孫朝霞,侯思宇,令狐斌,劉榮華,王麗,楊武德,韓淵懷
(山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,山西太谷030801)
苦蕎全生育期蘆丁積累與其生物合成途徑相關(guān)基因表達(dá)分析
孫朝霞,侯思宇,令狐斌,劉榮華,王麗,楊武德,韓淵懷
(山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,山西太谷030801)
【目的】探究苦蕎全生育期蘆丁含量變化與其合成途徑關(guān)鍵酶基因和調(diào)控因子 MYB基因表達(dá)量之間的相關(guān)性,以期進(jìn)一步明確苦蕎植株體內(nèi)蘆丁生物合成的分子機(jī)制?!痉椒ā恳跃沤嗍w為試驗(yàn)材料,整個(gè)生育期分別在萌發(fā)期、子葉期、真葉期、盛葉期、現(xiàn)蕾期、盛花期、灌漿期和籽粒成熟期共8個(gè)時(shí)期取材(S1—S8)。采用RT-PCR方法,克隆獲得與黃酮類代謝相關(guān)的MYB類轉(zhuǎn)錄因子基因。采用T-coffee軟件進(jìn)行氨基酸同源序列比對(duì)及保守結(jié)構(gòu)域分析。與擬南芥黃酮類代謝相關(guān)的MYB轉(zhuǎn)錄因子及蕎麥同源MYB轉(zhuǎn)錄因子序列比對(duì),基于鄰近法構(gòu)建系統(tǒng)進(jìn)化樹(shù);實(shí)時(shí)熒光定量PCR技術(shù)分析蘆丁合成途徑中5個(gè)關(guān)鍵酶FtCHS、FtF3H、Ft4CL、FtFLS-like和FtUFGT及上述克隆到的MYB轉(zhuǎn)錄因子在不同組織中的表達(dá)模式?;诟咝б合嗌V法(HPLC)測(cè)定全生育期取材組織的蘆丁含量。同時(shí)采用相關(guān)性分析方法分析不同組織中蘆丁含量變化與基因表達(dá)模式的相關(guān)性。轉(zhuǎn)換上述數(shù)據(jù)為矩陣,采用歐式距離法構(gòu)建共表達(dá)層次聚類圖譜?!窘Y(jié)果】克隆到2個(gè)MYB類轉(zhuǎn)錄因子,即FtMYB7和FtMYB9,其核酸序列長(zhǎng)度分別為876和912 bp,分別編碼291和303個(gè)氨基酸殘基。氨基酸序列同源性比對(duì)分析結(jié)果表明,二者均具有典型的R2R3保守結(jié)構(gòu)域,為R2R3類型的MYB轉(zhuǎn)錄因子。結(jié)合Nr數(shù)據(jù)庫(kù)中17個(gè)苦蕎和3個(gè)擬南芥黃酮類代謝相關(guān)MYB轉(zhuǎn)錄因子同源氨基酸序列構(gòu)建系統(tǒng)進(jìn)化樹(shù),結(jié)果表明這22個(gè)基因分成6大類群,其中FtMYB7屬于第II類群,F(xiàn)tMYB9屬于第IV類群,二者分屬于不同類群,暗示這2個(gè)MYB轉(zhuǎn)錄因子可能涉及調(diào)控植物生長(zhǎng)發(fā)育過(guò)程中不同功能類型。熒光定量結(jié)果顯示,F(xiàn)tMYB7在 S3(真葉期)和S5(現(xiàn)蕾期)基因相對(duì)表達(dá)量最高,達(dá)到501和867倍;FtMYB9在S1(萌發(fā)期)和S2(子葉期)相對(duì)表達(dá)量最高,分別為34和72倍。上述基因表達(dá)量與蘆丁含量變化模式相關(guān)性分析表明,8個(gè)生長(zhǎng)時(shí)期中,F(xiàn)t4CL、FtCHS、FtF3H、FtUFGT和FtMYB7相對(duì)表達(dá)模式與蘆丁含量變化幅度呈正相關(guān),其相關(guān)系數(shù)分別為0.748、0.683、0.704、0.890和0.862。而FtFLS-like和FtMYB9與蘆丁含量的變化幅度呈負(fù)相關(guān),其相關(guān)系數(shù)分別為-0.442和-0.501?!窘Y(jié)論】FtMYB7和FtMYB9轉(zhuǎn)錄因子在整個(gè)生育時(shí)期中表達(dá)模式存在明顯差異。其中 FtMYB7可能在苦蕎蘆丁積累的過(guò)程中起到正調(diào)控作用,而FtMYB9則為負(fù)調(diào)控作用。
苦蕎;蘆?。籑YB基因;基因表達(dá)
Abstract:【Objective】 To explore the relationship among the rutin content at different developmental stages with rutin biosynthesis genes and MYB regulation genes, it will be very meaningful to understand the underlying molecular metabolism of rutin accumulation in tartary buckwheat. 【Method】 The whole developmental stages of F. tatarium Jiujiang were classified into 8 stages(germination, first pair of leaf formation, true leaf growth, vegetative growth, flowering, peak flowering, immature seeds , matured seeds),which were named S1-S8 stages. The whole seedlings from S1and S2 stage, leaves from S3 and S4 stage, flowers from S5 and S6 stage, seed formation organ from S7 and S8 stage were used as test materials. Two MYB genes, FtMYB7 and FtMYB9, were cloned and sequenced. The homologous amino acid sequence and conservative structure domain analysis were carried out by T-coffee software. The phylogenetic tree was constructed by the NJ method (neighbor-joining). The multiple sequence alignment of MYB transcription factors related with flavonoids among Arabidopsis and buckwheat were analyzed by MEGA 7.0 software. The rutin content of these tissues at S1-S8 stages was detected by HPLC. In the meantime, the expression level of rutin-biosynthesis-related genes (FtCHS, FtF3H, Ft4CL, FtFLS-like and FtUFGT) and regulator genes (FtMYB7 and FtMYB9) were investigated by qRT-PCR. The correlation of rutin content and the gene expression pattern during the whole developmental stage was estimated by Pearson correlation method. These data were transformed to matrix data, and constructed a Hierarchical cluster heat map by Euclidean distance method. 【Result】Cloned two MYB transcriptional factors, FtMYB7 and FtMYB9, their nucleic acid sequences were 876 and 912 bp, respectively, encoding 291 and 303 amino acid residues. The sequences of 17 MYB transcription factor from buckwheat, and 3 genes related to flavonoids metabolism in Arabidopsis were constructed for a phylogenetic tree. The phylogenetic tree showed that these genes were divided into six groups. Among them, FtMYB7 belongs to the group II, and FtMYB9 belongs to IV groups, the result indicated that the two MYB transcription factors involved in function diversity at regulation of plant growth and development process. The qRT-PCR results showed that the relative expression levels of FtMYB7 at S3 and S5 stages were the highest at 501 and 867 times, respectively. To FtMYB9, the highest gene expression levels were detected at S1 and S2 stages,and 34 and 72 times, respectively. Correlation analysis showed that during 8 growth stages, Ft4CL, FtCHS, FtF3H, FtUFGT and FtMYB7 expression patterns were positively correlated with rutin content, and the correlation coefficient was 0.748, 0.683, 0.704,0.890 and 0.862, respectively. However, FtFLS-like and FtMYB9 were negatively correlated with rutin content, and the correlation coefficients were -0.442 and -0.501, respectively. 【Conclusion】 The FtMYB7 and FtMYB9 were characterized by two R2R3 MYB genes. The different gene expression patterns and rutin content at the whole developmental stage of tartary buckwheat suggested that the FtMYB7 is positively regulated in rutin biosynthesis, but the FtMYB9 is negatively regulated.
Key words:Fagopyrum tataricum; rutin; MYB genes; gene expression
【研究意義】苦蕎又稱韃靼蕎麥(Fagopyrum tataricum),系蓼科蕎麥屬一年生的雙子葉雜糧作物??嗍w是典型的藥食同源作物,其籽粒含有的特殊的黃酮類化合物——蘆?。╮utin),具有較高的抗氧化活性,有抗癌作用,且可有效降低高血壓和高血脂的風(fēng)險(xiǎn)[1-2]??嗍w籽粒中蘆丁含量高達(dá) 2%,其葉、花和莖也均有較高含量蘆丁存在[3]。當(dāng)前,從植物中提取有效的天然藥用化合物來(lái)代替化學(xué)合成的藥用化合物或直接供人們食用,從而降低化學(xué)合成藥物對(duì)人體的副作用,已在一些專家學(xué)者中達(dá)到共識(shí)。因此,培育高蘆丁含量苦蕎品種(系)作為天然藥用化合物提取的資源庫(kù)或直接提供給特殊人群食用作為專性功能食品,已成為苦蕎育種的一個(gè)重要方向。MYB類轉(zhuǎn)錄因子在調(diào)控植物次生代謝中起到重要的作用,其家族成員龐大(如擬南芥中有196個(gè),白菜中有256個(gè)),每個(gè)成員擔(dān)負(fù)著調(diào)控不同生物代謝過(guò)程的功能[4-5]。目前,調(diào)控苦蕎黃酮醇類化合物的MYB轉(zhuǎn)錄因子研究報(bào)道較少,因此分離鑒定調(diào)控苦蕎蘆丁生物合成的MYB轉(zhuǎn)錄因子,對(duì)進(jìn)一步闡明苦蕎植株中蘆丁生物合成的分子機(jī)制具有重要意義[6]?!厩叭搜芯窟M(jìn)展】擬南芥中共有125個(gè)具有R2R3結(jié)構(gòu)域的MYB轉(zhuǎn)錄因子,已證實(shí)這些轉(zhuǎn)錄因子參與多種生物功能,聚類分析表明這些轉(zhuǎn)錄因子被分為25類(S1—S25)。其中AtMYB11、AtMYB12和AtMYB111歸為S7類,分別調(diào)控不同組織內(nèi)黃酮類化合物的生物合成,因此,這類基因也稱為PFG1-3(production of flavonol glycosides)[7-9]。在柑橘全基因組分析中,獲得101個(gè)R2R3 MYB轉(zhuǎn)錄因子,已被證實(shí)參與生長(zhǎng)發(fā)育調(diào)節(jié)、非生物脅迫及植物激素響應(yīng)的過(guò)程[10];CZEMMEL等[11]也證實(shí) VvMYBF1直接調(diào)控葡萄果實(shí)黃酮醇的合成。蘆丁生物合成途徑已經(jīng)研究較為清楚,參考KEGG(Kyoto Encyclopedia of Genes and Genomes)代謝途徑數(shù)據(jù)庫(kù)中關(guān)于黃酮和黃酮醇類生物合成途徑圖譜,蘆丁生物合成途徑中的關(guān)鍵酶包括苯丙氨酸解氨酶(phenylalanine ammonialyase,PAL)、肉桂酸-4-羥化酶(cinnamate-4-hydroxylase,C4H)、4-香豆酸輔酶 A 連接酶(4-coumarate coenzyme A ligase,4CL)、查耳酮合成酶(chalcone synthase,CHS)、查耳酮異構(gòu)酶(chalconeisomerase,CHI)、黃酮醇-3-脫氫酶(flavonol-3-dehydrogenase,F(xiàn)3H)、黃酮醇合成酶(flavonol synthetase,F(xiàn)LS)和黃酮糖基轉(zhuǎn)移酶(UDP-glucoronosyl/UDP-glucosyl transferase,UFGT)。先前從苦蕎葉片和花cDNA中克隆到蘆丁合成途徑中 5個(gè)關(guān)鍵酶基因Ft4CL、FtCHS、FtF3H、FtFLS-like和FtUFGT[12]。植物中CHS(EC 2.3.1.74)是黃酮類生物合成的第一個(gè)關(guān)鍵酶,也是整個(gè)合成過(guò)程中的第一步限速酶,直接影響下游次生代謝產(chǎn)物的產(chǎn)量[13-14];而 4CL(EC 6.2.1.12)是植物苯丙烷類代謝途徑轉(zhuǎn)向黃酮類物質(zhì)代謝的關(guān)鍵酶之一,也是該途徑的限速酶[15];F3H(EC1.14.11.9)是黃酮類合成途徑分支點(diǎn)的一個(gè)核心酶,可將柚皮素轉(zhuǎn)化為二氫黃酮醇,而二氫黃酮醇是黃酮和異黃酮化合物合成的重要底物,因此該酶是類黃酮合成途徑上的一個(gè)關(guān)鍵中樞,直接影響下游類黃酮產(chǎn)物的合成[16];FLS(EC1.14.11.23)是黃酮醇類化合物合成途徑中最重要的下游關(guān)鍵酶基因,同時(shí)也是花青素和蘆丁合成的一個(gè)分支[12,17];UFGT(EC 2.4.1.115)是蘆丁合成途徑中的最后一步關(guān)鍵酶,其功能為糖基化槲皮素,從而最終轉(zhuǎn)化為蘆丁化合物[18]。蕎麥中黃酮醇合成途徑關(guān)鍵酶基因的表達(dá)模式已有相關(guān)研究報(bào)道,趙海霞等[19]報(bào)道了種子不同萌發(fā)時(shí)間下,苦蕎芽期總黃酮含量與2個(gè)MYB轉(zhuǎn)錄因子的相對(duì)表達(dá)量呈顯著相關(guān),同時(shí)黃酮醇合成途徑中 3個(gè)關(guān)鍵酶CHI、PAL和FLS相對(duì)表達(dá)量也呈顯著正相關(guān);GUPTA 等[20]報(bào)道了苦蕎不同生育階段,PAL、CHS、CHI和FLS表達(dá)量與蘆丁含量也呈現(xiàn)正相關(guān)。以上研究一定程度上揭示了苦蕎植株體內(nèi)蘆丁含量的積聚與蘆丁生物途徑關(guān)鍵酶基因的表達(dá)具有正相關(guān)性,同時(shí)受到MYB轉(zhuǎn)錄因子的調(diào)控。但針對(duì)整個(gè)生長(zhǎng)周期中苦蕎植株中蘆丁合成的變化趨勢(shì)與相關(guān)基因的表達(dá)是否相關(guān),目前仍需進(jìn)一步探索研究。最新的研究表明,8個(gè)苦蕎MYB轉(zhuǎn)錄因子受到ABA、NaCl、PEG等不同非生物脅迫的誘導(dǎo)表達(dá),可能在苦蕎次生代謝物合成中起到重要的調(diào)控作用[21]?!颈狙芯壳腥朦c(diǎn)】前人已報(bào)道的苦蕎MYB轉(zhuǎn)錄因子大多與非生物脅迫和花青素代謝調(diào)控相關(guān),而與苦蕎不同組織中關(guān)鍵黃酮類物質(zhì)-蘆丁代謝調(diào)控相關(guān)的MYB轉(zhuǎn)錄因子研究報(bào)道較少。【擬解決的關(guān)鍵問(wèn)題】通過(guò)研究苦蕎全生育期不同組織中蘆丁含量變化趨勢(shì)是否與其生物合成途徑中5個(gè)關(guān)鍵酶基因和2個(gè)MYB轉(zhuǎn)錄因子表達(dá)水平相關(guān)性,以期明確2個(gè)MYB基因調(diào)控蘆丁生物合成途徑關(guān)鍵酶基因組織特異表達(dá)特征。
自繁的高代純系九江苦蕎種子,2015年6月種植于山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院實(shí)驗(yàn)站。按苦蕎生長(zhǎng)時(shí)期進(jìn)行取材,命名為S1—S8。具體取材時(shí)期即部位如下:S1為萌發(fā)期,即種子播種后6 d萌發(fā)的幼苗整株取材;S2為子葉期,即播種10 d后,子葉完全展開(kāi),整株取材;S3為真葉期,即播種15 d后,第一片真葉展開(kāi),取第一片真葉;S4為盛葉期,即播種35 d后,葉片大量生長(zhǎng),取頂端完全展開(kāi)葉;S5為現(xiàn)蕾期,即生長(zhǎng)45 d后,取第一批出現(xiàn)的幼嫩花蕾;S6為盛花期,即生長(zhǎng)55 d后,大量花朵出現(xiàn),受精的花蕾出現(xiàn)籽粒形態(tài),取受精后花蕾;S7為灌漿期,即生長(zhǎng)65 d后,大量的籽粒形成,取幼嫩籽粒;S8為成熟期,籽粒顏色由綠轉(zhuǎn)灰黑,生產(chǎn)上為可采收階段,取健康飽滿籽粒。
取0.1 g上述苦蕎不同生育期不同組織放入預(yù)冷的研缽中,液氮研磨成粉末狀,使用植物 RNA試劑盒提取各組織中RNA(天恩澤基因有限公司,北京),DNase I(寶生物大連有限公司)消化處理 1 μg總RNA,微量高精度紫外分光光度計(jì)(NanoDrop 2000,美國(guó))檢測(cè)總 RNA濃度及純度,1.5%瓊脂糖凝膠電泳檢測(cè)總RNA完整度。cDNA第一鏈合成采用總反應(yīng)體系 10 μL,其中 1 μg 總 RNA(1 μL·μg-1)、5 μL 2×PrimeScript RT Master Mix(包含 10 mmol·L-1dNTP mixture、50 μmol·L-1Oligo dT primer 和 200 U PrimeScript RTase),4 μL RNase-free超純水補(bǔ)足體系。試劑購(gòu)于寶生物(大連)有限公司。反轉(zhuǎn)錄PCR程序?yàn)?7℃ 15 min;85℃ 5 s。根據(jù)苦蕎轉(zhuǎn)錄組測(cè)序數(shù)據(jù)(未發(fā)表),設(shè)計(jì)FtMYB7和FtMYB9完整CDS區(qū)克隆引物(引物名稱及序列見(jiàn)表1),采用RT-PCR方法從苦蕎葉片 cDNA文庫(kù)中克隆其序列,RT-PCR反應(yīng)程序?yàn)?5℃ 5 min;95℃ 30 s,55℃ 45 s,72℃ 90 s,30個(gè)循環(huán);72℃ 5 min。樣品測(cè)序由華大基因(北京)完成。
采用T-Coffee Multiple Sequence Alignment Server(http://tcoffee.vital-it.ch/apps/tcoffee/index.html)在線分析工具[22],分析 FtMYB7(GenBank登錄號(hào):KM588379)、FtMYB9(KM588380)、AtMYB11(NP191820)、AtMYB111(NP199744)和AtMYB12(NP182268)的保守結(jié)構(gòu)域。下載 NCBI數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih.gov)中已公布的17個(gè)苦蕎MYB轉(zhuǎn)錄因子序列和本試驗(yàn)提交的 2個(gè)序列,以及AtMYB11、AtMYB111和AtMYB12為外類群,共22個(gè)氨基酸序列,利用 MEGA 6.0軟件,采用鄰近法(neighbor-joining,NJ)構(gòu)建系統(tǒng)進(jìn)化樹(shù)。
設(shè)計(jì) Ft4CL(GenBank登錄號(hào):KM362863)、FtCHS(KJ139980)、FtF3H(HM587134)、FtFLS-like(GU388434)、FtUFGT(未提交)、FtMYB7 和 FtMYB9引物(表 1),以九江苦蕎的根、莖、葉、花、幼胚cDNA第一鏈為模板進(jìn)行qRT-PCR分析,每個(gè)樣品設(shè)置3個(gè)生物重復(fù),3個(gè)技術(shù)重復(fù)。熒光定量PCR總反應(yīng)體系 10 μL,包含 5 μL 2×SYBR Premix Ex Taq II、1 μL 50 ng·μL-1cDNA 模板、上下游引物各0.5 μL和3 μL RNase-free H2O。擴(kuò)增程序?yàn)?5℃ 30 s;95℃ 5 s,58℃ 30 s,40個(gè)循環(huán)。以內(nèi)參基因FtHis(JF769134)的 Ct值作為對(duì)照,采用 2-ΔΔCt法計(jì)算基因相對(duì)表達(dá)量[12]。所用熒光定量試劑購(gòu)置于寶生物(大連)有限公司。
表1 試驗(yàn)所用引物序列Table 1 The primer sequences
高效液相色譜法檢測(cè)苦蕎不同生長(zhǎng)時(shí)期試驗(yàn)材料的蘆丁含量,具體測(cè)定方法參考郭彬等[3]方法。所有測(cè)定樣品均設(shè)置3次生物學(xué)重復(fù)。
統(tǒng)計(jì)上述基因表達(dá)值和蘆丁含量數(shù)據(jù),基于SPSS軟件,采用Pearson相關(guān)性分析方法,考察8個(gè)生長(zhǎng)時(shí)期7個(gè)基因表達(dá)值與蘆丁含量變化之間的線性相關(guān)性,假設(shè)t檢驗(yàn)值設(shè)置P<0.05。使用R語(yǔ)言軟件,將上述表達(dá)值和蘆丁含量值標(biāo)準(zhǔn)化處理后,轉(zhuǎn)化為矩陣,采用歐式距離法繪制層次聚類熱圖。
克隆獲得FtMYB7完整CDS序列,其中包含876 bp核苷酸,編碼291個(gè)氨基酸殘基;FtMYB9完整CDS序列,包含912 bp核苷酸,編碼303氨基酸。保守結(jié)構(gòu)域(motif)分析表明FtMYB7和FtMYB9與苦蕎所提交的其他MYB基因,以及 AtMYB11、AtMYB12和AtMYB111的蛋白序列中都含保守R2和R3重復(fù)基序結(jié)構(gòu)域,結(jié)構(gòu)域中高度保守的色氨酸(W)殘基,代表著DNA結(jié)合域的關(guān)鍵位點(diǎn)(圖1)。氨基酸序列同源性分析表明,F(xiàn)tMYB7與其他苦蕎MYB轉(zhuǎn)錄因子氨基酸同源性范圍為41%—65%,F(xiàn)tMYB9與其他苦蕎MYB轉(zhuǎn)錄因子氨基酸同源性范圍為42%—71%。系統(tǒng)進(jìn)化樹(shù)分析,共獲得6個(gè)亞類(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ)。其中,第Ⅰ類(FtMYB7、FtMYB10、FtMYB11、FtMYB13和 FtMYB21)和第Ⅲ類(FtMYB3和FtMYB17),這些轉(zhuǎn)錄因子均與植物非生物脅迫相關(guān);FtMYB9、FtMYB22、2個(gè)FtMYB1以及2個(gè)FtMYB2聚為一類,這些基因與苯丙烷類代謝調(diào)控相關(guān)(Ⅴ類);擬南芥AtMYB11、AtMYB12和AtMYB111聚為第Ⅵ類,已證實(shí)調(diào)控黃酮醇代謝;克隆獲得的FtMYB9與FtMYB-like、金蕎麥 FcMYB-like等序列聚為Ⅳ類,而FtMYB7單獨(dú)為聚為第Ⅱ類(圖2),以上結(jié)果表明獲得2個(gè)新苦蕎MYB轉(zhuǎn)錄因子。
FtMYB7和 FtMYB9相對(duì)表達(dá)量在整個(gè)生育期存在明顯差異(圖3)。FtMYB7相對(duì)表達(dá)量呈現(xiàn)先升高后下降趨勢(shì);在S1—S3時(shí)期,基因表達(dá)量逐步升高,S4時(shí)期(盛葉期)表達(dá)量略有下降,而到了S5時(shí)期(現(xiàn)蕾期),該基因相對(duì)表達(dá)量達(dá)到最高值(高達(dá)867倍),說(shuō)明FtMYB7花蕾中的表達(dá)量最高;隨后在花、未成熟籽粒和成熟籽粒中表達(dá)量較低。在苦蕎生育期的S1和S2時(shí)期(萌發(fā)期和子葉期),F(xiàn)tMYB9相對(duì)表達(dá)量較高(達(dá)到34和72倍),而其他生育期基因表達(dá)量較低,說(shuō)明該基因在葉中的表達(dá)量高于其他組織。
圖1 FtMYB7和FtMYB9轉(zhuǎn)錄因子CDS結(jié)構(gòu)域分析Fig. 1 Conservative structure domain analysis of FtMYB7 and FtMYB9
圖2 苦蕎FtMYB7和FtMYB9系統(tǒng)進(jìn)化樹(shù)分析Fig. 2 The phylogenetic tree of FtMYB7 and FtMYB9 and other MYBs from F. tataricum
利用高效液相色譜法(HPLC)測(cè)定苦蕎 8個(gè)生長(zhǎng)時(shí)期組織中蘆丁含量,結(jié)果表明在真葉和花蕾中蘆丁含量最高,分別為7.39和12.95 mg·g-1DW;而在萌發(fā)期植株,子葉和盛花組織中蘆丁含量較低,分別為2.56、1.46和1.98 mg·g-1DW;在S8時(shí)期,即成熟籽粒中,蘆丁含量達(dá)到6.77 mg·g-1DW(圖4)。
圖3 苦蕎全生育期期FtMYB7和FtMYB9相對(duì)表達(dá)量分析Fig. 3 FtMYB7 and FtMYB9 expression levels in 8 developmental stages of F. tataricum
圖4 九江苦蕎全生育期蘆丁含量Fig. 4 Rutin content in Jiujian variety
蘆丁生物合成途徑5個(gè)關(guān)鍵酶基因、FtMYB7和FtMYB9表達(dá)值相關(guān)性分析見(jiàn)表2,F(xiàn)tUFGT、Ft4CL、FtCHS、FtF3H和FtMYB7的表達(dá)值與蘆丁含量變化顯著正相關(guān)(相關(guān)系數(shù)分別為0.890、0.748、0.683、0.704和 0.862),而 FtFLS-like和 FtMYB9表達(dá)值與蘆丁含量變化顯著負(fù)相關(guān)(相關(guān)系數(shù)分別為-0.442和-0.501)?;蛳鄬?duì)表達(dá)量層次聚類分析表明,在苦蕎全生育期,F(xiàn)t4CL、FtCHS和FtF3H表達(dá)模式相近聚為一類;而 FtUFGT、FtMYB7、FtFLS-like和FtMYB9的表達(dá)趨勢(shì)相近劃分為另一類。除 FtFLS-like和FtMYB9之外,其余基因在S3和S5期相對(duì)表達(dá)值均高于其他時(shí)期,即在真葉和花蕾中表達(dá)量最高(圖5)。
圖5 苦蕎蘆丁合成途徑相關(guān)基因表達(dá)量熱圖Fig. 5 Heatmap for correlated with rutin content and gene expression in F. tataricum
表2 蘆丁生物合成途徑相關(guān)基因表達(dá)量與蘆丁含量相關(guān)性分析Table 2 Correlation analysis of rutin content and rutin-related gene expression
苦蕎屬于小雜糧作物,蘆丁作為苦蕎中特有的黃酮醇衍生物,其生物合成途徑屬于植物體內(nèi)苯丙烷代謝途徑下游分支途徑之一[23]。盡管該生物合成途徑上關(guān)鍵酶基因的研究已在許多植物中有報(bào)道[24-25],但由于苦蕎以及近緣物種基因組序列信息的缺乏,導(dǎo)致獲得這些關(guān)鍵酶基因的序列仍然比較困難。對(duì)于蘆丁代謝的分子調(diào)控機(jī)理還有待于進(jìn)一步深入研究,目前研究較多的轉(zhuǎn)錄因子集中在MYB和WD40兩類[26-27]。本研究通過(guò)二代測(cè)序技術(shù)獲得苦蕎葉片轉(zhuǎn)錄組數(shù)據(jù),根據(jù)原始Reads序列拼接去冗余,獲得109個(gè)MYB轉(zhuǎn)錄因子基因序列,采用RT-PCR法獲得2個(gè)MYB基因的完整CDS序列,暫命名為FtMYB7和FtMYB9。結(jié)合先前克隆到蘆丁生物合成途徑的 5個(gè)關(guān)鍵酶基因,試圖探討苦蕎全生育期蘆丁含量變化與這些基因表達(dá)之間的關(guān)系。GUPTA等[20]研究表明,苦蕎發(fā)育階段蘆丁含量動(dòng)態(tài)變化與蘆丁生物合成途徑上游的PAL、CHS、CHI和FLS表達(dá)量呈正相關(guān)。同樣,本研究也發(fā)現(xiàn)全生育期中苦蕎植株蘆丁合成積累的動(dòng)態(tài)變化與蘆丁生物合成途徑上游的 3個(gè)關(guān)鍵酶基因(Ft4CL、FtCHS和 FtF3H)表達(dá)呈正相關(guān)。與前者不同的是本研究中克隆到的FtFLS-like表達(dá)在真葉和成熟籽粒中降低,而在其他組織中都表現(xiàn)較高的表達(dá)趨勢(shì),且與蘆丁含量的動(dòng)態(tài)變化呈負(fù)相關(guān)。這可能是因?yàn)楸狙芯恐械腇tFLS-like與前人克隆到FLS為同一基因家族中基因功能發(fā)生了分化,負(fù)責(zé)苦蕎植株不同生長(zhǎng)時(shí)期的蘆丁生物合成功能[12]。同時(shí),蘆丁合成途徑最后一步關(guān)鍵酶UFGT和MYB7表達(dá)與蘆丁含量動(dòng)態(tài)變化也呈正相關(guān),同樣有2個(gè)表達(dá)量最高的時(shí)期,分別是在S3和S5期,即真葉期和現(xiàn)蕾期。而MYB9與其他基因的表達(dá)模式具有明顯差異,僅在S1和S2期(幼苗期)表達(dá)上調(diào)。上述結(jié)果表明,MYB7和MYB9可能負(fù)責(zé)調(diào)控苦蕎不同生長(zhǎng)時(shí)期的蘆丁合成。綜上所述,除MYB9以外,其他5個(gè)關(guān)鍵酶基因和MYB7均在真葉期和現(xiàn)蕾期有表達(dá)峰值。而真葉期為種子萌發(fā)轉(zhuǎn)到營(yíng)養(yǎng)生長(zhǎng)期,現(xiàn)蕾期為營(yíng)養(yǎng)生長(zhǎng)轉(zhuǎn)向生殖生長(zhǎng)期。這2個(gè)時(shí)期均屬于苦蕎生長(zhǎng)發(fā)育的轉(zhuǎn)折時(shí)期,此時(shí)蘆丁含量增加以及合成途徑上關(guān)鍵酶基因上調(diào)表達(dá)可能是由于植株葉形態(tài)和花形態(tài)建成過(guò)程中受到體內(nèi)激素極性運(yùn)輸和調(diào)節(jié),導(dǎo)致黃酮類物質(zhì)大量合成。而最近的研究也表明,擬南芥中WRKY23轉(zhuǎn)錄因子調(diào)節(jié)黃酮醇類物質(zhì)的合成反饋抑制根部生長(zhǎng)素的轉(zhuǎn)運(yùn)最終調(diào)控根發(fā)育形成[28]。擬南芥中AtMYB11、AtMYB12和 AtMYB111負(fù)責(zé)調(diào)控幼苗和成株期中黃酮醇類衍生物合成類型和合成途徑關(guān)鍵酶基因的表達(dá)[29]。前人研究表明FtMYB1和FtMYB2參與調(diào)控原花青素(PAs);FtMYB9和FtMYB22調(diào)控苦蕎對(duì)鹽脅迫響應(yīng)[30]。本研究所克隆的FtMYB9與前人克隆的FtMYB-like聚為一類,這類基因并沒(méi)有明確的功能劃分,推測(cè)FtMYB9可能負(fù)責(zé)調(diào)控花青素或者非生物脅迫響應(yīng)的下游基因,也間接解釋了該基因與全生育期苦蕎蘆丁合成呈負(fù)相關(guān)性的結(jié)果。MYB轉(zhuǎn)錄因子調(diào)控苦蕎黃酮醇合成關(guān)鍵酶基因表達(dá)及蘆丁合成不同生長(zhǎng)時(shí)期和組織部位的分子機(jī)制仍比較復(fù)雜,尚需進(jìn)一步深入研究。
揭示了 2個(gè) MYB類轉(zhuǎn)錄因子基因 FtMYB7和FtMYB9序列具有保守的R2R3結(jié)構(gòu)域特征,明顯區(qū)別于前人所克隆到的苦蕎MYB基因。這2個(gè)基因可能與黃酮類代謝功能相關(guān)。不同組織中 FtMYB7和FtMYB9表達(dá)量與蘆丁含量存在明顯相關(guān)性,推測(cè)其可能調(diào)控不同生育時(shí)期蘆丁合成。
[1]KITABAYASHI H, UJIHARA A, HIROSE T, MINAMI M. On the genotypic differences for rutin content in tatary buckwheat,Fagopyrum tataricum. Gaertn. Breeding Science, 1995, 45(2):189-194.
[2]KOES R, VERWEIJ W, QUATTROCCHIO F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways.Trends in Plant Science, 2005, 10(5): 236-242.
[3]郭彬, 韓淵懷, 黃可盛, 路陽(yáng), 侯思宇. HPLC法測(cè)定30個(gè)蕎麥品種蘆丁含量的研究. 山西農(nóng)業(yè)科學(xué), 2013, 41(1): 26-29.GUO B, HAN Y H, HUANG K S, LU Y, HOU S Y. Researched on rutin contents among 30 buckwheat cultivars by HPLC. Journal of Shanxi Agricultural Sciences, 2013, 41(1): 26-29. (in Chinese)
[4]CHEN Y H, YANG X Y, HE K, LIU M H, LI J G, GAO Z F, LIU Z Q,ZHANG Y F, WANG X X, QIU X M, SHEN Y P, ZHANG L, DENG X H, LUO J C, DENG X W, CHEN Z L, GU H Y, QU L J. The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 2006, 60(1): 107-124.
[5]WANG Z, TANG J, HU R, WU P, HOU X L, SONG X M, XIONG A S. Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapassp.pekinensis) reveals their stress and hormone responsive patterns. BMC Genomics, 2015,16: 17.
[6]DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B,MARTIN C, LEPINIEC L. MYB transcription factors in Arabidopsis.Trends in Plant Science, 2010, 15(10): 573-581.
[7]KATIYAR A, SMITA S, LENKA S K, RAJWANSHI R,CHINNUSAMY V, BANSAL K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.
[8]STRACKE R, WERBER M, WEISSHAAR B. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology,2001, 4(5): 447-456.
[9]FALCONE M L, RIUS S P, CASATI P. Flavonoids: Biosynthesis,biological functions, and biotechnological applications. Frontiers in Plant Science, 2012, 3: 222.
[10]XIE R J, LI Y J, HE S L, ZHENG Y Q, YI S L, Lü Q, DENG L.Genome-wide analysis of Citrus R2R3MYB genes and their spatiotemporal expression under stresses and hormone treatments.PLoS ONE, 2014, 9(12): e113971.
[11]CZEMMEL S, STRACKE R, WEISSHAAR B, CORDON N,HARRIS N N, WALKER A R, ROBINSON S P, BOGS J. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiology, 2009,151(3): 1513-1530.
[12]SUN Z X, HOU S Y, YANG W D, HAN Y H. Exogenous application of salicylic acid enhanced the rutin accumulation and influenced the expression patterns of rutin biosynthesis related genes in Fagopyrum tataricum Gaertn leaves. Plant Growth Regulation, 2012,68(1): 9-15.
[13]SCHIJLEN E G, DE VOS C H, MARTENS S, JONKER H H, ROSIN F M, MOLTHOFF J W, TIKUNOV Y M, ANGENENT G C, VAN TUNEN A J, BOVY A G. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiology, 2007, 144(3):1520-1530.
[14]孫朝霞, 侯思宇, 郭彬, 令狐斌, 黃可盛, 許冬梅, 韓淵懷. 苦蕎查爾酮合成酶基因序列特征及分子進(jìn)化分析. 分子植物育種, 2014,12(4): 772-779.SUN Z X, HOU S Y, GUO B, LINGHU B, HUANG K S, XU D M,HAN Y H. Sequence characterization and molecular evolution analysis of chalcone synthase gene in tartary buckwheat. Molecular Plant Breeding, 2014, 12(4): 772-779. (in Chinese)
[15]侯思宇, 趙蓋超, 劉榮華, 孫朝霞, 令狐斌, 韓淵懷, 許冬梅, 李紅英. 苦蕎Ft4CL基因克隆、生物信息學(xué)及分子進(jìn)化分析. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 35(1): 24-28.HOU S Y, ZHAO G C, LIU R H, SUN Z X, LINGHU B, HAN Y H,XU D M, LI H Y. Cloning, bioinformatics and molecular evolution analysis of Ft4CL gene in tartary buckwheat. Journal of Shanxi Agricultural University (Natural Science Edition), 2015, 35(1): 24-28.(in Chinese)
[16]TU Y H, LIU F, GUO D D, FAN L J, ZHU Z X, XUE Y R, GAO Y,GUO M L. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. BMC Plant Biology,2016, 16(1): 132.
[17]OWENS D K, ALERDING A B, CROSBY K C, BANDARA A B,WESTWOOD J H, WINKEL B S. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiology, 2008,147(3): 1046-1061.
[18]ZHAO Z C, HU G B, HU F C, WANG H C, YANG Z Y, LAI B. The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.)during fruit coloration. Molecular Biology Reports, 2012, 39(6):6409-6415.
[19]趙海霞, 吳小峰, 白悅辰, 李成磊, 陳惠, 邵繼榮, 吳琦. 苦蕎芽期黃酮合成關(guān)鍵酶和MYB轉(zhuǎn)錄因子基因的表達(dá)分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2012, 20(2): 121-128.ZHAO H X, WU X F, BAI Y C, LI C L, CHEN H, SHAO J R, WU Q.Gene expression analysis of key enzymes and MYB transcription factors in flavonoid biosynthesis pathway during germination of Fagopyrum tataricum. Journal of Agricultural Biotechnology, 2012,20(2): 121-128. (in Chinese)
[20]GUPTA N, SHARMA S K, RANA J C, CHAUHAN R S. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species. Jounral of Plant Physiology, 2011, 168(17): 2117-2123.
[21]GAO F, YAO H P, ZHAO H X, ZHOU J, LUO X P, HUANG Y J, LI C L, CHEN H, WU Q. Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016, 109: 387-396.
[22]NOTREDAME C, HIGGINS D G, HERINGA J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal ofMolecular Biology, 2000, 302(1): 205-217.
[23]LI X H, NAMIL P, CHULHO P, SU K, LEE Y, PARK S. Influence of sucrose on rutin content and flavonoid biosynthetic genes expression in seedlings of common buckwheat (Fagopyrum esculentum Moench).Plant Omics Journal, 2011, 4(4): 215-219.
[24]KOES R, VERWEIJ W, QUATTROCCHIO F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways.Trends in Plant Science, 2005, 10(5): 236.
[25]ZHAO S, PARK C H, LI X, KIM Y B, YANG J, SUNG G B, PARK N I, KIM S, PARK S U. Accumulation of rutin and betulinic acid and expression of phenylpropanoid and triterpenoid biosynthetic genes in mulberry (Morus alba L.). Journal of Agricultural & Food Chemistry,2015, 63(38): 8622.
[26]FERREYRA M L F, RIUS S P, CASATI P. Flavonoids: Biosynthesis,biological functions, and biotechnological applications. Frontiers in Plant Science, 2012, 3: 222.
[27]YAO P, ZHAO H, LUO X, GAO F, LI C, YAO H, CHEN H, PARK S U, WU Q. Fagopyrum tataricum FtWD40, functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco. Journal of Plant Growth Regulation, 2017, 36(3): 755-765.
[28]GRUNEWALD W, DE SMET I, LEWIS D R, L?FKE C, JANSEN L, GOEMINNE G, VANDEN B R, KARIMI M, DE RYBEL B,VANHOLME B, TEICHMANN T, BOERJAN W, VAN MONTAGU M C, GHEYSEN G, MUDAY G K, FRIML J,BEECKMAN T. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America,2012, 109(5): 1554-1559.
[29]STRACKE R, JAHNS O, KECK M, TOHGE T, NIEHAUS K,FERNIE A R, WEISSHAAR B. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11, MYB12 and MYB111 independent flavonol glycoside accumulation. New Phytologist, 2010,188(4): 985-1000.
[30]BAI Y C, LI C L, ZHANG J W, LI S J, LUO X P, YAO H P, CHEN H,ZHAO H X, PARK S U, WU Q. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiology Plant, 2014, 152(3):431-440.
(責(zé)任編輯 李莉,岳梅)
Correlation Analysis on Rutin Accumulation and Gene Expression of Rutin Synthetic Enzymes and MYBs in the Whole Developmental Stage of Fagopyrum tataricum
SUN ZhaoXia, HOU SiYu, LINGHU Bin, LIU RongHua, WANG Li, YANG WuDe, HAN YuanHuai
(College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi)
2017-03-07;接受日期:2017-05-03
國(guó)家自然科學(xué)基金(31301385)、山西省科技攻關(guān)項(xiàng)目(20150311007-1)、山西省回國(guó)留學(xué)人員科研項(xiàng)目(2017-069)、山西省主要農(nóng)作物種質(zhì)創(chuàng)新與分子育種重點(diǎn)科技創(chuàng)新平臺(tái)(2016-246)
聯(lián)系方式:孫朝霞,E-mail:18636071356@163.com。通信作者楊武德,E-mail:sxauywd@126.com