何文強,鄭志豪,張萬福
1中國艦船研究設(shè)計中心,上海201108
2上海理工大學能源與動力工程學院,上海200093
水蒸汽參數(shù)對密封動靜特性的影響
何文強1,鄭志豪1,張萬福2
1中國艦船研究設(shè)計中心,上海201108
2上海理工大學能源與動力工程學院,上海200093
[目的]為了研究工質(zhì)參數(shù)對透平機械中密封動靜特性的影響,[方法]建立梳齒密封三維數(shù)值模型,分別以空氣和水蒸汽為工質(zhì),應(yīng)用計算流體力學(CFD)方法和旋轉(zhuǎn)坐標系方法分析不同水蒸汽參數(shù)對密封泄漏性能和動力特性系數(shù)的影響。[結(jié)果]結(jié)果表明:工質(zhì)為空氣和水蒸汽時,密封的泄漏特性區(qū)別很大,其流體激振力與渦動速度分別呈線性和二次非線性的變化關(guān)系。當水蒸汽溫度增加時,密封動力特性系數(shù)的變化將導致系統(tǒng)的穩(wěn)定性下降。[結(jié)論]因此工質(zhì)參數(shù)對透平機械的系統(tǒng)穩(wěn)定性具有重要意義,在實際應(yīng)用中需要考慮工質(zhì)參數(shù)對密封動靜特性及轉(zhuǎn)子系統(tǒng)的影響。
密封;水蒸汽;泄漏量;計算流體力學;動力特性系數(shù)
Abstract:[Objectives]In order to study the influence of working medium parameters on the static and dynamic characteristics of seals in turbomachinery,[Methods]a three-dimensional model of a labyrinth seal was created,and air and steam were applied in the numerical simulation.The Computational Fluid Dynamics(CFD)method and a rotating frame were applied to analyze the influence of different steam parameters on the leakage characteristics and dynamic characteristic coefficients.[Results]The results show that great differences in leakage flow rate are apparent under different air and steam conditions,and the fluid-induced force shows linear and nonlinear variation with the increasing whirl speed.When the steam temperature increases,the system stability decreases as the dynamic characteristic coefficients change.[Conclusions]In consequence,working medium parameters are of great significance for turbine stability,and the influence of working medium parameters on the static and dynamic characteristics of seals should be given great attention in practical application.
Keywords:seal;steam;leakage flowrate;Computational Fluid Dynamics(CFD);dynamic characteristic coefficient
透平機械作為大型艦船的主要推進設(shè)備,其安全穩(wěn)定運行對艦船的生命力至關(guān)重要[1]。密封是透平機械內(nèi)減少泄漏及流動損失的重要部件,隨著高參數(shù)、大容量機組的發(fā)展,由密封帶來的流體激振問題日益突出[2-5]。為了減小由密封引起的泄漏損失及流體激振問題,國內(nèi)外學者相繼提出了多種型式的密封結(jié)構(gòu),例如梳齒[6-8]、刷式[9]、指尖[10]、階梯[11]、螺旋槽[12]、蜂窩[13-15]、袋式[16]、混合[17-18]等,并對密封動靜特性開展了大量研究。這類研究多以空氣介質(zhì)或水介質(zhì)為分析對象,并將其視為理想的氣體或不可壓縮流體,對壓縮機、泵等旋轉(zhuǎn)機械的預測效果較好。然而,對于大型透平機械而言,水蒸汽是最重要的工作介質(zhì),應(yīng)在機組運行過程中予以考慮。
本文將以傳統(tǒng)的梳齒密封為研究對象,應(yīng)用計算流體力學(Computational Fluid Dynamics,CFD)方法建立密封計算模型,對比分析空氣(理想氣體)工質(zhì)和水蒸汽工質(zhì)的密封動靜特性,總結(jié)水蒸汽參數(shù)對密封泄漏性能和動力特性系數(shù)的影響規(guī)律。
圖1所示為密封的二維模型[19],圖中尺寸標注單位為mm。采用CFD前處理器軟件GAMBIT建立密封三維模型,工作介質(zhì)分別設(shè)為空氣(理想氣體)和水蒸汽。采用k-ε湍流模型,壁面采用無滑移絕熱固壁。邊界條件為壓力入口邊界和壓力出口邊界。表1所示為CFD仿真模型的計算參數(shù)。
圖1 梳齒密封二維模型Fig.1 Two-dimensional model of the labyrinth seal
表1 CFD仿真模型的參數(shù)Table 1 Parameters of CFD simulation model
應(yīng)用旋轉(zhuǎn)坐標系方法對密封動力特性進行求解,如圖2所示。圖中:Ω為轉(zhuǎn)子渦動速度;ω為轉(zhuǎn)子轉(zhuǎn)速;δ=0.029 2 mm[19],為轉(zhuǎn)子偏心距;O′為轉(zhuǎn)子中心;O為靜子中心。將渦動速度為Ω的旋轉(zhuǎn)坐標系建立在轉(zhuǎn)子軸心,則在該坐標系下轉(zhuǎn)子的位置固定不變,從而將不穩(wěn)定問題轉(zhuǎn)化為穩(wěn)定問題,消除了控制方程的時間相關(guān)項。
圖2 旋轉(zhuǎn)坐標系Fig.2 Rotating frame
對于空氣(理想氣體),可以忽略流體慣性力,其動力特性系數(shù)與氣流力的關(guān)系為
式中:K,k分別為直接、交叉耦合剛度系數(shù);C,c分別為直接、交叉耦合阻尼系數(shù);Fr,F(xiàn)t分別為作用于轉(zhuǎn)子的徑向方向氣流力和切向方向氣流力。
對于液體、水蒸汽等工質(zhì),一般不能忽略流體慣性力[20-21],其動力特性系數(shù)與氣流力的關(guān)系為
式中,M和m分別為直接、交叉耦合慣性力(附加質(zhì)量)系數(shù)。
對不同渦動速度(Ω=0,ω/4,ω/2,3ω/4,ω)的氣流力進行求解,然后代入式(1)和式(2),即可得到動力特性系數(shù)。
針對梳齒密封三維模型進行仿真計算,并與文獻[19]的仿真計算結(jié)果進行對比,以驗證本文密封模型的精度。
表2所示為密封泄漏量(單位:kg/s)的仿真結(jié)果對比,當工質(zhì)為空氣時,兩者的誤差約為1.3%。表3所示為動力特性系數(shù)(K,k,C,c,M,m)的仿真結(jié)果對比,與文獻[19]相比,除了K偏大之外,k,C,c的吻合度均較高。
表2 密封泄漏量對比Table 2 Comparison of seal leakage flowrate
表3 動力特性系數(shù)對比Table 3 Comparison of dynamic characteristic coefficients
由表3可知,與空氣工質(zhì)相比,工質(zhì)為水蒸汽時的質(zhì)量流量急劇增加,阻尼系數(shù)增大約10倍。由于增加了慣性項,因此應(yīng)考慮流體的附加質(zhì)量。
根據(jù)文獻[19]中的工質(zhì)溫度,當計算工質(zhì)分別為空氣和水蒸汽時,作用于轉(zhuǎn)子的氣流力與渦動速度間的變化關(guān)系分別如圖3和圖4所示。當工質(zhì)為空氣時,氣流力絕對值隨著渦動速度的增加而線性增加;當工質(zhì)為水蒸汽時,由于附加質(zhì)量的影響,氣流力與渦動速度呈二次非線性變化關(guān)系。
圖3 氣流力隨渦動速度的變化(T=366.7 K,空氣)Fig.3 Fluid induced force versus whirl speed(T=366.7 K,Air)
圖4 氣流力隨渦動速度的變化(T=366.7 K,水蒸汽)Fig.4 Fluid induced force versus whirl speed(T=366.7 K,steam)
圖5所示為工質(zhì)為水蒸汽時密封動力特性系數(shù)隨其入口溫度的變化曲線。隨著水蒸汽溫度增加,直接耦合剛度系數(shù)和交叉耦合剛度系數(shù)的絕對值逐漸增加,而直接耦合阻尼系數(shù)、交叉耦合阻尼系數(shù)、慣性項系數(shù)的絕對值則逐漸減小。從穩(wěn)定性角度而言,交叉耦合剛度系數(shù)的增加和直接耦合阻尼系數(shù)的減小會導致系統(tǒng)穩(wěn)定性下降,因此大型機組應(yīng)考慮工質(zhì)參數(shù)對系統(tǒng)穩(wěn)定性的影響。
圖5 密封入口溫度對動力特性系數(shù)的影響Fig.5 Influence of seal inlet temperature on the dynamic characteristic coefficients
表4所示為不同水蒸汽溫度的密封泄漏特性,圖6所示為相應(yīng)的非線性關(guān)系曲線。由表4和圖6可見,隨著工質(zhì)溫度的增加,泄漏量逐漸減?。槐热葜饾u增加,在T=523 K時由于蒸汽從未飽和水變?yōu)檫^熱蒸汽,比容急劇增加;運動粘度在未飽和水狀態(tài)時逐漸減小,在過熱蒸汽狀態(tài)時逐漸增加。
表4 不同水蒸汽溫度的密封泄漏特性Table 4 Seal leakage characteristics under different steam temperatures
圖6 密封入口溫度對泄漏特性的影響(水蒸汽)Fig.6 Influence of seal inlet temperature on the leakage characteristics(steam)
針對傳統(tǒng)梳齒密封,本文應(yīng)用CFD方法建立數(shù)值分析模型,對不同工質(zhì)參數(shù)的密封動靜特性進行了計算分析,主要結(jié)論如下:
1)當工質(zhì)為水蒸汽時,其質(zhì)量流量較空氣工質(zhì)急劇增加,阻尼系數(shù)增加約10倍,同時還增加了慣性項。隨著水蒸汽溫度的增加,質(zhì)量流量呈非線性減小趨勢,此時流體的附加質(zhì)量應(yīng)予以考慮。
2)工質(zhì)為空氣(理想氣體)和水蒸汽時,氣流力與渦動速度分別呈線性和二次非線性變化關(guān)系。
3)當水蒸汽(過熱狀態(tài))溫度增加時,直接耦合剛度系數(shù)和交叉耦合剛度系數(shù)的絕對值逐漸增加,而直接耦合阻尼系數(shù)、交叉耦合阻尼系數(shù)、慣性項系數(shù)的絕對值則逐漸減小。由于交叉耦合剛度系數(shù)的增加和直接耦合阻尼系數(shù)的減小會導致系統(tǒng)穩(wěn)定性下降,故大型機組更需要考慮工質(zhì)參數(shù)對系統(tǒng)穩(wěn)定性的影響。
[1]楊建,牛茂升,郭棟,等.某超超臨界汽輪機高壓進汽腔整圈斜置靜葉的數(shù)值仿真[J].中國艦船研究,2016,11(3):97-101.YANG J,NIU M S,GUO D,et al.Numerical simulation of skew stators with inlet chamber of ultra supercritical steam turbines[J].Chinese Journal of Ship Research,2016,11(3):97-101(in Chinese).
[2]何國安,趙利軍,任緯,等.1 000 MW汽輪機汽流激振的故障分析及處理[J].中國電力,2014,47(4):27-31.HE G A,ZHAO L J,REN W,et al.Analyzing and troubleshooting the steam-flow exciting vibration fault for 1 000 MW unit[J].Electric Power,2014,47(4):27-31(in Chinese).
[3]史進淵,孫慶,危奇,等.超超臨界汽輪機汽流激振的研究[J].動力工程,2003,23(5):2620-2623.SHI J Y,SUN Q,WEI Q,et al.Research on the steam-excited vibration of ultra supercritical steam turbines[J].PowerEngineering, 2003, 23(5):2620-2623(in Chinese).
[4]荊建平,孟光,趙玫,等.超超臨界汽輪機汽流激振研究現(xiàn)狀與展望[J].汽輪機技術(shù),2004,46(6):405-407,410.JING J P,MENG G,ZHAO M,et al.Survey and outlook on the research of the steam excitation of superior ultra-critical steam turbine[J].Turbine Technology,2004,46(6):405-407,410(in Chinese).
[5]駱名文.大型透平機械葉輪偏心引起的葉頂間隙氣流激振研究[D].武漢:華中科技大學,2007.
[6]李志剛,李軍,豐鎮(zhèn)平.迷宮密封泄漏特性影響因素的研究[J].西安交通大學學報,2010,44(3):16-20.LI Z G,LI J,F(xiàn)ENG Z P.Effects of gap pressure ratio and rotational speed on discharge behavior of labyrinth seal[J].Journal of Xi'an Jiaotong University,2010,44(3):16-20(in Chinese).
[7]丁學俊,楊彥磊,馮慧雯,等.迷宮密封齒角對動力特性系數(shù)的影響[J].流體機械,2005,33(4):16-19,30.DING X J,YANG Y L,F(xiàn)ENG H W,et al.Influence of angle of the labyrinth seal teeth on the rotor dynamic characteristics[J].Fluid Machinery,2005,33(4):16-19,30(in Chinese).
[8]沈慶根,鄭水英,朱祖超,等.透平壓縮機械一種消振型迷宮密封的研究[J].流體機械,1997,25(1):3-7.
[9]LELLI D,CHEW J W,COOPER P.Combined threedimensional fluid dynamics and mechanical modeling of brush seals[J].Journal of Turbomachinery,2006,128(1):188-195.
[10]蘇華.指尖密封結(jié)構(gòu)和性能的設(shè)計分析與試驗研究[D].西安:西北工業(yè)大學,2006.
[11]YüCEL U.Calculation of leakage and dynamic coeffi-cients of stepped labyrinth gas seals[J].Applied Mathematics and Computation,2004,152(2):521-533.
[12]CHILDS D W,GANSLE A J.Experimental leakage and rotor dynamic results for helically grooved annular gas seals[J].Journal of Engineering for Gas Turbines and Power,1996,118(2):389-393.
[13]張強,何立東.蜂窩密封動力特性系數(shù)的計算方法[J].中國電機工程學報,2007,27(11):98-102.ZHANG Q,HE L D.Study on calculation of the dynamic coefficients of honeycomb seals[J].Proceedings of the CSEE,2007,27(11):98-102(in Chinese).
[14]何立東,袁新,尹新.蜂窩密封減振機理的實驗研究[J].中國電機工程學報,2001,21(10):24-27.HE L D,YUAN X,YIN X.Experimental invertigation on the suppression mechanism for honeycomb seals[J].Proceedings of the CSEE,2001,21(10):24-27(in Chinese).
[15]李志剛,李軍,豐鎮(zhèn)平.蜂窩密封流動特性的數(shù)值研究和泄漏量計算公式的構(gòu)造[J].機械工程學報,2011,47(2):142-148.LI Z G,LI J,F(xiàn)ENG Z P.Numerical investigation on discharge behavior and predication formula establishment of leakage flow rate of honeycomb seal[J].Journal of Mechanical Engineering,2011,47(2):142-148(in Chinese).
[16]ERTAS B,GAMAL A,VANCE J.Rotor dynamic force coefficients of pocket damper seals[J].Journal of Turbomachinery,2006,128(4):725-737.
[17]PUGACHEV A O,DECKNER M.CFD prediction and test results of stiffness and damping coefficients for brush-labyrinth gas seals[R].Glasgow,UK:ASME,2010:175-185.
[18]LAOS H E,VANCE J M,BUCHANAN S E,et al.Hybrid brush pocket damper seals for turbomachinery[J].Journal of Engineering for Gas Turbines and Power,2000,122(2):330-336.
[19]HIRANO T,GUO Z L,KIRK R G.Application of computational fluid dynamics analysis for rotating machinery,Part 2:labyrinth seal analysis[J].Journal of Engineering for Gas Turbines and Power,2005,127(4):820-826.
[20]ATHAVALE M M,HENDRICKS R C.A small perturbation CFD method for calculation of seal rotor dynamic coefficients[J].International Journal of Rotating Machinery,1996,2(3):167-177.
[21]VENKATESAN G.CFD determination of flow perturbation boundary conditions for seal rotor dynamic modeling[D].Texas:Texas A&M University,2002.
Influence of steam parameters on static and dynamic characteristics of labyrinth seal
HE Wenqiang1,ZHENG Zhihao1,ZHANG Wanfu2
1 Shanghai Division,China Ship Development and Design Center,Shanghai 201108,China
2 School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
U664.1
A
10.3969/j.issn.1673-3185.2017.05.016
2017-02-13< class="emphasis_bold">網(wǎng)絡(luò)出版時間:
時間:2017-9-26 10:26
國家自然科學基金青年科學基金資助項目(11402148)
何文強(通信作者),男,1990年生,碩士,助理工程師。研究方向:轉(zhuǎn)子動力學,船舶動力裝置。E-mail:hwqseu@163.com
鄭志豪,女,1990年生,碩士,助理工程師。研究方向:動力工程。E-mail:584372697@qq.com
張萬福,男,1986年生,博士,講師。研究方向:氣流激振和轉(zhuǎn)子動力學。E-mail:zwf5202006@163.com
http://kns.cnki.net/kcms/detail/42.1755.TJ.20170926.1026.006.html期刊網(wǎng)址:www.ship-research.com
何文強,鄭志豪,張萬福.水蒸汽參數(shù)對密封動靜特性的影響[J].中國艦船研究,2017,12(5):126-131.
HE W Q,ZHENG Z H,ZHANG W F.Influence of steam parameters on static and dynamic characteristics of labyrinth sea[lJ].Chinese Journal of Ship Research,2017,12(5):126-131.