富集到低能態(tài)的殘余物中,如與SMe-相比具有較低能態(tài)的Cl-、OH-顯著富集汞重同位素(Jiska et al.,2012;Wiederhold et al.,2010)。汞的同位素動力分餾是指偏離同位素平衡分餾的分餾現(xiàn)象。汞同位素在不同物相間的分配隨時間和反應(yīng)程度而不斷變化,有如下特點:消耗反應(yīng)物的數(shù)量少,則可產(chǎn)生較大分餾;但如果反應(yīng)物全部耗盡,則產(chǎn)物的同位素組成和反應(yīng)物的同位素組成相同。在動力學(xué)分餾過程中,輕同位素的反應(yīng)速度通??煊谥赝凰兀蚨a(chǎn)物中相對富集輕同位素。目前已知各種物理、化學(xué)和生物涉汞過程都可能引起汞同位素動力分餾,并且產(chǎn)物相對富集輕同位素(馮新斌等,2015)。
2.2 非質(zhì)量分餾
2.2.1 奇數(shù)汞同位素
奇數(shù)汞同位素非質(zhì)量分餾被廣泛報道于環(huán)境、地質(zhì)和生物樣品,如大氣樣品(Chen et al.,2012a;Sherman et al.,2010,2011,2012)、沉積樣品(Bartov et al.,2013;Cooke et al.,2013;Foucher et al.,2013;Gehrke et al.,2011a,b;Gray et al.,2013;Liu et al.,2011;Ma et al.,2013;Sherman et al.,2013a;Yin et al.,2013a)、土壤(Biswas et al.,2008;Estrade et al.,2011;Feng et al.,2013)、泥炭(Shi et al.,2011)、巖石(Blum et al.,2010;Delphine et al.,2009)、煤(Lefticariu et al.,2011;Sun et al.,2013)、苔蘚和地衣(Blum et al.,2012;Das et al.,2013;Estrade et al.,2010)、頭發(fā)(Laffont et al.,2009,2011;Sherman et al.,2013b)、植物(Tsui et al.,2012)、魚(Gehrke et al.,2011a,b;Kwon et al.,2012;Sherman et al.,2013b;Tsui et al.,2012)和海鳥(Day et al.,2012;Point et al.,2011)。
Bergquist et al.(2007b)首次對Hg2+光還原過程和甲基汞(MeHg)光降解過程同位素分餾進行了研究,得出殘留相富集奇數(shù)汞同位素。Zheng et al.(2009)研究發(fā)現(xiàn)Hg2+光還原受控于Hg/DOC值,并且殘留的Hg2+富集199Hg和201Hg。Zheng et al.(2010)報道當(dāng)存在含硫配體時,磁同位素(199Hg和201Hg)富集在產(chǎn)物Hg0中而不是殘留物Hg2+中。蒸發(fā)過程出現(xiàn)Δ199Hg值異?,F(xiàn)象(Ghosh et al.,2013;Schauble,2007)。同樣,在 Hg2+的非生物還原過程,發(fā)現(xiàn)微弱的奇數(shù)汞同位素非質(zhì)量分餾(Zheng et al.,2010)。與同位素質(zhì)量分餾可發(fā)生于大多數(shù)的平衡與動力學(xué)過程不同,奇數(shù)汞同位非質(zhì)量分餾僅出現(xiàn)在為數(shù)不多的液態(tài)汞蒸發(fā)、還原反應(yīng)和吸附等過程中。
在汞的7個同位素中,只有199Hg和201Hg具有核自旋和磁矩,也正因如此,奇數(shù)非質(zhì)量分餾僅存在于199Hg和201Hg中(Blum et al.,2014;Buchachachenko,2009)。核體積效應(yīng)(Nulear Volume Effect,NVE)和磁同位素效應(yīng)(Magnetic Isotope Effect,MIE)被認(rèn)為是引起奇數(shù)汞同位素非質(zhì)量分餾的主要機制。NVE首先被 Bigeleisen(1996a;1996b)提出,用于解釋奇數(shù)U同位素所發(fā)生的無法用傳統(tǒng)質(zhì)量分餾理論解釋的現(xiàn)象(Sonke,2011;Sherman et al.,2012)。核體積效應(yīng)涉及到同位素的形狀和大小,通常核半徑和質(zhì)量呈正比,但是奇數(shù)汞同位素199Hg和201Hg核半徑比想象中的要小,這導(dǎo)致它們的基態(tài)能更接近于相鄰的甚至更低的同位素(Blum et al.,2014),如此一來,奇偶的不同導(dǎo)致了同位素分餾而與質(zhì)量數(shù)無關(guān)(Bigeleisen,1996a)。核體積效應(yīng)對輕元素是微不足道的,但對重元素(Hg、Pb、Tl、U)所造成的電子能變化往往超過動能部分,作用很顯著(Zheng et al.,2010)。
由于偶數(shù)汞同位素(196Hg、198Hg、200Hg、202Hg、204Hg)的核自旋量子數(shù)為 0,而奇數(shù)汞同位素(199Hg、201Hg)的核自旋量子數(shù)非零(分別為 1/2和3/2),導(dǎo)致奇數(shù)汞同位素原子核與核外電子發(fā)生磁耦合作用。在與激發(fā)態(tài)的原子團作用時,奇數(shù)汞同位素能夠發(fā)生旋轉(zhuǎn),導(dǎo)致奇數(shù)汞同位素反應(yīng)快于偶數(shù)汞同位素(Schauble,2007)。進而產(chǎn)生奇數(shù)汞同位素非質(zhì)量分餾。磁同位素效應(yīng)引起的奇數(shù)同位素非質(zhì)量分餾Δ199Hg/Δ201Hg值為1~1.3(Blum et al.,2014)。Bergquist et al.(2007b)首次觀測到汞(如Hg2+和MeHg)在水環(huán)境中發(fā)生光化學(xué)過程會導(dǎo)致非常明顯的奇數(shù)汞同位素非質(zhì)量分餾現(xiàn)象,并且Δ199Hg/Δ201Hg呈1~1.36的線性關(guān)系。Zheng et al.(2010)對不同可溶有機碳濃度條件下Hg2+的光還原作用進行了研究,發(fā)現(xiàn)Δ199Hg/Δ201Hg一定條件下可達 1.2~1.3。自然界中的不同環(huán)境介質(zhì),如植物、土壤(Biswas et al.,2008;Sun et al.,2013;Zhang et al.,2013)、沉積物(Gratz et al.,2010;Yin et al.,2014b)、水生生物及人體頭發(fā)(Laffont et al,2009;?trok et al.,2014;Yin et al.,2015)等樣品都報道了不同程度的汞同位素非質(zhì)量分餾(圖1)。
目前,NVE導(dǎo)致的汞同位素非質(zhì)量分餾已在實驗室中被證實。一系列實驗,如液態(tài)汞揮發(fā)過程(Estrade et al.,2009;Ghosh et al.,2013)、還原過程(Zheng et al.,2010)及吸附過程(Ghosh et al.,2013),均證實NVE的存在,結(jié)果顯示NVE可引發(fā)奇數(shù)汞同位素的非質(zhì)量分餾,且其 Δ199Hg/Δ201比值約為1.6(Wiederhold et al.,2010)。在自然界,有機汞的光還原過程中Δ201Hg與Δ199Hg值接近于1.36,而 Hg2+的光還原過程其值近于 1.00(圖 1)(Bergquist et al.,2007b;Biswas et al.,2008;Buchachachenko,2001;Carignan et al.,2009;Chen et al.,2012a;Demers et al.,2013;Estrade et al.,2010;Sun et al.,2014;Sonke,2011;Sherman et al.,2012)。
圖1 自然界汞同位素非質(zhì)量分餾Fig. 1 Mass independent fractionation of Hg isotopes in natural samples
2.2.2 偶數(shù)汞同位素
據(jù)近年來的相關(guān)報道,偶數(shù)汞同位素(200Hg和204Hg)非質(zhì)量分餾主要存在于大氣樣品中(Chen et al.,2012a;Demers et al.,2013;Gratz et al.,2010;Rolison et al.,2013;Sherman et al.,2011;?trok et al.,2015;Wang et al.,2015;Yuan et al.,2015)。Gratz et al.(2010)首次報道了美國五大湖地區(qū)沉降樣品呈微弱的正非質(zhì)量分餾(Δ200Hg小于+0.25‰),而蒸汽相樣品呈微弱的負(fù)偶數(shù)汞同位素非質(zhì)量分餾(Δ200Hg=-0.04‰±0.09‰)。Chen et al.(2012a)對彼得伯勒(加拿大)地區(qū)進行研究時發(fā)現(xiàn),雨雪樣品呈較高數(shù)量級正的偶數(shù)同位素非質(zhì)量分餾,并有季節(jié)性變化規(guī)律,從Δ199Hg和Δ200Hg的異常中,可以看到偶數(shù)同位素非質(zhì)量分餾可能由不同的生物-地質(zhì)過程所引發(fā)。Demers et al.(2013)在威斯康星州(美國)觀測到沉降樣品呈正的偶數(shù)同位素非質(zhì)量分餾(Δ200Hg均值為0.18‰±0.09‰),而大氣汞呈負(fù)的偶數(shù)汞同位非質(zhì)量分餾(Δ200Hg均值為-0.1‰±0.02‰),Δ204Hg呈現(xiàn)相反的現(xiàn)象,沉降物呈負(fù)的非質(zhì)量分餾(Δ204Hg均值為-0.25‰±0.21‰),而大氣汞呈正的非質(zhì)量分餾(Δ204Hg均值為0.13‰± 0.05‰)。這與Rolison et al.(2013)對佛羅里達大氣汞的研究結(jié)論是相似的。?trok et al.(2015)對北極群島海水的研究發(fā)現(xiàn),Δ200Hg值高達0.50‰。Wang et al.(2015)收集貴州部分地區(qū)沉降物,經(jīng)測試發(fā)現(xiàn) Δ200Hg值高達0.20‰。幾乎所有的偶數(shù)同位素非質(zhì)量分餾都與大氣樣品聯(lián)系緊密,可能大氣中存在某些促發(fā)機制,如Chen et al.(2012b)認(rèn)為偶數(shù)同位素非質(zhì)量分餾是由大氣中Hg0被氧化為Hg2+的過程產(chǎn)生的,因為在對流層與平流層之間存在如H2O2、臭氧、羥基、自由基和強烈的紫外線照射能氧化Hg0,同時存在的大量雪晶有助于氧化的進行,并可吸附異常的200Hg。Mead et al.(2013)在熒光燈內(nèi)發(fā)現(xiàn)了顯著的偶數(shù)同位素非質(zhì)量分餾現(xiàn)象,Δ200Hg值為-10‰;同時在使用后的燈泡中還發(fā)現(xiàn)了奇數(shù)同位素異常現(xiàn)象,Δ199Hg與 Δ201Hg值分別為-21.49‰和13.42‰。顯然,核體積效應(yīng)和磁同位素效應(yīng)無法解釋Δ199Hg與Δ201Hg這種相反的趨勢。
偶數(shù)汞同位素非質(zhì)量分餾現(xiàn)象在自然樣品中被發(fā)現(xiàn)(Chen et al.,2012b;Demers et al.,2013;Gratz et al.,2010;Rolison et al.,2013;Sherman et al.,2011;?trok et al.,2015;Wang et al.,2015;Yuan et al.,2015)。至今在實驗室內(nèi)還未發(fā)現(xiàn)偶數(shù)汞同位素非質(zhì)量分餾現(xiàn)象,促使奇數(shù)汞同位發(fā)生非質(zhì)量分餾的因素(核體積效應(yīng)和磁同位素效應(yīng))不能使偶數(shù)汞產(chǎn)生明顯的同位非質(zhì)量分餾(Buchachachenko et al.,2007;Chen et al.,2012b;Mead et al.,2013;Schauble,2007),導(dǎo)致偶數(shù)汞同位素產(chǎn)生非質(zhì)量分餾的機制尚不清楚。汞的7種同位素中,只有199Hg與201Hg存在非零的核自旋和磁矩,核體積效應(yīng)僅能引起偶數(shù)同位素微不足道的非質(zhì)量分餾效應(yīng)(Bergquist et al.,2007b;Schauble,2007),因此核體積效應(yīng)和磁同位素效應(yīng)均不能產(chǎn)生顯著的偶數(shù)同位素非質(zhì)量分餾。Cai et al.(2016)認(rèn)為在所認(rèn)知的機理當(dāng)中,自屏蔽效應(yīng)和中子捕獲效應(yīng)可能是引發(fā)偶數(shù)同位素非質(zhì)量分餾的機理。
Mead et al.(2013)和 Somerer(1993)研究表明,汞的超精細(xì)結(jié)構(gòu)吸收光譜可導(dǎo)致自屏蔽效應(yīng)。在熒光下,由于不同的偶數(shù)同位素具有不同的核自旋和質(zhì)量,其吸收254 nm光子后將分裂成10個部分,這些組分在加熱和碰撞引起的增寬下最終轉(zhuǎn)變成6條線。后經(jīng)相互轉(zhuǎn)化,導(dǎo)致豐度較輕的同位素相對重同位素更易被激發(fā),即199Hg具有最高的釋放率和吸收率,而202Hg卻最低。Mead et al.(2013)也認(rèn)為自屏蔽效應(yīng)最有可能是引起偶數(shù)同位素非質(zhì)量分餾的機理。
中子捕獲截面通常被表述為中子與目標(biāo)核相互作用的可能。196Hg、198Hg、199Hg、200Hg、201Hg、202Hg 的截面分別為(3080±180)、(2.0±0.3)、(2150±48)、<60、(5.7±1.2)和(4.42±0.07)(Mughabghab,2003)。考慮到196Hg豐度較低(不做考慮),199Hg具有最高的截面。換句話說,199Hg最易發(fā)生中子捕獲而轉(zhuǎn)變成具有大質(zhì)量數(shù)的同位素(很大可能200Hg),因此,天然同位素由于中子捕獲效應(yīng)將導(dǎo)致Δ200Hg出現(xiàn)正值和Δ199Hg出現(xiàn)負(fù)值。但是,中子捕獲只有在上百萬年尺度上才能引起顯著的分餾效應(yīng),相對于此,大氣汞停留時間太短了。
國內(nèi)外研究人員對自然樣品汞同位素組成進行了測定,并大致勾勒出地球不同儲庫間的汞同位素特征(圖2)。據(jù)已有的研究發(fā)現(xiàn),汞在自然界中不僅廣泛存在同位素質(zhì)量分餾,如隕石(Lauretta et al.,2001;Lauretta et al.,2000)、火山熱液系統(tǒng)(Sherman et al.,2009)、汞礦(Smith et al.,2008)、煤(Biswas et al.,2008)、土壤(Foucher et al.,2009a)等;同時汞還存在同位素非質(zhì)量分餾,如沉積物(Feng et al.,2010)、植物(Carignan et al.,2009)、水生系統(tǒng)(Bergquist et al.,2007b,a)等。自然界不同環(huán)境汞同位素組成差異顯著,且同一環(huán)境中不同樣品同位素比值也各不相同。
3.1 水環(huán)境樣品
圖2 自然樣品同位素組成Fig. 2 Summary of Hg isotopes in natural samples from published data數(shù)據(jù)(Bergquist et al.,2007b,a;Biswas et al.,2008;Feng et al.,2010;Foucher et al.,2009b;Gratz et al.,2010;Lauretta et al.,2000,2001;Laffont et al.,2009;Rolison et al.,2013;Sherman et al.,2009;Smith et al.,2008;Sun et al.,2013;?trok et al.,2014;Yin et al.,2014a,b,2015;Zhang et al.,2013)
在汞的全球循環(huán)過程中,水環(huán)境扮演著重要的角色,既接收大氣汞沉降又是大氣汞的主要來源,。此外,水體中存在活躍甲基化過程,致使無機汞轉(zhuǎn)變?yōu)榫哂猩锒拘院蜕锢鄯e效應(yīng)的甲基汞,因此對水環(huán)境汞同位素進行研究對認(rèn)知汞的轉(zhuǎn)化過程及污染源示蹤具有重要意義。?trok et al.(2014)報道了海水中δ202Hg值范圍為-1.5‰~-0.5‰,具有較弱的汞同位素質(zhì)量分餾特征;此范圍也在淡水中δ202Hg 值(-1.68‰~0.74‰)范圍內(nèi)(Chen et al.,2012b;Demers et al.,2013;Gratz et al.,2010)。?trok et al.(2014)推測此現(xiàn)象也可能是海水中其他物種溶解造成的,如Yin et al.(2013b)測試了純水與硫代硫酸銨((NH4)2S2O3)土壤汞提取同位素組成,發(fā)現(xiàn)純水與(NH4)2S2O3提取的汞同位素較總汞相比具有不同程度的富集重同位素(δ202Hg)的特征。
水體中Hg2+的光還原作用,一方面造成全球大氣 Hg0虧損奇數(shù)汞同位素(Δ199Hg<0)(Fu et al.,2014;Gratz et al.,2010;Rolison et al.,2013;Sherman et al.,2010),同時也造成了水體富集奇數(shù)汞同位素(Δ199Hg>0)(Sonke,2011)。水體富集奇數(shù)汞同位素已被眾多研究證實,如 Gustin et al.(1999)、Foucher et al.(2009a)、Chen et al.(2012a)等分別提供了地中海、太平洋和內(nèi)陸湖水存在正 Δ199Hg(+0.11‰)的證據(jù)。近期?trok et al.(2014)發(fā)現(xiàn)海水中存在正Δ199Hg值,與此同時,該研究還報道海水中存在正Δ200Hg異常。由于Δ200Hg異常主要存在于大氣汞中,因此大氣沉降可能也是導(dǎo)致水體正Δ199Hg 值的重要原因。Bergquist et al.(2007b,a)發(fā)現(xiàn)汞(Hg2+和 MeHg)在水環(huán)境中發(fā)生光致還原反應(yīng)的過程中會導(dǎo)致非質(zhì)量分餾,奇數(shù)同位素傾向于富集在殘余溶液中,并且與Δ201Hg與Δ199Hg之間分別呈1∶1和1∶1.36的線性關(guān)系,產(chǎn)生這一關(guān)系的原因是磁同位素效應(yīng)(Magnetic isotope effect)。Estrade et al.(2009)在進行液態(tài)汞的平衡態(tài)熱力學(xué)揮發(fā)實驗時發(fā)現(xiàn),Δ201Hg/Δ199Hg值約為2.0±0.6,這與根據(jù)核體積效應(yīng)(Nuclear volume effect)理論計算得出的數(shù)值(Δ201Hg/Δ199Hg=2.47)近似。
水體甲基汞的光降解過程導(dǎo)致水體甲基汞相對富集奇數(shù)汞同位素,是導(dǎo)致水體生物(如魚等)存在明顯的奇數(shù)汞同位素異常的主要原因,如Laffont et al.(2009)報道了魚體Δ199Hg值范圍為-0.08~0.31。目前所報道的水生生物的Δ199Hg/Δ201Hg約為1.30,與甲基汞的光降解過程吻合。此外,奇數(shù)汞同位素異常也見于其他生物樣品,如Laffont et al.(2009)報道了土族人頭發(fā)Δ199Hg值范圍為0.14~0.81,此類顯著異?,F(xiàn)象的產(chǎn)生機理與水生生物類似,可能都是甲基汞光降解作用的產(chǎn)物。但是,引發(fā)水中汞光降解的機理仍不清楚,是 Hg2+直接光降解、與有機配套化合降解還是產(chǎn)生于光化學(xué)過程產(chǎn)物的二次降解,目前未有明確論斷。Zheng et al.(2009)、Kritee et al.(2008,2009)、Paplo et al.(2009)分別對影響有機汞的降解而導(dǎo)致的非質(zhì)量分餾因素進行了研究,包括細(xì)菌種類、Hg/DOC、溫度等,表明此過程具有復(fù)雜性。Zheng et al.(2010)認(rèn)為低分子量有機物(LMWOC)對 Hg2+光降解過程中的同位素分餾有促進作用。Vincent et al.(2015)認(rèn)為硫酸鹽還原菌(SRB)菌落在汞的甲基化和脫甲基化過程中發(fā)揮著關(guān)鍵作用,對沉積物、水體中甲基汞的同位素組成有重要影響。Chandan et al.(2015)指出有機配體的存在同樣決定著甲基汞同位素的組成。海水中δ202Hg值具有負(fù)異常特征,而部分淡水中具正異常特征,水環(huán)境中汞同位素組成的影響因素是多樣的,如生物、溫度、可溶性有機質(zhì)含量等。
發(fā)生于水面的汞釋放通量無疑是全球汞循環(huán)的重要一環(huán)。水面釋放的汞大多為二次釋放,并且發(fā)生于水體表面的光致還原作用也引發(fā)著汞同位素分餾效應(yīng),大大增加了其對汞污染源的示蹤研究,因此完善全球水環(huán)境汞同位素數(shù)據(jù)庫顯得尤其重要。
3.2 陸地環(huán)境
國內(nèi)外研究者對植物的汞同位素的測定結(jié)果顯示,植物具有明顯的虧損奇數(shù)汞同位素的特征,如Demers et al.(2013)報道了樹葉Δ199Hg值范圍為-0.37~-0.23;同樣樹體也顯示虧損 Δ199Hg(-0.22~-0.14)。陸地植物汞主要來自土壤和大氣,而地上部分(如葉片)主要來自大氣(Yin et al.,2013a)。植物吸收汞的過程并不能產(chǎn)生汞同位素非質(zhì)量分餾(Carignan et al.,2009;Yin et al.,2013a),所以普遍認(rèn)為植物的奇數(shù)汞同位素虧損主要繼承了大氣汞的非質(zhì)量分餾特征。與非質(zhì)量分餾不同,Demers et al.(2013)發(fā)現(xiàn)樹葉樣品比大氣汞的δ202Hg偏輕約3.0‰。Yin et al.(2013a)研究表明,水稻的汞同位素相比大氣汞δ202Hg偏輕約1‰。植物吸收大氣汞過程中能產(chǎn)生非常明顯的汞同位素質(zhì)量分餾(Carignan et al.,2009;Yin et al.,2013a)。相比大氣汞同位素,植物的δ202Hg普遍偏輕,表明植物優(yōu)先吸收輕同位素。
研究表明,自然界背景區(qū)土壤往往帶有不同程度的汞同位素非質(zhì)量分餾,如Biswas et al.(2008)對美國中部和北部的有機土壤的汞同位素組成的研究發(fā)現(xiàn),腐植土壤也具有明顯偏負(fù)的 Δ199Hg(-0.35‰~+0.10‰),認(rèn)為這是由于植物凋落物造成的。相比之下,泥炭中,如四川紅原泥炭(Shi et al.,2011)、西班牙Penido Velho地區(qū)(Ghosh et al.,2008),也存在非常明顯的非質(zhì)量分餾;而汞礦區(qū)和其他汞污染區(qū)土壤往往帶有和巖(礦)石相類似的汞同位素特征,即汞同位素非質(zhì)量分餾不明顯(Yin et al.,2013b;Feng et al.,2013)。這也從另一個側(cè)面說明了,土壤汞來源的不同造成了同位素的差異。此外,土壤本身是一個復(fù)雜的環(huán)境系統(tǒng),含有大量有機質(zhì)、微生物,這些有機質(zhì)就像一個濾膜一樣最大限度地保留通過干濕沉降進入土壤的汞(Lindqvist et al.,1991)。前人研究認(rèn)為,汞同位素非質(zhì)量分餾是由核體積效應(yīng)(Schauble,2007)和磁同位素效應(yīng)(Buchachachenko et al.,2007)引起的,主要發(fā)生在Hg2+和有機汞光還原至零價的過程中(Bergquist et al.,2007b)。當(dāng) Δ201Hg與 Δ199Hg斜率接近于1.36時,為有機汞的光還原過程所致;其斜率為1.00時,為 Hg2+的光還原過程所致;自然有機物的光還原過程中,Δ201Hg與Δ199Hg斜率范圍為 1.19~1.31(Bergquist et al.,2007b,a)。馮新斌等(2015)對貴州地表土汞同位素的測試顯示,不同類型汞污染源附近土壤汞同位組成差異顯著,如δ202Hg值變化達2.0‰,Δ199Hg值變化為0.25‰,且Δ201Hg與Δ199Hg斜率為1,暗示部分土壤汞在沉積于土壤之前經(jīng)歷了光致還原作用(Feng et al.,2013)。
燃煤是世界上主要的大氣汞排放源(Pirrone et al.,2010),也是汞同位素數(shù)據(jù)庫研究的熱點。自然界煤δ202Hg變化達4.7‰,Δ199Hg變化達1.04‰(Biswas et al.,2008;Sherman et al.,2011;Sun et al.,2013,2014;Yin et al.,2014a)。不同國家主要產(chǎn)煤盆地煤中汞同位素非質(zhì)量分餾 Δ199Hg/Δ201Hg約為1(圖1),1∶1的比值暗示煤炭沉積之前汞已經(jīng)經(jīng)歷了光致還原作用。煤中汞同位素差異反應(yīng)了煤中汞來源的差異(Biswas et al.,2008;Lefticariu et al.,2011;Yin et al.,2014a)。Lefticariu et al.(2011)系統(tǒng)調(diào)查了美國Illinois地區(qū)煤的汞同位素組成,發(fā)現(xiàn)煤中汞主要來自成煤植物和后期熱液侵入,兩者存在非常明顯的汞同位素差異,并且通過對煤中不同組分汞同位素的測試,發(fā)現(xiàn)與硫化物結(jié)合的汞(δ202Hg=-0.11‰)較有機態(tài)汞(δ202Hg=-1.46‰)具有較高的δ202Hg值。Shi et al.(2011)對四川地區(qū)150年沉積泥炭進行研究發(fā)現(xiàn),不同時間段泥炭中汞同位素存在不同的同位素分餾效應(yīng),如 Δ201Hg/Δ199Hg 處于(-0.44‰±0.14‰)~(-1.45‰±0.22‰)之間,不同時期泥炭中汞同位素非質(zhì)量分餾差異顯著。Yin et al.(2014a)對我國主要產(chǎn)煤地煤中汞同位素進行研究發(fā)現(xiàn),部分產(chǎn)煤地煤中汞同位素組成差異很大,原因是其保留了地下熱液、成煤植物汞同位素組成特征。
需要指出的是,盡管在植物、土壤、沉積物中都發(fā)現(xiàn)了奇數(shù)汞同位素值異?,F(xiàn)象,但是眾多研究者普遍認(rèn)為,植物吸收汞、土壤汞、成煤作用過程均不能引發(fā)奇數(shù)汞同位素非質(zhì)量分餾效應(yīng),產(chǎn)生奇數(shù)汞同位素值異常的原因是其繼承了大氣汞的同位素比值。
3.3 大氣環(huán)境
大氣汞是陸地、水環(huán)境汞的重要來源,同時大氣汞在運輸過程中的物理、化學(xué)變化使同位素比值具有標(biāo)志特征,因此對大氣汞同位素進行研究對認(rèn)識全球汞循環(huán)至關(guān)重要。由于大氣中汞的含量非常低(ng·L-1),而測定汞同位素時要求溶液中Hg濃度必須達到 ng·mL-1的量級(Kritee et al.,2008;尹潤生等,2010),因此,對大氣的汞同位素特征的直接研究較少。
研究者對大氣不同形態(tài)的汞同位素進行了研究,發(fā)現(xiàn)大氣汞同位素存在比較明顯的汞同位素非質(zhì)量分餾(Δ199Hg 達 5‰)(Gratz et al.,2010;Rolison et al.,2013;Sherman et al.,2010)。研究者認(rèn)為,水體(海洋、雨、雪等)Hg2+經(jīng)光化學(xué)還原作用是導(dǎo)致大氣單質(zhì)汞異常的主要因素(Δ199Hg<0),如Yin et al.(2014b)在貴州萬山汞礦水稻田采集的大氣汞樣品Δ199Hg為-0.34‰~-0.24‰;此外,在大氣汞的指示物中,如苔蘚(Carignan et al.,2009;Estrade et al.,2010)、泥炭(Ghosh et al.,2008;Shi et al.,2011)),也發(fā)現(xiàn)了和大氣汞類似的汞同位素特征。如 Zhang et al.(2013)發(fā)現(xiàn)苔蘚具明顯的虧損Δ199Hg 值(-0.48~-0.39)。Gratz et al.(2010)監(jiān)測到降水具負(fù)的 δ202Hg值(-0.79‰~0.18‰)而氣相樣品具正的δ202Hg值(-0.59‰~0.43‰),同時降水具正的 Δ199Hg值(0.04‰~0.52‰)而蒸汽樣品具虧損的Δ199Hg值(-0.21‰~0.06‰),并且首次觀察到降水具偶數(shù)汞同位素非質(zhì)量分餾效應(yīng)(Δ200Hg值高達0.25‰)。Sherman et al.(2012)在雪中發(fā)現(xiàn)了偏正Δ199Hg值(-1.01~0.86‰),而大氣環(huán)境氣態(tài)和顆粒態(tài)汞具負(fù)的δ202Hg值(Hg0,δ202Hg值范圍為-3.88‰~-0.33‰;Hg(p),δ202Hg 值范圍-1.61‰~-0.12‰)而氣態(tài)氧化汞顯示正的δ202Hg值(Hg2+,δ202Hg值范圍為+0.51‰~+1.61‰),同時大氣存在明顯的奇數(shù)汞同位素非質(zhì)量分餾(Hg0,Δ199Hg值范圍-0.41‰~-0.03‰;Hg2+,Δ199Hg 值范圍為-0.28‰~0.18‰ ; Hg(p), Δ199Hg 值 范 圍 為+0.36‰~+1.36‰)和偶數(shù)汞同位素非質(zhì)量分餾(Hg0,Δ200Hg 值范圍為-0.19‰~-0.06‰;Hg2+,Hg(p),Δ200Hg 值范圍為+0.06‰~+0.28‰)(Rolison et al.,2013)。
無論是大氣汞還是代表大氣汞同位素表征的植物如苔蘚和地衣(Chen et al.,2012b;Blum et al.,2012;Das et al.,2013;Estrade et al.,2010;Sherman et al.,2010,2011,2012;Zhang et al.,2013),其Δ201Hg與Δ199Hg比值均接近1(圖1),表明大氣汞非質(zhì)量分餾為Hg2+的光致還原反應(yīng)所致。由于大氣汞來源復(fù)雜,同時在大氣汞的運輸過程存在物理、化學(xué)反應(yīng),致使大氣汞同位素變化具有復(fù)雜性。
3.4 巖礦和熱液樣品
研究表明,自然界巖(礦)石樣品的 δ202Hg組成差異達到6‰(Hintelmann et al.,2003;Sonke et al.,2010;Stetson et al.,2009;Smith et al.,2008;Smith et al.,2005;Yin et al.,2013c;Zambardi et al.,2009;Zhang et al.,2014)。然而,世界上絕大多數(shù)巖(礦)石汞同位素組成具有比較近似的平均值(δ202Hg: -0.60‰±0.20‰),基本可以反映地殼的平均汞同位素組成。
Stetson(2009)、Hintelmann et al.(2003)、Smith et al.(2008)、Bergquist et al.(2007b)和Yin et al.(2013c)等先后對不同地區(qū)Hg礦辰砂樣品的汞同位素組進行了測試,得出全球汞礦δ202Hg的變化范圍為-3.88‰~1.61‰。Smith et al.(2008)認(rèn)為汞在由源巖物質(zhì)進入熱液運輸過程中不會產(chǎn)生較大的質(zhì)量分餾,但近地表環(huán)境熱液內(nèi)的氣體分離以及 Hg0的揮發(fā)可能是引起質(zhì)量分餾的因素(Kritee et al.,2009)。Sonke et al.(2010)測定了世界不同地區(qū)的鋅礦樣品,發(fā)現(xiàn)其δ202Hg平均值為(-0.24±0.15),表明鋅礦樣品存在明顯的質(zhì)量分餾現(xiàn)象,這可能是近地表狀態(tài)下熱液氣體分離造成的。Yin et al.(2013c)對萬山汞礦辰砂和煅燒物進行了測定,發(fā)現(xiàn)其 δ202Hg均值分別為-0.74‰±0.11‰(n=14)和 0.08‰±0.20‰(n=11),暗示在干餾過程發(fā)生顯著的汞同位素質(zhì)量分餾(MDF,-0.8‰)。值得一提的是,目前絕大多數(shù)巖(礦)石汞同位素非質(zhì)量分餾特征不明顯,其Δ199Hg絕對值小于0.2‰,汞同位素非質(zhì)量分餾過程包括 Hg2+光反應(yīng)過程和有機汞的光降解過程,這導(dǎo)致了奇數(shù)汞同位富集在殘余相中(Bergquist et al.,2007b)。這一現(xiàn)象從側(cè)面印證了表生環(huán)境汞的光化學(xué)作用是導(dǎo)致自然界汞同位素非質(zhì)量分餾的主要原因。
從上述分析可知,巖石圈、大氣環(huán)境、陸地環(huán)境和水環(huán)境之間同位素組成差異顯著,同一環(huán)境內(nèi)部不同物質(zhì)樣品同位素組成也各不相同。汞有7種穩(wěn)定同位素,并且兼具質(zhì)量分餾和非質(zhì)量分餾特征,使通過汞同位素對汞污染源及其地球化學(xué)過程進行示蹤成為理想途徑。但由于自然界汞同位素基礎(chǔ)數(shù)據(jù)庫仍未完全建立,并且對一些引發(fā)同位素分餾的機理仍不清楚,致使通過汞同位素成功示蹤的案例并不多見。
Biswas首次展示了通過汞同位素質(zhì)量分餾和非質(zhì)量分餾特性對不同煤源汞進行示蹤的案例(Sherman et al.,2013a)。Feng et al.(2013)和 Liu et al.(2011)分別對地表土和沉積物中同位素組成進行了測定,并對其來源進行分析,得出不同來源汞具有不同的同位素組成。Yin et al.(2015)通過汞同位素對污染源進行示蹤研究,得出汞同位素定量點源污染尤其有效,而對偏離汞污染的偏遠(yuǎn)地區(qū),由于汞經(jīng)過復(fù)雜的地球化學(xué)過程而引起的汞同位素分餾,其環(huán)境介質(zhì)往往與污染源同位素特征存在差異。Yin et al.(2014a)對我國主要煤產(chǎn)地汞同位素進行了測試,發(fā)現(xiàn)西北、東北煤產(chǎn)地與西南、華北東部產(chǎn)煤區(qū)具有顯著的同位素組成差異。Yin認(rèn)為熱液入侵導(dǎo)致西南與華北東部具有較重的δ202H(-0.87±0.40‰)和微不足道的非質(zhì)量分餾(Δ199Hg=-0.03±0.40‰),而西北與東北煤產(chǎn)區(qū)煤保留了成煤植物具較輕的 δ202Hg(-1.19‰±0.56‰)和顯著的非質(zhì)量分餾(Δ199Hg=-0.10‰±0.19‰)特征。由此表明,中國主要產(chǎn)煤地汞同位素組成差異顯著,這使得成功區(qū)分大氣汞燃煤源成為了可能。Yin et al.(2013c)對萬山汞礦汞礦石、廢棄的煅燒物和下游沉積物汞同位素組成進行了測試,并通過混合模型對下游沉積物中汞源進行分析。Yin et al.(2013c)通過對局域環(huán)境內(nèi)汞同位素進行研究并通過模型對局域環(huán)境內(nèi)可能的汞污染源進行了溯源分析,驗證了通過汞同位素溯源的可行性。但是,由于汞遷移運動具有全球性,域外汞源不得而知,這也說明了建立汞同位素自然庫存的必要性。
同位素分餾系數(shù)數(shù)據(jù)庫的建立,將使汞源示蹤變得更加簡單快捷。環(huán)境中汞從一種物相進入另一種物相,可能產(chǎn)生的同位素分餾效應(yīng),依據(jù)其分餾系數(shù)能反演其反應(yīng)物同位素組成,進而對汞源進行判斷,因此,同位素分餾系數(shù)數(shù)據(jù)庫的完善可能成為今后汞同位素研究領(lǐng)域的一個方向。國外對汞同位素自然庫存研究較多,如Demers et al.(2013)、Zhang et al.(2013)、Yin et al.(2013a)和 Biswas et al.(2008)等對不同植物吸收汞造成的汞同位素分餾系數(shù)進行了研究;Gratz et al.(2010)和Sherman et al.(2012)對雨、雪和大氣沉降物與大氣汞同位素比值進行了比較。國內(nèi)部分研究團隊對局域內(nèi)汞同位自然庫存的研究也取得了一定成果,如Feng et al.(2008;2010;2013)、Liu et al.(2011)、Yin et al.(2013a;2013b;2013c;2014a;2014b;2015),但距汞同位素的實際應(yīng)用仍存在較大距離。因此,為了能對汞污染源進行準(zhǔn)確溯源,今后較長時間內(nèi)汞同位素研究工作重點仍舊是完善汞同位素自然庫存。
國內(nèi)外研究者對自然界汞轉(zhuǎn)化過程中汞同位素分餾規(guī)律進行了初步研究,使利用汞同位比值特征對可能涉及的生物、物理和化學(xué)過程進行判斷成為可能,如在揮發(fā)、液化和吸附過程中殘余物相對更富集重同位素(Estrade et al.,2009;Ghosh et al.,2013;Jiska et al.,2012;Wiederhold et al.,2010)。奇數(shù)汞同位素非質(zhì)量分餾僅被發(fā)現(xiàn)于揮發(fā)、還原反應(yīng)和吸附等過程,并且已被試驗所證實。眾多研究者認(rèn)為,Δ199Hg/Δ201Hg比值約為1.6時,為核體積效應(yīng)所致;Δ201Hg與Δ199Hg值接近于1.36,為有機汞的光降解所致;Δ201Hg與 Δ199Hg值接近于1.00,為 Hg2+的光還原所致(Bergquist et al.,2007b,a;Buchachachenko et al.,2001;Demers et al.,2013;Ghosh et al.,2013;Sun et al.,2014;Sonke,2011;Sherman et al.,2012;Wiederhold et al.,2010;Zheng et al.,2010)。Δ199Hg/Δ201Hg 比值已被廣泛應(yīng)用于對汞地球化學(xué)反應(yīng)的判斷。
國內(nèi)外研究者通過多年的探索研究,在汞同位素研究領(lǐng)域取得了可喜成果,但是對汞同位素的認(rèn)識還是十分有限的,主要表現(xiàn)在以下幾點:
由于自然界個別汞同位素豐度低,如196Hg、204Hg,當(dāng)今測試技術(shù)未能對其進行有效識別,因此對汞同位素數(shù)據(jù)的報道僅局限于豐度較高的同位素,如199Hg、201Hg、202Hg,研究對象多集中在汞含量較高的樣品,如巖石、沉積物、土壤等,對汞含量相對較低的大氣、植被樣品報道較少,相對于通過汞單同位素對汞污染源和汞轉(zhuǎn)化過程進行示蹤,多汞同位素?zé)o疑更具有優(yōu)勢,因此高精度測試技術(shù)依然是制約汞同位素研究進展的關(guān)鍵因素。同一區(qū)域汞遷移、運動、轉(zhuǎn)化具有復(fù)雜性,多數(shù)對汞同位素的報道僅局限于某一環(huán)境的一個或數(shù)個過程,如光致還原反應(yīng)、微生物將降解、揮發(fā)作用等,樣品汞同位素組成可能是多種因素共同作用的結(jié)果,遺漏涉及的汞轉(zhuǎn)化過程勢必產(chǎn)生錯誤的結(jié)論,如土壤汞同位素不僅涉及光致還原、微生物降解還可能與土壤中活化基的存在有關(guān),如SMe-。同時,土壤中不同存在形式(有機汞、無機汞)汞同位素組成也鮮有報道,因此對汞同位素研究缺少系統(tǒng)性。國內(nèi)對汞同位素研究多局限于地球化學(xué)、環(huán)境領(lǐng)域,依據(jù)引發(fā)汞同位素分餾機制的多樣性和汞是為數(shù)不多同時具備質(zhì)量分餾效應(yīng)與非質(zhì)量分餾效應(yīng)的元素,其研究領(lǐng)域有待進一步擴展,如古氣候、健康醫(yī)學(xué)、天體學(xué)。
土壤是食物來源的主要場所。由煤及矸石自燃引起的土壤汞污染問題,已經(jīng)引起了社會的關(guān)注。煤炭開發(fā)無疑加劇了煤及煤矸石的表生地球化學(xué)活動,由煤及矸石自燃引起的汞污染問題,也已經(jīng)引起了社會的關(guān)注。研究表明,煤及煤矸石中汞不僅伴隨煤火(自燃)排放和遷移,而且自然風(fēng)化過程可能同樣伴隨著汞的釋放和遷移,顯著影響局域汞環(huán)境(Liang et al.,2014,2016;李春輝等,2017),甚至成為全球汞污染的一個主要來源。煤礦區(qū)周邊汞的遷移轉(zhuǎn)化非常復(fù)雜,不僅有來自煤和煤矸石的直接排放,而且大量汞具有二次排放特性,如煤火衍生物汞、落塵汞和土壤汞,這類汞的遷移轉(zhuǎn)化過程可能同樣伴隨著汞同位素的分餾效應(yīng),從而不利于對汞污染源的溯源研究。這類涉及煤和矸石的表生地球化學(xué)過程汞同位素分餾仍然未知,可能成為今后汞同位素地球化學(xué)研究的新方向之一。
BARTOV G, DENARINE A, JOHNSON T M, et al. 2013. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 1.Source apportionment using mercury stable isotopes [J].Environmental Science & Technologyl, 47(4): 2092-2099.
BERGQUIST B A, BLUM J D. 2007a. Mass-dependent and mass-independent fractionation of Hg isotopes in aquatic systems [J].Geochim Cosmochim Acta, 71: A83-A83.
BERGQUIST B A, BLUM J D. 2007b. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems [J].Science, 318(5849): 417-420.
BIGELEISEN J. 1996a. Nuclear size and shape effects in chemical reactions: Isotope chemistry of the heavy elements [J]. Journal of the American Chemical Society, 118(15): 3676-3680.
BIGELEISEN J. 1996b. Temperature dependence of the isotope chemistry of the heavy elements [J]. Proceeding of the National Academy of Sciences of the United States of America, 93(18): 9393-9396.
BISWAS A, BLUM J D, BERGQUIST B A, et al. 2008. Natural mercury isotope variation in coal deposits and organic soils [J]. Environmental Science & Technology, 42(22):8303-8309.
BLUM J D, ANBAR A D. 2010. Mercury isotopes in the late Archean Mount McRae Shale [J]. Geochim Cosmochim Acta, 74: A98.
BLUM J D, BERGQUIST B A. 2007. Reporting of variations in the natural isotopic composition of mercury [J]. Analytical Chemistry, 388(2):353-359.
BLUM J D, SHERMAN L S, JOHNSON M W. 2014. Mercury isotopes in earth and environmental sciences [J]. Annual Review Earth and Planetary Sciences, 42: 249-269.
BLUM J, JOHNSON M, GLEASON J, et al. 2012. Mercury concentration and isotopic composition of epiphytic tree lichens in the Athabasca oil sands region [M]//KEVIN E. Holland: Elsevier: 373-390.
BR?NSTED J N, VON HEVESY G. 1920. The separation of the isotopes of mercury [J]. Nature, 106: 144-147.
BUCHACHACHENKO A L. 2001. Magnetic isotope effect: Nuclear spin control of chemical reactions [J]. The Journal of Physical Chemistry A,105(44): 9995-10011.
BUCHACHACHENKO A L. 2009. Mercury isotope effects in the environmental chemistry and biochemistry of mercury-containing compounds [J]. Russian Chemical Review, 78: 319.
BUCHACHACHENKO A, IVANOV V, ROZNYATOVSKII V, et al. 2007.Magnetic isotope effect for mercury nuclei in photolysis of bis(ptrifluoromethylbenzyl) mercury [J]. Doklady Physical Chemistry,413(1): 39-41.
CAI H M, CHEN J B. 2016. Mass-indenpent fractionation of even mercury isotopes [J]. Science Bulletin, 61(2): 116-124.
CARIGNAN J, ESTRADE N, SONKE J E, et al. 2009. Odd isotope deficits in atmospheric Hg measured in lichens [J]. Environmental Science &Technology, 243: 5660-5664.
CHANDAN P, GHOSH S, BERQUIST B A. 2015. Mercury isotope fractionation during aqueous photoreduction of monomethyl mercury in the presence of dissolved organic matter [J]. Environmental Science& Technology, 49(1): 259-267.
CHEN J, HINTELMANN H, DIMOCK B. 2012b. Chromatographic preconcentration of Hg from dilute aqueous solutions for isotopic measurement by MC-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 25(9): 1402-1409.
CHEN J, HINTELMANN H, FENG X, et al. 2012a. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada [J]. Geochimica Cosmochimica Acta, 90:33-46.
COOKE C A, HINTELMANN H, AGUE J J, et al. 2013. Use and legacy of mercury in the Andes [J]. Environmental Science & Technology, 47(9):4181-4188.
DANIEL A, AXELRAD, DAVID C. BELLINGER, et al. 2007.Dose-Response relationship of prenatal mercury exposure and IQ: An integrative analysis of Epidemiologic Date [J]. Environmental Health Perspectives, 115(4): 609-615.
DAS R, BIZIMIS M, WILSON A M. 2013. Tracing mercury seawater vs.atmospheric inputs in a pristine SE USA salt marsh system: mercury isotope evidence [J]. Chemical Geology, 336: 50-61.
DAY R D, ROSENEAU D G, BERAIL S, et al. 2012. Mercury stable isotopes in seabird eggs reflect a gradient from terrestrial geogenic to oceanic mercury reservoirs [J]. Environmental Science & Technology,46(10): 5327-5335.
DELPHINE F, NIVES O, HOGER H. 2009. Trace mercury contamination from the idrija mining rehio (slovenia) to the gulf of trieste ueing Hg isotope ratio measurements [J]. Environmental Science & Technology,43(1): 33-39.
DEMERS J D, BLUM J D, ZAK D R. 2013. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle [J]. Global Biogeochemical Cycles, 27(1):222-238.
ESTRADE N, CARIGNAN J, DONARD O F X. 2010. Isotope tracing of atmospheric mercury sources in an urban area of northeastern France[J]. Environmental Science & Technology, 44(16): 6062-6067.
ESTRADE N, CARIGNAN J, DONARD O F X. 2011. Tracing and quantifying anthropogenic mercury sources in soils of northern France using isotopic signatures [J]. Environmental Science & Technology,45(4): 1235-1242.
ESTRADE N, CARIGNAN J, SONKE J E, et al. 2009. Mercury isotope fractionation during liquid-vapor evaporation experiments [J].Geochimica et Cosmochimica Acta, 73(10): 2693-2711.
FENG X B, FOUCHER D, HINTELMANN H, et al. 2010. Tracing mercury contamination sources in sediments using mercury isotope compositions [J]. Environmental Science & Technology, 44(9):3363-3368.
FENG X B, QIU G. 2008. Mercury pollution in Guizhou, Southwestern China-an overview [J]. Science of the Total Environemnt, 400(1-3):227-237.
FENG X B, YIN R, YU B, et al. 2013. Mercury isotope variations in surface soils in different contaminated areas in Guizhou Province,China [J]. Chinese Science Bulletin, 58(2): 249-255.
FITZGERALD W F, ENGSTROM D R, LAMBORG C H, et al. 2005.Modern and historic atmospheric mercury fluxes in northern Alaska:global sources and Arctic depletion [J]. Environmental Science &Technology, 39(2): 557-568.
FOUCHER D, HINTELMANN H, AL T A, et al. 2013. Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): tracing mercury contamination and transformation [J]. Chemical Geology, 336: 87-95.
FOUCHER D, HINTELMANN H, TELMER K, et al. 2009b. Historical records of Hg isotope fractionation [C]//Proceeding of 9th international conference of mercury as a global pollutant. Guiyang:Institute of geochemistry, Chinese Academy of Sciences: S15-15.
FOUCHER D, HINTELMANN H. 2006. High-percision measurement of mercury isotope ratios in sediments-using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry [J].Analytical and Bioanalytical Chemistry, 384(7-8): 1470-1478.
FOUCHER D, HINTELMANN H. 2009a. Tracing mercury contamination from the Idrija mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements [J]. Environmental Science &Technology, 43(1): 33-39.
FU X W, HEIMBURGER L E, SONKE J E. 2014. Collection of atmospheric gaseous mercury for stable isotope analysis using iodine-and chlorine-impregnated activated carbon traps [J]. Journal of Analytical Atomic Spectrometry, 29(5): 841-852.
GEHRKE G E, BLUM J D, MARVIN-DIPASQUALE M. 2011a. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica et Cosmochimica Acta, 75(3):691-705.
GEHRKE G E, BLUM J D, SLOTTON D G, et al. 2011b. Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments [J]. Environmental Science & Technology, 45(4):1264-1270.
GHOSH S, SCHAUBLE E A, COULOUME G L, et al. 2013. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments [J]. Chemical Geology, 336: 5-12.
GHOSH S, XU Y, HUMAYUN M, et al. 2008. Mass-idependent fractionation of mercury isotopes in the environment [J]. Geochmistry,Geophysics, Geosystems, 9(3): Q03004.
GRATZ L, KEELER G, BLUM J, et al. 2010. Isotopic composition and fractionation of mercury in Great lakes precipitation and ambient air[J]. Journal of Analytical Atomic Spectrometry, 44(20): 7764-7770.
GRAY J E, PRIBIL M J, VAN METRE P C, et al. 2013. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA [J]. Applied Geochemistry, 29: 1-12.
GUSTIN M S, LINDBERG S E, MARSIK F, et al. 1999. Nevada STORMS project: Measurement of mercury emission from naturally enriched surfaces [J]. Journal of Geophysical Research, 104(17):21831-21844.
HINTELMANN H, LU S Y. 2003. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multicollector inducyively coupled plasma mass spectrometry [J].Analyst, 128(6): 635-639.
JISKA M, WIEDERHOLD J, BOURDON B, et al. 2012. Solution speciation controls mercury isotope fractionation of Hg(Ⅱ) sorption to goethite [J]. Environmental Science & Technology, 46(12):6654-6662.
KRITEE K, BARKAY T, BLUM J D. 2009. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury [J]. Geochimica et Cosmochimica Acta, 73(5):1285-1296.
KRITEE K, BLUM J D, BARKAY T. 2008. Mercury stable isotope fractionation during reduction of Hg(Ⅱ) by different microbial pathways [J]. Environmental Science & Technology, 42(24):9171-9177.
KUMAR P, GOEL P S. 1994. Method for the preparation of mercury and osmium samples suitable for ion microprobe measurements [J].Journal of Radioanalytical and Nuclrar Chemistry, 178(1): 55-62.
KWON S Y, BLUM J D, CARVAN M J, et al. 2012. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity [J]. Environmental Science & Technology, 46(14): 7527-7534.
LAFFONT L, SONKE J E, MAURICE L, et al. 2009. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon[J]. Environmental Science & Technology, 43(23): 8985-8990.
LAFFONT L, SONKE J E, MAURICE L, et al. 2011. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury [J]. Environmental Science &Technology, 45(23): 9910-9916.
LAMBORG C H, FITZGERALD W F, DAMMAN A W H, et al. 2002.Modern and historic atmospheric mercury fluxes in both emispheres:global and regional mercury cycling implications [J]. Glob Biogeochem Cycles, 16(4): 51-1-51-11.
LAURETTA D S, KLAUE B, BLUM J D, et al. 2000. Inductively coupled plasma mass spectrometry measurements of bulk mercury abundancesand isotopic ratios in Murchison (CM) and Allende (CV) [J].Meteoritics & Planetary Science, 35: A95-A96.
LAURETTA D S, KLAUE B, BLUM J D, et al. 2001. Mercury abundances and isotopic compositions in the Murchison(CM) and Allende(CV)carbonaceous chondrites [J]. Geochimica et Cosmochimica Acta,65(16): 2807-2818.
LEFTICARIU L, BLUM J D, GLEASON J D. 2011. Mercury isotopic evidence for multiple mercury sources in coal from the Illinois Basin[J]. Environmental Science & Technology, 45(4): 1724-1729.
LIANG Y C, LIANG H D, ZHU S Q. 2014. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China [J]. Atmospheric Environment, 83: 176-184.
LIANG Y C, LIANG H D, ZHU S Q. 2016. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China [J]. Fuel, 182: 525-530.
LINDBERG S, BULLOCK R, EBINGHAUS R, et al. 2007. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition [J]. Ambio, 36(1): 19-32.
LINDQVIST O, JOHANSSON K, AASTRUP M, et al. 1991. Mercury in the Swedish environment [J]. Water Air Soil Pollut, 55: 193-216.
LIU J L, FENG X B, YIN R S, et al. 2011. Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China [J]. Chemical Geology, 287(1-2): 81-89.
LOUIS S T. V L, HINTELMANN H, GRAYDON J A, et al. 2007.Methylated mercury species in Canadian high Arctic marine surface waters and snowpacks [J]. Environmental Science & Technology,41(18): 6433-6441.
MA J, HINTELMANN H, KIRK J L, et al. 2013. Mercury concentrations and mercury isotope composition in lake sediment cores from the vicinity of a metal smelting facility in Flin Flon, Manitoba [J].Chemical Geology, 336: 96-102.
MEAD C, JOHNSON T M. 2010. Hg stable isotope analysis by the double spike method [J]. Analytical and Bioanalytical Chemistry, 397(4):1529-1538.
MEAD C, LYONS J R, JOHNSON T M, et al. 2013. Unique Hg stable isotope signatures of compact fluorescent lamp-sourced Hg [J].Environmental Science & Technology, 47(6): 2542-2547.
MUGHABGHAB S. 2003. Thermal neutron capture cross sections resonance, integral and g-factor[R]. International Nuclear Data Committee(INDC).
PAPLO R G, EPOV V N, BRIDOU R, et al. 2009. Species-specific stable isotope fractionation of mercury during Hg(Ⅱ) methlation by an anaerobic bacteria(Desuifobulbus propionicus) under dark conditions[J]. Environmental Science & Technology, 43(24): 9183-9188.
PIRRONE N, CINNIRELLA S, FENG X B, et al. 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmospheric Chemistry and Physics, 10: 5950-5964.
POINT D, SONKE J, DAY R, et al. 2011. Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems [J]. Nature Geoscience, 4: 188-194.
ROLISON J, LANDING W, LUKE W, et al. 2013. Isotopic composition of species-specific atmospheric Hg in a coastal environment [J].Chemical Geology, 336: 37-49.
SCHAUBLE E A. 2007. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements [J]. Geochim Cosmochim Acta, 71(9): 2170-2189.
SELIN N E. 2009. Global biogeochemical cycling of mercury: A review [J].Annual Review of Environment and Resources, 34: 43-63.
SHERMAN L S, BLUM J D, DOUGLAS T A, et al. 2012. Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface: 2.Mercury exchange between the atmosphere, snow, and frost flowers[J]. Journal of Geophysical Research: Atmospheres, 117(D14):188-194.
SHERMAN L S, BLUM J D, FRANZBLAU A, et al. 2013b. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes [J]. Environmental Science & Technology,47(7): 3403-3409.
SHERMAN L S, BLUM J D, JOHNSON K P, et al. 2010.Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight [J]. Nature Geoscience, 3: 173-177.
SHERMAN L S, BLUM J D, KEELER G J, et al. 2011. Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes [J]. Environmental Science & Technology, 46(1): 382-390.
SHERMAN L S, BLUM J D, NORDSTROM D K, et al. 2009. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift [J]. Earth and Planetary Science Letters, 279(1-2): 86-96.
SHERMAN L S, BLUM J D. 2013a. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA [J]. Science of the Total Environment, 448: 163-175.
SHI W F, FENG X B, ZHANG G, et al. 2011. High-precision measurement of mercury isotope ratios of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan Province,China [J]. Chinese Science Bulletin, 56: 877-882.
SMITH C N, KESLER S E, BLUM J D, et al. 2008. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA [J]. Earth and Planetary Science Letters,269(3-4): 399-407.
SMITH C N, KESLER S E, KLAUE B, et al. 2005. Mercury isotope fractionation in fossil hydrothermal systems [J]. Geology, 33(10):825-828.
SOMERER T J. 1993. A Monte Carlo simulation of resonance radiation transport in the rare-gas-mercury positive column [J]. Journal of Applied Physics, 74: 1579-1589.
SONKE J E, SCHh?FER J, CHMELEFF J, et al. 2010. Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries [J]. Chemical Geology, 279(3-4): 90-100.
SONKE J E. 2011. A global model of mass independent mercury stable isotope fractionation [J]. Geochimica et Cosmochimica Acta, 75(16):4577-4590.
STETSON S J, GRAY J, WANG R B, et al. 2009. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of minewaste calcine from areas mined for mercury [J]. Environmental Science &Technology, 43: 7331-7336.
?TROK M, BAYA P A, HINTELMANN H, DIMOCK B. 2014.Development of preconcentration procedure for the determination of Hg isotope ratios in seawater samples [J]. Analytica Chimica Acta,851: 57-63.
?TROK M, BAYA P A, HINTELMANN H. 2015. The mercury isotope composition of Arctic coastal seawater [J]. Comptes Rendus Geoscience, 347(7-8): 368-376.
SUN R, HEIMBüRGER L E, SONKE J E, et al. 2013. Mercury stable isotope fractionation in six utility boilers of two large coalfired power plants [J]. Chemical Geology, 336: 103-111.
SUN R, SONKE J E, HEIMBüRGER L E, et al. 2014. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions [J]. Environmental Science & Technology,48(13): 7660-7668.
TSUI M T K, BLUM J D, KWON S Y, et al. 2012. Sources and transfers of methylmercury in adjacent river and forest food webs [J].Environmental Science & Technology, 46(20): 10957-10964.
VINCENT P, ROMAIN B, ZOYNE P, et al. 2015. Identical Hg isotope mass dependent fractionation signature during methylation by sulfate-reducing bacteria in sulfate and sulfate-free environment [J].Environmental Science & Technology, 49(3): 1365-1373.
WANG Z, CHEN J, FENG X B, et al. 2015. Mass-dependent and massindependent fractionation of mercury isotopes in precipitation from Guiyang, SW China [J]. Comptes Rendus Geoscience, 347(7-8):358-367.
WIEDERHOLD J G, CRAMER C J, DANIEL K, et al. 2010. Equilibrium mercury isotope fractionation between dissolved Hg (II) species and thiol-bound Hg [J]. Environmental Science & Technology, 44(11):4191-4197.
YIN R S, FENG X B, CHEN B, et al. 2015. Identifying the sources and processed of mercury in subtropical estuarine and ocean sediments using Hg isotopic composition [J]. Environmental Science &Technology, 49(3): 1347-1355.
YIN R S, FENG X B, CHEN J B. 2014a. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications [J]. Environmental Science & Technology, 48(10): 5565-5574.
YIN R S, FENG X B, LI X D, et al. 2014b. Trends and advances in mercury stable isotope system as a geochemical tracer [J]. Trends in Environmental Analytical Chemistry, (2): 1-10.
YIN R S, FENG X B, MENG B. 2013a. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China [J]. Environmental Science & Technology, 47(5):2238-2245.
YIN R S, FENG X B, WANG J X, et al. 2013b. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China [J]. Chemical Geology, 336: 80-86.
YIN R S, FENG X B, WANG J X, et al. 2013c. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China [J]. Chemical Geology, 336:72-79.
YOUNG E D, GALY A, NAGAHARA H. 2002. Kinetic and equilibrium
mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance [J]. Geochimica et Cosmochimica Acta, 66(6): 1095-1104.
YUAN S, ZHANG Y, CHEN J, et al. 2015. Large variation of mercury isotope composition during a single precipitation event at Lhasa City,Tibetan Plateau, China [J]. Procedia Earth and Planetary Science, 13:282-286.
ZAHIR F, RIZWI S J, HAQ S K, et al. 2005. Low dose mercury toxicity and human health. Environ [J]. Regulatory Toxicology and Pharmacology, 20(2): 351-360.
ZAMBARDI T, SONKE J E, TOUTAIN J P, et al. 2009. Mercury emission and stable isotopic compositions at Vulcan Isand (Italy) [J]. Earth and Planetary Science Letters, 277(1-2): 236-243.
ZHANG H, YIN R S, FENG X B, et al. 2013. Atmospheric mercury inputs in montane soils increase with elevation evidence from mercury isotope signatures [J]. Scientific Reports, (3): 3322.
ZHANG L, LIU Y W, GUO L S, et al. 2014. Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan earth-quake Fault scientific drilling project hole-1(WFSD-1) [J]. Tectonophysics,619-620: 79-85.
ZHENG W, HINTELMANN H. 2009. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio [J]. Geochimica et Cosmochimica Acta, 73(22): 6704-6715.
ZHENG W, HINTELMANN H. 2010. Isotope fractionation of mercury during its photochemical reduction by low-molecular -weight organic compounds [J]. Journal of Physical Chemistry A, 114(12): 4246-4253.
ZHENG W, HINTELMANN H. 2010. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light [J]. Journal of Physical Chemistry A, 114(12): 4238-4245.
馮新斌, 尹潤生, 俞奔, 等. 2015. 汞同位素地球化學(xué)概述[J]. 地學(xué)前緣,22(5): 124-135.
李春輝, 梁漢東, 陳洋, 等. 2017. 中國烏達煤炭基地塵土汞分布特征[J]. 中國環(huán)境科學(xué), 37(6): 2203-2210.
尹潤生, 馮新斌, FOUCHER D, 等. 2010. 多接收電感耦合等離子體質(zhì)譜法高精密度測定汞同位素組成[J]. 分析化學(xué), 38(7): 929-934.
Abstract: As the basis of accurate tracing back mercury pollution sources, the mercury isotope natural database and its complement is still the focus in the mercury isotope research field. Mercury has 7 stable isotopes, which are both mass-dependent fractionation(MDF) and mass-independent fractionation (MIF), making it an ideal way to trace mercury sources and mercury migration and transformation processes. The study of Hg isotope database has achieved significant progress by using the multiple collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) to accurately test mercury isotopes. The summaries are as follows: the database of natural sample Hg isotope is initially established. The composition of mercury Isotopes varies with the change of samples and environments. It has a preliminary understanding of isotope fractionation mechanism. And mercury isotopes have been successfully used to track sources and geochemical pathways of Hg in the environment. Fractionation characteristics have been mastered in some natural processes, especially the typical process of MDF and MIF (photo-reduction, adsorption), which has been used to determine the geochemical transformation of mercury. The migration and transformation of the coal fire surface mercury is complex because partial mercury on the surface may come up secondary release. This fractionation process of mercury isotope has no doubt made it difficult to trace the pollution source by isotope studies. So mercury isotope geochemistry characteristics in the coal fire area may be a new direction in the mercury isotope research field.
Key words: mercury isotopes; fractionation effect; mercury isotope database; geochemical tracer
Progresses in Study of Hg Isotope Database
LI Chunhui1,2, WANG Ting1, LIANG Handong1,2*, SHI Yunyun1, CAO Qingyi1
1. State Key Laboratory of Coal Resoures and Safe Mining//China University of Mining and Technology, Beijing 100083, China;2. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
10.16258/j.cnki.1674-5906.2017.09.024
P597.2; X14
A
1674-5906(2017)09-1627-12
李春輝, 汪婷, 梁漢東, 施云云, 曹慶一. 2017. 汞同位素自然庫存研究進展[J]. 生態(tài)環(huán)境學(xué)報, 26(9): 1627-1638.
LI Chunhui, WANG Ting, LIANG Handong, SHI Yunyun, CAO Qingyi. 2017. Progresses in study of Hg isotope database [J].Ecology and Environmental Sciences, 26(9): 1627-1638.
國家自然科學(xué)基金項目(41371449)。
李春輝(1990年生),男,博士研究生,主要從事汞污染研究。E-mail: 673171500@qq.com*通信作者:梁漢東(1959年生),男,教授,博士生導(dǎo)師。E-mail: HDL6688@vip.sina.com
2017-06-30