沈留紅,肖勁邦,巫曉峰,姜思汛,江濤,鄧俊良,左之才,余樹民,曹隨忠
(四川農(nóng)業(yè)大學動物醫(yī)學院,動物疫病與人類健康四川省重點實驗室/奶牛疾病研究中心,成都 611130)
復方天然植物制劑對奶?;厝樾Ч罢{(diào)控激素的影響
沈留紅,肖勁邦,巫曉峰,姜思汛,江濤,鄧俊良,左之才,余樹民,曹隨忠
(四川農(nóng)業(yè)大學動物醫(yī)學院,動物疫病與人類健康四川省重點實驗室/奶牛疾病研究中心,成都 611130)
【目的】探究復方天然植物制劑對奶?;厝樾Ч盎厝槠谀膛Q逡葝u素(INS)、氫化可的松(HC)、生長激素(GH)和胰島素生長因子1(IGF-1)含量的影響?!痉椒ā吭囼炗?016年1—6月進行,選擇四川省某規(guī)模化奶牛場半封閉統(tǒng)一舍飼,體重(582±41)kg、第2—4胎中國荷斯坦奶牛150頭。從中選取體況良好,健康,乳房、乳汁均正常,即將進入回乳期,產(chǎn)奶量為(15.42±0.71)kg的妊娠后期即將干乳的健康奶牛80頭。隨機分為A、B、C、D組,每組20頭,均采用逐漸干奶法回乳,回乳開始當天記為第0天,A組為對照組,不飼喂復方天然植物制劑。B、C、D組均從回乳開始第1天,每日上午8∶00分別飼喂復方天然植物制劑400、500、600g,回乳完成后停止飼喂復方天然植物制劑。復方天然植物制劑由麥芽,樸硝,升麻,柴胡,香附,薏仁,蠶蛻,白術(shù),黃芩,知母,蘇梗,芡實,五味子,蒲公英,甘草等按一定比例組成。分別采集奶?;厝槠诘?、1、3、5、7、9和11天尾靜脈血,置于未加抗凝劑的離心管中,室溫下靜置1h,置離心機352×g離心10min,轉(zhuǎn)移上層血清于EP管中,-20℃凍存。采用雙抗體夾心酶聯(lián)免疫吸附技術(shù)(ELISA)法檢測血清INS、HC、GH和IGF-1含量,并記錄回乳期奶牛單日產(chǎn)奶量?!窘Y(jié)果】A、B、C、D 4組奶牛回乳時間分別為 11、7、5、5天。各組回乳期奶牛血清 IGF-1和 HC含量均呈下降趨勢,且對照組下降趨勢較各復方天然植物制劑組慢,復方天然植物制劑組血清IGF-1、HC和GH含量在回乳期后回升,對照組血清INS含量上升趨勢較各復方天然植物制劑組慢,第0至1天,各組奶牛血清HC、IGF-1和GH含量差異均不顯著(P>0.05);第3—7天,A組奶牛血清HC、GH和IGF-1含量極顯著高于B、C、D組(P<0.01),而血清INS含量極顯著低于B、C、D組(P<0.01);第9天,A、D組奶牛血清HC含量均顯著高于C組(P<0.05),A、B組奶牛血清GH和IGF-1含量均極顯著低于C、D組(P<0.01),A組奶牛血清INS含量極顯著低于B、C、D組(P<0.01);第11天,A組奶牛血清HC、GH和IGF-1含量極顯著低于B、C、D組(P<0.01),A組奶牛血清INS顯著低于D組(P<0.05),但極顯著低于B、C組(P<0.01); C、D組奶牛血清IGF-1、GH、HC和INS含量在整個回乳期均差異性不顯著(P>0.05)。在奶?;厝槠冢a(chǎn)奶量、HC、GH和IGF-1兩兩間均呈極顯著正相關(guān)(P<0.01),INS與產(chǎn)奶量、HC、GH和IGF-1均呈極顯著負相關(guān)(P<0.01)?!窘Y(jié)論】復方天然植物制劑能顯著促進回乳期奶牛回乳,飼喂500g/日復方天然植物制劑,奶?;厝闀r間為5d,回乳效果即可達到最佳?;厝槠谀膛Q錓NS、HC、IGF-1含量和產(chǎn)奶量變化兩兩間均呈極顯著相關(guān),IGF-1、GH和HC對奶?;厝槠鹭撓蛘{(diào)控功能,而INS對奶牛回乳起正調(diào)控作用。
奶牛;回乳;復方天然植物制劑;泌乳激素
Abstract:【Objective】the objective of this study is to explore the impact of compound natural plant preparation on the milk withdrawal and serum insulin(INS), hydrocortisone(HC), growth hormone(GH) and insulin growth factor 1(TGF-1)levels in dairy cows.【Method】A total of 150 Chinese Holstein cows, weighing (582±41) kg, pregnant with 2-4 fetuses, and fed in a large-scale dairy farm in Sichuan Province from January 2016 to June 2016, were used in the present study. Eighty healthy cows with normal milk and udder that in late pregnancy and gave (15.42±0.71) kg milk per day were chosen. The cows were randomly divided into four groups: groups A, B, C and D, with 20 of them in each group. Stop dairy cows’ milk by gradually dry milk method and the day when cows gave less milk was recorded as 0 d. Group A was a control group, did not feed compound natural plant preparation and the groups B, C and D were fed 400g, 500g, 600g compound natural plant preparation,respectively, at 8.00 am from 1 d to the day of dry milk completely. Compound natural plant preparation comprises fructus hordei germinatus, mirabilite, rhizoma cimicifugae, bupleurum, rhizoma cyperi, coix seed, silkworm slough, rhizome atratylodis, scutellaria baicalensis, rhizome anemarrhenae, caulis perllae, semen euryales, schisandra chinensis, dandelion,licorice and so on. The cows’ venous blood was collected from tail on the day 0, 1, 3, 5, 7, 9 and 11, the samples were placed in the centrifuge tubes without anticoagulant at room temperature for 1h. The suspension was centrifuged at 352 × g for 10 min and then put into the refrigerator at -20℃. ELISA was used to evaluate the expression levels of serum INS, HC and IGF-I and the daily milk production was recorded.【Result】Groups A, B, C and D returned milk on the 11 d, 7 d, 5 d and 5 d respectively.The expression levels of serum IGF-1 and HC were declining in all 4 groups and the decline trend of the control group was slower than compound natural plant preparation groups. The expression levels of serum IGF-1, HC and GH were raised after the period of milk withdrawal, the upward trend of the expression levels of serum INS in the control group was slower than compound natural plant preparation groups. From the day 0 to the 1, the expression levels of serum HC, IGF-1 and GH had no significant difference(P>0.05). From the day 3 to the day7, the expression levels of serum HC, GH and IGF-1 in group A were highly and significantly higher than those of groups B, C and D (P<0.01), while the expression level of INS in group A was highly significant loser than those of groups B, C and D(P<0.01). On the day 9, the expression levels of serum HC in groups A and D were significantly higher than that of group C(P<0.05), the expression levels of serum GH and IGF-1 in groups A and B were highly and significantly lower than those of groups C and D(P<0.01), the expression levels of serum INS in group A was highly and significantly lower than that of groups B, C and D(P<0.01). On the day 11, the expression levels of serum HC, GH and IGF-1 in group A were highly significantly lower than those of groups B, C and D(P<0.01), the expression levels of serum INS in group A was highly significant lower than that of groups B and C(P<0.01) and significantly lower than that of group D(P<0.05). The expression levels of serum IGF-1, GH, HC and INS had no significant difference between group C and D during the period of milk withdrawal (P>0.05). During the period of milk withdrawal, there were significant positive correlations among milk production, HC, GH and IGF-1(P<0.01) and there was a significant negative correlation between INS and milk production, HC, GH, IGF-1(P<0.01).【Conclusion】 Compound natural plant preparation can help cows milk withdrawal significantly, feeding 500g·d-1can shorten the period of milk withdrawal to 5 days can make the best effect on milk withdrawal. The expression levels of serum INS, HC, IGF-1 and milk production had a highly significant correlation. IGF-1 GH and HC are negative regulation factors of milk withdrawal, while INS is a positive regulation factor.
Key words:dairy cow; milk withdrawal; compound natural plant preparation; galactin
【研究意義】奶牛經(jīng)過漫長的泌乳期,機體損耗大量營養(yǎng)物質(zhì),需經(jīng)回乳期,進入干奶期,蓄積機體儲備,更新乳腺組織及優(yōu)化內(nèi)分泌系統(tǒng)。為分娩后高效泌乳做物質(zhì)準備?;厝槠谀膛5幕厝樾Ч麑⒅苯佑绊懏a(chǎn)后泌乳量及乳汁品質(zhì)。當下次泌乳期再次來臨,乳腺細胞必須具有較強活力才能夠支撐大量泌乳而引起的營養(yǎng)損耗[1]。若乳腺上皮細胞持續(xù)分泌乳汁,乳腺細胞無法休整,不僅影響下一個泌乳期的泌乳量,且對之后胎次的泌乳均有不利影響[2]。因此,縮短回乳期,使奶牛快速進入干乳期,對奶牛乳腺的保護具有重要意義。目前還未見專一縮短奶?;厝槠诘乃幬?,復方天然植物制劑因具有多種功效,無抗藥性和耐藥性,無藥物殘留和不良反應(yīng)少等獨特優(yōu)勢,自古以來一直被廣泛應(yīng)用于提高免疫、促進生長、催乳和回乳等[3]。探究復方天然植物制劑對回乳期奶?;厝樾Ч把迕谌榧に?、因子的影響,有助于奶牛乳房保健產(chǎn)品的開發(fā),改進奶?;厝榉椒?,降低回乳期奶牛乳房炎發(fā)生率?!厩叭搜芯窟M展】影響奶牛乳腺合成、乳汁分泌的因素很多,如飼養(yǎng)管理、遺傳育種、營養(yǎng)代謝、內(nèi)分泌因素等[4]。但在相同的飼養(yǎng)管理模式下,奶牛乳腺合成、乳汁分泌主要受到泌乳激素和因子的調(diào)控,其中直接調(diào)控乳腺發(fā)育和泌乳的激素主要有胰島素(insulin, INS)、氫化可的松(hydrocortisone,HC)、生長激素(growth hormone,GH)、催乳素(prolactin,PRL)、雌激素(estrogen, E)和孕酮(progesterone,P4)等[5-6],其通過與胰島素樣生長因子1(Insulin-like growth factor 1,IGF-1)、轉(zhuǎn)化生長因子 β1(transforming growth factor β1,TGF-β1)和信號轉(zhuǎn)導和轉(zhuǎn)錄激活因子5(signal transduction and transcriptional activation factor of 5,STAT5)等[7]細胞因子相互作用而形成乳腺發(fā)育和泌乳的調(diào)控網(wǎng)絡(luò)。運用復方天然植物制劑可提高人、小鼠、大鼠、兔、肉牛等動物機體INS、HC、GH、IGF-1含量[3,8-13]以及促進人和小鼠等動物回乳或泌乳已有研究[14-16],并顯示均與泌乳激素及因子呈一定的相關(guān)性[17-18]?!颈狙芯壳腥朦c】奶牛經(jīng)過泌乳期,機體消耗嚴重,需要干奶期恢復體質(zhì),更新乳腺組織,為下一個泌乳期做充分準備,而傳統(tǒng)回乳方法效果差,容易造成乳房炎、流產(chǎn)、抗生素殘留等副作用[19],回乳復方天然植物制劑在奶牛回乳期的運用有巨大研究前景[20]。因此本文旨在研究復方天然植物制劑對回乳期奶?;厝樾Ч把迕谌榧に亍⒁蜃拥挠绊?。為進一步研究復方天然植物制劑對回乳期奶牛泌乳相關(guān)激素的調(diào)控機理,以及為尋求更安全有效的回乳技術(shù)措施提供理論依據(jù)?!緮M解決的關(guān)鍵問題】通過對回乳期奶牛飼喂復方天然植物制劑,探究血清INS、HC、GH和IGF-1含量變化,以期為復方天然植物制劑在回乳期奶牛的應(yīng)用提供理論依據(jù),確保復方天然植物制劑在奶?;厝槠诘膽?yīng)用正確合理。
1.1.1 試驗動物 2016年1—6月,選擇四川省某規(guī)?;膛霭敕忾]統(tǒng)一舍飼,體重(582±41)kg、2—4胎中國荷斯坦奶牛150頭。從中選取體況良好,健康,乳房、乳汁均正常,即將進入回乳期,產(chǎn)奶量為(15.42±0.71)kg的妊娠后期奶牛80頭。隨機分為A、B、C、D 4組,每組20頭。各組均采用逐漸干奶法進行回乳,回乳當天記為第0天,從回乳第1天,A組為對照組,不飼喂復方天然植物制劑,B、C、D組每日上午 8:00分別飼喂復方天然植物制劑 400、500、600g,直至停奶,停止飼喂。
1.1.2 試驗藥物 復方天然植物制劑由四川農(nóng)業(yè)大學動物醫(yī)學院奶牛疾病研究中心研發(fā)。由麥芽,樸硝,升麻,柴胡,香附,薏仁,蠶蛻,白術(shù),黃芩,知母,蘇梗,芡實,五味子,蒲公英和甘草等組成。均購自成都荷花池中藥材專業(yè)市場(一等品)。按比例配方,粉碎過60目篩,塑料袋500 g/袋分裝備用。
1.1.3 試驗試劑 牛胰島素、氫化可的松、生長激素和胰島素樣生長因子1雙抗體夾心酶聯(lián)免疫吸附檢測(ELISA)試劑盒,均由美國RD公司提供。
1.2.1 回乳方式 采用逐漸干奶法[10-11],方法為:停喂多汁飼料,減少精料喂量,以青干草為主,控制飲水,適當加強運動。在回乳第1天,擠奶次數(shù)由3次改為2次,第2天改為1次,逐漸減少擠奶次數(shù),當日產(chǎn)奶量為3—4 kg時,停止擠奶。
1.2.2 血清收集 試驗?zāi)膛;厝殚_始當天記為第 0天,依次采集第0、1、3、5、7、9和11天尾靜脈血10mL,置于未加抗凝劑的離心管中,室溫下靜置1h,離心352×g離心10min,轉(zhuǎn)移上層血清于EP管中,-20℃凍存,待檢。
1.2.3 ELISA檢測 采用雙抗體夾心酶聯(lián)免疫吸附技術(shù)(ELISA)測定牛胰島素、氫化可的松、生長激素和胰島素樣生長因子1的水平,步驟嚴格按照說明書進行。血清樣品的檢測于2016 年7—8月在四川農(nóng)業(yè)大學動物醫(yī)學院動物疫病與人類健康四川省重點實驗室和奶牛疾病研究中心進行。
SPSSl9.0軟件進行統(tǒng)計學分析,K-S檢驗計量資料是否服從正態(tài)分布,以平均數(shù)±標準差(ˉX±S)表示,兩組間采用獨立樣本t檢驗,多組間比較采用單因素方差分析,相關(guān)性分析采用雙變量 Pearson相關(guān)分析,P<0.05為差異有統(tǒng)計學意義,P<0.01為差異性極顯著。
如表1所示,A、B、C、D 4組奶牛回乳期需要時間分別是11、7、5和5d,回乳第0天,各組間奶產(chǎn)量差異不顯著(P>0.05);第1天,B組產(chǎn)奶量極顯著高于D組(P<0.01);第3—5天,A、B組產(chǎn)奶量均極顯著高于C、D組(P<0.01),且A組產(chǎn)奶量極顯著高于B組(P<0.01);第7天,A組產(chǎn)奶量極顯著高于B組;C、D組產(chǎn)奶量在整個回乳期差異均不顯著(P>0.05)。
表1 復方天然植物制劑對回乳期奶牛奶產(chǎn)量的影響(kg·d-1,ˉX±S)Table 1 The effects of compound natural plant preparation on the milk production of dairy cows during the period of milk withdrawal
如表2所示,在奶?;厝槠冢鹘MINS含量均隨時間推移呈上升趨勢,回乳第0—1天,各組INS含量差異均不顯著(P>0.05);第3—5天,A組INS含量極顯著低于B、C、D組(P<0.01),B組顯著低于C組(P<0.05);第7天,A、B組INS含量極顯著低于C、D組(P<0.01),A組極顯著低于B組(P<0.01);第9天,A組INS含量極顯著低于B、C、D 組(P<0.01),B 組顯著低于 C、D 組(P<0.05);第 11天,A組極顯著低于 B、C組(P<0.01),A組顯著低于D組(P<0.05);C、D組INS含量在整個回乳期均差異性不顯著(P>0.05)。
表2 復方天然植物制劑對回乳期奶牛血清INS含量的影響(nIU·mL-1,ˉX±S)Table 2 The effects of compound natural plant preparation on the insulin of dairy cows during period of milk withdrawal
如表3所示,在奶?;厝槠冢鹘MHC含量均隨時間推移呈下降趨勢,回乳第0—1天,各組HC含量差異均不顯著(P>0.05);第3—7天,A組HC含量極顯著高于B、C、D組(P<0.01);第9天,A、D組HC含量均顯著高于C組(P<0.05);第11天,A組HC含量極顯著低于B、C、D組(P<0.01),且B組顯著低于C、D組(P<0.05);C、D組HC含量在整個回乳期差異均不顯著(P>0.05)。
如表4所示,在奶?;厝槠冢鹘M奶牛血清GH含量均呈下降趨勢,并在回乳期后上升。第0—1 天,GH含量在四組間差異均不顯著(P>0.05);第3—7天,A組GH含量均極顯著高于B、C、D組(P<0.01);第9天,A、B組GH含量均極顯著低于C、D組(P<0.01);第11天,A組GH含量極顯著低于B、C、D組(P<0.01),B組GH含量顯著低于C組(P<0.05),B組GH含量極顯著低于D組(P<0.01);C、D組GH含量在整個回乳期差異均不顯著(P>0.05)。
表3 復方天然植物制劑對回乳期奶牛血清HC含量的影響(ng·mL-1,ˉX±S)Table 3 The effects of compound natural plant preparation on the HC of dairy cows during the period of milk withdrawal
表4 復方天然植物制劑對回乳期奶牛血清GH含量的影響(ng·mL-1,ˉX±S)Table 4 The effects of compound natural plant preparation on GH of dairy cows during the period of milk withdrawal
如表5所示,在奶?;厝槠冢鹘MIGF-1含量均隨時間推移呈下降趨勢,并在回乳期后回升,回乳第0天,B組IGF-1含量顯著高于C組(P<0.05);第1天,各組IGF-1含量差異均不顯著(P>0.05);第37天,A組IGF-1含量極顯著高于B、C、D組(P<0.01);第9天,A、B組IGF-1含量均極顯著低于C、D組(P<0.01),A組極顯著高于B組(P<0.01);第11天,A組IGF-1含量極顯著低于B、C、D組(P<0.01);C、D組IGF-1含量在整個回乳期均差異性不顯著(P>0.05)。
表5 復方天然植物制劑對回乳期奶牛血清IGF-1含量的影響(ng·mL-1,ˉX±S)Table 5 The effects of compound natural plant preparation on IGF-1 of dairy cows during the period of milk withdrawal
利用對照組進行相關(guān)性分析,結(jié)果如表6所示,在奶?;厝槠冢a(chǎn)奶量、HC、GH和IGF-1兩兩間均呈極顯著正相關(guān)(P<0.01),INS與產(chǎn)奶量、HC、GH和IGF-1均呈極顯著負相關(guān)(P<0.01)。
表6 回乳期奶牛血清INS、HC、IGF-1含量和產(chǎn)奶量的相關(guān)性Table 6 Correlation between the expression levels of INS, HC and IGF-1 milk yield during the period of withdrawal
目前,人醫(yī)運用麥芽口服,芒硝外敷等回乳方式已不少見[14,16]。王雄[14]使用“回乳抑增一號”(麥芽、牡蠣、浙川貝等)使婦女溢乳改善,郝振華等[15]利用麥芽治療婦女產(chǎn)后溢乳有明顯療效。現(xiàn)有回乳復方天然植物制劑中多有麥芽,且已經(jīng)人工合成麥角衍生物——卡麥角林能明顯抑制PRL生成,進而控制泌乳[22]。然而,復方天然植物制劑運用于奶?;厝檫€鮮有報道,本研究結(jié)果顯示,在奶?;厝檫^程中,各組奶牛產(chǎn)奶量均隨時間推移呈降低趨勢,回乳第 1天,400g組產(chǎn)奶量極顯著高于 500g組(P<0.01);第3—5天,對照組和400g組產(chǎn)奶量極顯著高于500、600g組(P<0.01),且對照組產(chǎn)奶量極顯著高于 400g組(P<0.01),表明了復方天然植物制劑具有較好回乳效果,縮短了奶?;厝槠?,且有效減少了日產(chǎn)奶量,推測其機理可能是復方天然植物制劑以炒麥芽消食、回乳[14,16];升麻、柴胡、香附、白術(shù)疏肝理氣;黃芩、知母、蘇梗安胎;五味子、蒲公英固精斂陰,清熱解毒,統(tǒng)籌全局,斷其生化之源,使肝氣調(diào)達四運,有效抑制乳汁分泌而回乳,500、600g組產(chǎn)奶量在整個回乳期差異均不顯著(P>0.05),表明飼喂復方天然植物制劑達到500g/日時,回乳效果即可達到最佳。
INS具有加強糖原合成、維持血糖恒定并調(diào)控泌乳等作用[23]。其可激活胰島素亞基受體I(IRS-I),通過配體約束力和自動磷酸化的誘導,促使生成INS受體蛋白位點,從而調(diào)控乳腺上皮細胞乳糖、乳脂的生物合成[24]。但INS對反芻動物乳腺發(fā)育的作用仍存在爭議,佟慧麗等[25]利用INS處理奶山羊乳腺上皮細胞后發(fā)現(xiàn),細胞活力無明顯變化,而陳建暉等[26]對奶牛乳腺上皮細胞進行類似處理后細胞活力下降,田青等[27]則表示INS對奶牛泌乳細胞生長及分化均有促進作用。本研究結(jié)果顯示,在奶?;厝檫^程中,血清INS含量在第0—1天變化不顯著(P>0.05),在第3—11天依次升高且差異均極顯著(P<0.01),可能由于回乳期間GH含量降低,其對INS的抑制作用減少,并且由于懷孕后期,胎犢宮內(nèi)發(fā)育需要大量糖脂沉積,共同促進機體釋放INS。
PANG等[28]利用黃連治療糖尿病患者取得良好效果,王璟[8]發(fā)現(xiàn)生地、黃芪、當歸等組成的復方天然植物制劑提高了糖尿病患者INS含量,張秋華等[9]指出,黃芩、知母、白術(shù)等復方天然植物制劑可提高小鼠體內(nèi)INS表達量,另有研究表明,黃連、黃芩、知母等復方天然植物制劑能夠顯著提高INS對糖代謝作用率[29],本研究顯示,在奶?;厝檫^程中,復方天然植物制劑能夠極顯著提高回乳期奶牛血清 INS含量(P<0.01),400g組INS含量升高趨勢較500、600g組慢,但500、600g組INS含量在整個回乳期差異均不顯著(P>0.05),表明飼喂500和600g復方天然植物制劑對奶牛回乳期血清INS含量的影響不顯著??赡苁菑头教烊恢参镏苿┲悬S芩和知母等可提升奶牛血清INS含量,促進奶牛機體糖脂沉積,為滿足奶牛自身及胎兒生長發(fā)育的營養(yǎng)和能量需要,從而減少了產(chǎn)奶量。
HC是哺乳動物腎上腺皮質(zhì)分泌的主要糖皮質(zhì)激素之一,近年來,關(guān)于HC對提高奶牛泌乳量及改善乳品質(zhì)逐漸成為研究熱點。HC與乳腺細胞胞內(nèi)核受體結(jié)合,啟動并調(diào)控泌乳相關(guān)基因表達和乳蛋白合成,通過基因組機制實現(xiàn)其生理和藥理功能[30-31]。KABOTANSKI等[32]研究發(fā)現(xiàn)HC能夠增強PRL對酪蛋白mRNAs累積,進而對奶牛乳腺上皮細胞增殖起重要調(diào)控。本研究結(jié)果顯示,在奶?;厝檫^程中,血清HC含量在第0—1天變化不顯著(P>0.05),第3天極顯著高于其余各天(P<0.01),可能是由于奶牛飼糧成分改變和飼舍轉(zhuǎn)換等造成的應(yīng)激使HC含量升高,而第 3—11天依次降低且差異均極顯著(P<0.01),提示奶?;厝槠谘錚RL降低,促使乳腺減少其泌乳細胞胞內(nèi)核受體表達量,反饋抑制腎上腺皮質(zhì)分泌 HC[33],降低泌乳量,也從正面表明了 HC在奶牛回乳中的重要作用。
王喜軍等[10]利用六味地黃丸降低了HC致大鼠腎虛動物模型HC表達量,蘇成虎等[11]利用水芹提取物減少了HC致腎陽虛小鼠體內(nèi)HC含量。本研究發(fā)現(xiàn),在奶?;厝檫^程中,飼喂復方天然植物制劑各組均極顯著降低血清HC含量(P<0.01),說明復方天然植物制劑降HC含量效果明顯,在回乳期后,中藥組血清 HC含量明顯回升,且各中藥組間差異不顯著(P>0.05),可能是由于奶牛及胎犢對糖、脂肪和蛋白質(zhì)等代謝調(diào)節(jié)需求 HC[34],而對照組繼續(xù)下降,可能是由于對照組回乳持續(xù)時間較長,致使HC還未達到回升期,綜上所述,奶牛在回乳期HC明顯降低,并在回乳期后回升,表明各組復方天然植物制劑降奶牛血清HC含量均有良好效果。
GH是由腦垂體分泌的一種單一肽鏈的蛋白質(zhì)激素,有促進生長發(fā)育,調(diào)控泌乳等作用[35-36]。運用牛生長素可調(diào)節(jié)奶牛機體物質(zhì)代謝,提高飼料轉(zhuǎn)化率,增加產(chǎn)奶量[37-38], 對早期泌乳奶牛注射GH可增加產(chǎn)奶量[17],其主要通過JAK2/STAT5信號通路、IGF-I和GH受體等增加乳腺血流量,使營養(yǎng)成分向乳腺聚集,促進乳腺發(fā)育[39]。本試驗結(jié)果表明,在奶牛回乳過程中,GH含量呈下降趨勢,并在回乳期后回升,可能是減少了擠奶刺激,乳房GH受體表達受到抑制,進而反饋抑制垂體分泌 GH,也可能是由于懷孕末期,為滿足胎犢宮內(nèi)快速生長發(fā)育需求導致。
李嬪等[3]利用生地、黃柏和知母等制成濃縮合劑飼喂大鼠,能夠調(diào)控GH蛋白表達。LO等[31]對大鼠灌服大黃衍生物使GH表達增加。王金合等[12]對肉牛拌喂柴胡、當歸等提高肉牛血清GH含量。本研究表明,在奶牛回乳過程中,對照組血清GH含量在回乳第1—11天均呈下降趨勢,且在第3—7天,對照組血清 GH含量極顯著高于中藥組(P<0.01),400g組在第3—5天極顯著高于500、600g組(P<0.01),隨后,復方天然植物制劑組GH含量均上升,且500與600g組在整個回乳期差異性不顯著(P>0.05)。說明復方天然植物制劑對回乳期奶牛降 GH效果明顯,飼喂500g/日即可達到最佳效果,且在回乳期后,復方天然植物制劑組GH含量回升,推測復方天然植物制劑對胎兒生長發(fā)育有促進作用,而對照組GH在回乳期呈現(xiàn)逐漸下降趨勢,可能是由于對照組奶?;厝樗俣容^慢,GH還未達到回升期。表明復方天然植物制劑能夠使奶牛快速回乳,使血清GH含量快速回升,進而間接促進胎犢生長發(fā)育。
IGF-1是一類功能復雜的多肽因子,可促進乳腺泌乳,特別是介導 GH的催乳作用[7]。研究表明,乳腺組織中存在IGF-1及其受體,對早期泌乳奶牛注射GH,增加了IGF-1及其受體表達量[17],另外,IGF-1可直接通過受體作用于乳腺,對乳腺最終分化完全、發(fā)育成熟與乳汁生成以及新生兒的生長發(fā)育具有調(diào)控作用[41],MURNEY 等[42]和 HERNANDEZ 等[43]也表示IGF-1與奶牛產(chǎn)奶量相關(guān)性顯著。本研究結(jié)果表示,在奶?;厝檫^程中,血清IGF-1含量依次呈階梯式下降,而第0和1天、第3和5天、第7和9天、第9和11天之間差異均不顯著(P>0.05),與上述結(jié)果趨勢一致,可能是由于GH降低,其與IGF-1結(jié)合減少,反饋抑制乳腺泌乳細胞分泌。表明奶牛IGF-1不僅在奶牛青春期乳腺生長和泌乳期起正向調(diào)控,且在奶?;厝槠诳山档虸GF-1含量,促進回乳進行。
王昶[44]和唐中生等[45]發(fā)現(xiàn)丹參可使大鼠血清和肝組織IGF-1表達量上升,張弛等[46]利用丹參、黃芩等組成的復方天然植物制劑在兔上的研究結(jié)果類似,石寶明等[13]利用益母草、王不留行、黃芩等組成的復方天然植物制劑顯著增加泌乳大鼠產(chǎn)奶量及IGF-1含量。本試驗結(jié)果顯示,在奶?;厝檫^程中,對照組血清IGF-1含量較復方天然植物制劑組下降慢,復方天然植物制劑500和600g組血清IGF-1含量下降較400g組快,而復方天然植物制劑組500和600g差異不顯著(P>0.05)。表明復方天然植物制劑降IGF-1效果明顯,其中500、600g組效果較好,在回乳期后復方天然植物制劑IGF-1含量均上升,表明復方天然植物制劑可使奶??焖倩厝?,減少IGF-1低含量持續(xù)時間,間接促進IGF-1對GH的介導作用,加快胎犢生長發(fā)育。
神經(jīng)內(nèi)分泌的多種激素與乳腺外組織及乳腺分泌的多種生長因子相互協(xié)同,以內(nèi)分泌、旁分泌和自分泌等方式共同調(diào)節(jié)乳腺的生長發(fā)育和泌乳[5]。有研究表明,IGF-1可介導GH的催乳作用,提高奶牛產(chǎn)奶量[47],而INS與GH在泌乳過程中存在拮抗,當血清中存在高濃度的 INS,其調(diào)控葡萄糖轉(zhuǎn)運至非乳腺組織,使乳腺對葡萄糖的攝取不敏感,而IGF-1介導的GH在低水平INS下可調(diào)節(jié)乳腺和乳腺外營養(yǎng)競爭,使營養(yǎng)向乳腺轉(zhuǎn)移,促進乳腺發(fā)育和乳的合成[48]。本研究顯示,奶牛回乳期,GH含量與HC含量、IGF-1含量和產(chǎn)奶量呈極顯著正相關(guān)(P<0.01),INS含量與IGF-1、HC含量、GH含量和奶產(chǎn)量呈極顯著負相關(guān)(P<0.01),另有研究資料表明,HC可促進乳腺對葡萄糖的攝取,提升血清IGF-1含量,增加泌乳量[47],本研究顯示,奶?;厝槠?,IGF-1含量、HC含量和產(chǎn)奶量兩兩間呈極顯著正相關(guān)(P<0.01),表明在奶?;厝槠?,IGF-1、GH和HC對奶?;厝槠鹭撓蛘{(diào)控功能,而INS對奶?;厝槠鹫{(diào)控作用。
復方天然植物制劑能顯著促進回乳期奶?;厝?,飼喂500g/日復方天然植物制劑,奶?;厝闀r間為5d,回乳效果即可達到最佳?;厝槠谀膛Q逡葝u素、氫化可的松、胰島素樣生長因子1含量和產(chǎn)奶量變化兩兩間均呈極顯著相關(guān),生長激素、胰島素樣生長因子1和氫化可的松對奶?;厝槠鹭撓蛘{(diào)控作用,而胰島素對奶?;厝槠鹫{(diào)控作用。
[1]王春璈. 奶牛臨床疾病學[M]. 北京:中國農(nóng)業(yè)科學技術(shù)出版社,2007.WANG C A. Dairy Cow Clinical Disease[M]. Beijing: China Agricultural Science and Technology Press, 2007. (in Chinese)
[2]ZOBEL G, LESLIE K, WEARY D M, VON KEYSERLINGK M A G.Gradual cessation of milking reduces milk leakage and motivation to be milked in dairy cows at dry-off. Journal of Dairy Science, 2013,96(8): 5064-5071.
[3]李嬪, 向正華, 蔡德培. 中藥對大鼠下丘腦生長抑素及垂體生長激素基因表達與蛋白表達的調(diào)節(jié)作用. 中國中西醫(yī)結(jié)合雜志, 2003,23(3): 207-210.LI B, XIANG Z H, CAI D P. Regulative effect of Chinese herbal medicine on gene and protein expression levels of somatostatin and growth hormone in hypothalamus and hypophysis. Chinese Journal of Integrated Traditional and Western Medicine, 2003, 23(3): 207-210.(in Chinese)
[4]TUCKER C B, LACY-HULBERT S J, WEBSTER J R. Effect of milking frequency and feeding level before and after dry off on dairy cattle behavior and udder characteristics. Journal of Dairy Science,2009, 92(7): 3194-3203.
[5]OGATA Y,YU G M, HIDAKA T, MATZUSHIGE T, MAEDA T.Effective embryo production from Holstein cows treated with gonadotropin-releasing hormone during early lactation. Theriogenology,2016, 86(6): 1421-1426.
[6]文靜, 卜登攀, 王建發(fā), 孫鵬. 激素調(diào)控乳蛋白合成的作用及其分子機制. 華北農(nóng)學報, 2012, 27(s1): 111-115.WEN J, BU D P, WANG J F, SUN P. Progress in the regulation role of lactoprotein synthesis by hormone and its molecular mechanism. Acta Agriculturae Boreali-Sinica, 2012, 27 (s1):111-115. (in Chinese)
[7]BACH L A. Insulin-like growth factor binding proteins--an update.Pediatric Endocrinology Reviews: Per, 2015, 13(2):521-30.
[8]王璟. 中藥對胰島素治療2型糖尿病低血糖發(fā)生率的影響. 西部中醫(yī)藥, 2014, 27(4): 94-95.WANG J. Effects of herbs on the incidence rate of hypoglycemia ofthe patients with type two diabetes mellitus. Western Journal of Traditional Chinese Medicine, 2014, 27(4): 94-95. (in Chinese)
[9]張秋華, 付彥君. 肥胖相關(guān)胰島素抵抗中醫(yī)藥研究現(xiàn)狀. 中醫(yī)藥信息, 2012, 29(2): 114-116.ZHANG Q H, FU Y J. Obesity insulin resistance related research status of traditional Chinese medicine. Information on Traditional Chinese Medicine, 2012, 29(2): 114-116. (in Chinese)
[10]王喜軍, 張寧, 孫暉, 李麗靜, 呂海濤. 六味地黃丸血中移行成分對氫化可的松致大鼠腎虛動物模型的保護作用研究. 中國實驗方劑學雜志, 2008, 14(2): 33-37.WANG X J, ZHANG N, SUN H, LI L J, Lü H T. Protective effect of Liuwei Dihuang Wan and its constituents absorbed into blood after oral administration on hydrocortisone inducing renal deficiency in rat.Chinese Journal of Experimental Traditional Medical Formulae, 2008,14(2): 33-37. (in Chinese)
[11]蘇成虎, 楊新波, 黃正明, 陳曉農(nóng), 陳紅艷, 程麗娟, 于珊, 徐雪鈺.水芹提取物對氫化可的松致腎陽虛小鼠的對抗作用. 中國中醫(yī)藥信息雜志, 2011, 18(12): 39-42.SU C H, YANG X B, HUANG Z M, CHEN X N, CHEN H Y,CHENG L J, YU S, XU X Y. Effect of extract of Oenanthe javanica against kidney yang deficiency in mice caused by hydrocortisone.Chinese Journal of Information on Traditional Chinese Medicine,2011, 18(12): 39-42. (in Chinese)
[12]王金合, 李榮譽, 汪德剛, 王居強. 中草藥添加劑對肉牛增重和血清中生長激素的影響. 河南農(nóng)業(yè)科學, 2007 (9): 101-103.WANG J H, LI R Y, WANG D, WANG J Q. The Chinese herb additive increases heavy and in the blood serum to the beef cattle the growth hormone influence. Journal of Henan Agricultural Sciences,2007(9): 101-103. (in Chinese)
[13]石寶明, 單安山. 促乳中草藥對泌乳大鼠內(nèi)分泌功能的影響. 東北農(nóng)業(yè)大學學報, 2011, 42(12): 45-50.SHI B M, SHAN A S. Effect of Chinese herbs for improving milk production on dam endocrine function during suckling period.Journal of Northeast Agricultural University, 2011, 42(12): 45-50. (in Chinese)
[14]王雄. 回乳抑增一號治療高泌乳素血癥與乳腺增生藥效學研究[D].武漢: 湖北中醫(yī)藥大學, 2012.WANG X. Pharmacodynamics study on menehanism of NO.1 Huiru Yizeng on hyperprolactinemia and mazoplasia in rats[D]. Wuhan:Hubei University of Chinese Medicine, 2012. (in Chinese)
[15]郝振華, 郭震兵. 重用生麥芽治療高泌乳素血癥性不孕的臨床觀察. 新疆中醫(yī)藥, 2016, 34(1): 13-14.HAO Z H,GUO Z B. The clinical observation of treating infertility with high prolactin with large-dose raw malt. Xinjiang Journal of Traditional Chinese Medicine, 2016, 34(1): 13-14. (in Chinese)
[16]鐘慧萍. 炒麥芽泡茶飲用聯(lián)合芒硝外敷雙乳回奶的效果觀察. 中外醫(yī)學研究, 2015,13(34): 157-159.ZHONG H P. Fried malt tea drinking joint of glauber's salt topical breasts back to observe the effect of milk. Chinese and Foreign Medical Research, 2015, 13(34): 157-159. (in Chinese)
[17]MACRINA A L, KAUF A C W, KENSINGER R S. Effect of bovine somatotropin administration during induction of lactation in 15-month-old heifers on production and health. Journal of Dairy Science,2011, 94(9): 4566-4573.
[18]WANG J F, FU S P, LI S N, HU Z M, XUE W J, LI Z Q, HUANG B X, LV Q K, LIU J X, WANG W. Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAmp/PKA/CREB signaling pathway in dairy cow anterior pituitary cells. International Journal of Molecular Sciences, 2013, 14(11): 21474-21488.
[19]HENDERSON A C, HUDSON C D, BRADLEY A J, SHERWIN V E,GREEN M J. Prediction of intramammary infection status across the dry period from lifetime cow records. Journal of Dairy Science, 2016,99(7): 5586-5595.
[20]ZHAO F R, MAO H P,ZHANG H, HU L M, WANG H, WANG Y F,YANAQIHARA N, GAO X M. Antagonistic effects of two herbs in Zuojin Wan, a traditional Chinese medicine formula, on catecholamine secretion in bovine adrenal medullary cells. Phytomedicine International Journal of Phytotherapy and Phytopharmacology, 2010,17(8-9): 659-668.
[21]吳文英, 周惠歡, 吳秀娥. 芒硝外敷治療產(chǎn)后回奶的觀察及護理.醫(yī)學信息, 2013, 26(8):375.WU W Y, ZHOU H H, WU X E. Glauber's salt external observation and nursing for the treatment of postpartum back to milk. Medical Information, 2013, 26(8):375. (in Chinese)
[22]楊強, 陳晉, 劉軍. 卡麥角林治療泌乳素型垂體瘤的研究進展. 中國神經(jīng)精神疾病雜志, 2016, 42(5):311-314.YANG Q, CHEN J, LIU J. Cabergoline therapy research progress of prolactin type of pituitary adenoma. Chinese Journal of Nervous and Mental Diseases, 2016, 42(5): 311- 314. (in Chinese)
[23]RIEHLE C, ABEL E D. Insulin signaling and heart failure.Circulation Research, 2016,118(7):1151- 1169.
[24]AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows.Journal of Dairy Science, 2006, 89(4): 1222-1234.
[25]佟慧麗, 高學軍, 李慶章, 嚴云勤. 胰島素、催乳素對奶山羊乳腺上皮細胞泌乳功能的影響. 畜牧獸醫(yī)學報, 2008, 39(6): 721-725.TONG H L, GAO X J, LI Q Z, YAN Y Q. Impacting of insulin and prolactin on mammary gland epithelial cell line. Chinese Journal of Animal and Veterinary Sciences, 2008, 39(6): 721-725. (in Chinese)
[26]陳建暉, 佟慧麗, 李慶章, 高學軍. 胰島素、催乳素和孕酮對奶牛乳腺上皮細胞泌乳功能的影響. 中國奶牛, 2008(8): 9-13.CHEN J H, TONG H L, LI Q Z, GAO X J. Influence of insulin,prolactin and progesterone on milk-secr etion of mammary gland epithelial cell in dairy cow. China Dairy, 2008(8):9-13. (in Chinese)
[27]田青, 季昀, 龐學燕, 王洪榮. 胰島素對奶牛乳腺上皮細胞酪蛋白合成調(diào)節(jié)機理的研究. 動物營養(yǎng)學報, 2013, 25(3): 550-560.TIAN Q, JI Y, PENG X Y, WANG H R. A study of insulin action mechanism on casein synthesis of bovine mammary epithelial cells.Chinese Journal of Animal Nutrition, 2013, 25(3): 550-560. (in Chinese)
[28]PANG B, YU X T, ZHOU Q, ZHAO T Y, WANG H, GU C J, TONG X L. Effect of Rhizoma coptidis (Huang Lian) on treating diabetes mellitus. Evidence-based Complementary and Alternative Medicine,2015:921416. http://dx.doi.org/10.1155/2015/921416.
[29]畢博, 孫蘭軍. 中藥改善胰島素抵抗及其降糖作用. 現(xiàn)代中西醫(yī)結(jié)合雜志, 2009, 18(22): 2739-2740.BI B, SUN L J. Traditional Chinese medicine to improve insulin resistance and its hypoglycemic effect. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2009, 18(22): 2739-2740.(in Chinese)
[30]李敏. 新型糖皮質(zhì)激素對肥大細胞脫顆粒的快速作用及其機制研究[D]. 第二軍醫(yī)大學, 2010.LI M. New glucocorticoid on mast cell degranulation quick effect and its mechanism[D]. Second Military Medical University, 2010. (in Chinese)
[31]SHEEHY P A, NICHOLAS K R, WYNN P C. An investigation of the role of insulin in bovine milk protein gene expression in mammary explant culture. Asian Australasian Journal of Animal Sciences, 2000,13:272-275.
[32]KABOTYANSKI E B, RIJINKELS M, FREEMAN-ZADROWSKI C,BUSER A C, EDWARDS D P, ROSEN J M. Lactogenic hormonal induction of long distance interactions between Β-Casein gene regulatory elements. Journal of Biological Chemistry, 2009, 284(34):22815-22824.
[33]LITTLEJOHN M D, HENTY K M, TIPLADY K, JOHNSON T,HARLAND C, LOPDELL T, SHERLOCK R G, LI W, LUKEFAHR S D, SHANKS B C, GARRICK D J, SNELL R G, SPELMAN R J,DAVIS S R. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nature Communications,2014, 5: 5861-5861.
[34]WHITAKER M J, SPIELMANN S, DIGWEED D, HUATAN H,ECKLAND D, JOHNSON T N, TUCKER G, KRUDE H,BLANKENSTEIN O, ROSS R J. Development and testing in healthy adults of oral hydrocortisone granules with taste masking for the treatment of neonates and infants with adrenal insufficiency. Journal of Clinical Endocrinology & Metabolism, 2015, 100(4): 1681-1688.
[35]STEYN F J. Nutrient sensing ooverrides somatostatin and growth hormone- releasing hormone to control pulsatile growth hormone release. Journal of Neuroendocrinology, 2015, 27(7): 577-587.
[36]BROWN-BORG H M. Reduced growth hormone signaling and methionine restriction: interventions that improve metabolic health and extend life span. Annals of the New York Academy of Sciences,2015, 1363(1): 40-49.
[37]FORSYTH I A, WALLIS M. Growth hormone and prolactin—molecular and functional evolution. Journal of Mammary Gland Biology and Neoplasia, 2002, 7(3): 291-312.
[38]RHOADS M L, MEYER J P, KOLATH S J, LAMBERSON M C,LUCY M C. Growth hormone receptor, insulin-like growth factor(IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows. Journal of Dairy Science,2008, 91(5): 1802-1813.
[39]ELENA L, BERIT K, BJORN J, KERSTIN A W. Growth hormone(GH) dose-dependent IGF-I response relates to pubertal height gain.Bmc Endocrine Disorders, 2015, 15(1): 1-14.
[40]LO Y H, CHEN Y J, CHUNG T Y, LIN N H, CHEN W Y, CHEN C Y,LEE M R, CHOU C C, TZEN-JASON T C. Emoghrelin, a unique emodin derivative in Heshouwu, stimulates growth hormone secretion via activation of the ghrelin receptor. Journal of Ethnopharmacology,2015, 159(5): 1-8.
[41]NAWATHE A R, CHRISTIAN M, KIM S H, JOHSON M,SAVVIDOU M D, TERZIDOU V. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders. Clinical Epigenetics,2016, 8(1): 1-13.
[42]MURNEY R, STELWAGEN K, WHEELER T T, MARGERISON J K, SINGH K. The effects of milking frequency on insulin-like growth factor 1 signaling within the mammary gland of dairy cows. Journal of Dairy Science, 2015, 98(8): 5422-5428.
[43]HERNANDEZ H, FLORES J A, DELGADILLO J A, FERNANDEZ I G, FLORES M J, MEJIA A, ELIZUNDIA J M, BEDOS M, PONCE J L, RAMIREZ S. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats. Animal Science Journal, 2016, 87(4):484-491.
[44]王昶. 胰島素樣生長因子-1在肝纖維化大鼠中的表達及中藥的干預(yù)作用[D]. 大連:大連醫(yī)科大學, 2015.WANG C. Insulin-like growth factor 1 expression in liver fibrosis in rats and the intervention effect of Chinese traditional medicine[D].Dalian:Dalian Medical University, 2015. (in Chinese)
[45]唐中生, 呂明莊, 賀志光, 王旭東. 耳針聯(lián)合中藥對血管性癡呆大鼠記憶障礙及胰島素樣生長因子-1及乙酰膽堿酯酶表達的影響.中華中醫(yī)藥雜志, 2008, 23(3): 270-272.TANG Z S, Lü M Z, HE Z G, WANG X D. Earpins combined traditional Chinese medicine (TCM) memory impairment of vascular dementia rats and insulin-like growth factor 1 and acetyl cholinesterase expression. China Journal of Traditional Chinese Medicine and Pharmacy, 2008, 23(3): 270-272. (in Chinese)
[46]張弛, 楊志偉, 段小英. 活血通絡(luò)法治療激素性股骨頭壞死兔胰島素樣生長因子 1的變化. 中國組織工程研究, 2012, 16(52):9787-9791.ZHANG C, YANG Z W, DUAN X Y. Changes of insulin-like growth factor 1 levels in rabbits with steroid-induced femoral head necrosis after treatment with Huoxuetongluo method. Chinese Journal of Tissue Engineering Research, 2012, 16(52): 9787-9791. (in Chinese)
[47]李蔚輝, 魏學鑫. 糖皮質(zhì)激素的信號轉(zhuǎn)導系統(tǒng). 亞太傳統(tǒng)醫(yī)藥,2007, 3(12): 21-25.LI W H, WEI X X. Signal transduction system of glucocorticoid.Asia-Pacific Traditional Medicine, 2007, 3(12): 21-25. (in Chinese)
[48]趙國麗, 宮艷斌, 韓元, 李鵬, 秦春華, 史遠剛. 激素和生長因子調(diào)控奶牛乳腺發(fā)育的研究進展. 中國奶牛, 2011(6): 25-30.ZHAO G L, GONG Y B, HAN Y, LI P, QIN C H, SHI Y G. Advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. China Dairy, 2011(6): 25-30. (in Chinese)
(責任編輯 林鑒非)
Effects of Compound Natural Plant Preparation on Milk Withdrawal and Galactin in Dairy Cows
SHEN LiuHong, XIAO JinBang, WU XiaoFeng, JIANG SiXun, JIANG Tao, DENG JunLiang,ZUO ZhiCai, YU ShuMin, CAO SuiZhong
(The Key Laboratory of Animal Disease and Human Health of Sichuan Province/The Medical Research Center for Cow Disease,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130)
2016-11-30;接受日期:2017-07-20
四川省教育廳重點項目(15ZA0024)、四川農(nóng)業(yè)大學雙支計劃(03571303)、四川農(nóng)業(yè)大學本科科研興趣培養(yǎng)計劃(KY2016062)
聯(lián)系方式:沈留紅,E-mail:shenlh@sicau.edu.cn。肖勁邦,E-mail:811031312@qq.com。沈留紅和肖勁邦為同等貢獻作者。通信作者曹隨忠,E-mail:suizhongcao@126.com