張 穎, 趙禹琦, 劉艷秋
(沈陽工業(yè)大學(xué) 理學(xué)院, 沈陽 110870)
信息科學(xué)與工程
快遞企業(yè)人員調(diào)配問題的建模與求解方法*
張 穎, 趙禹琦, 劉艷秋
(沈陽工業(yè)大學(xué) 理學(xué)院, 沈陽 110870)
針對(duì)快遞企業(yè)配送中心人員調(diào)配問題,提出了在服務(wù)于同類客戶與不同類客戶兩種條件下,用時(shí)間序列季節(jié)系數(shù)法預(yù)測(cè)來件量,并分析快件處理和配送過程中的人員、車輛因素的方法.該方法對(duì)同類客戶調(diào)整配送中心快件處理人員與分配人員的數(shù)量,以此達(dá)到極小化快件剩余量的目標(biāo),對(duì)不同類客戶調(diào)整配送人員的數(shù)量,以此達(dá)到極小化配送中心成本的目標(biāo),并建立了數(shù)學(xué)模型.利用粒子群算法對(duì)模型進(jìn)行求解,通過實(shí)例進(jìn)行仿真試驗(yàn),從而得到配送中心人員調(diào)配的最佳方式,以此指導(dǎo)企業(yè)合理運(yùn)營(yíng).
快遞企業(yè); 配送中心; 人員調(diào)配; 時(shí)間序列季節(jié)系數(shù)法; 快件量預(yù)測(cè); 極小化; 數(shù)學(xué)模型; 粒子群算法
快遞企業(yè)人員的合理調(diào)配能夠使企業(yè)節(jié)約人力資源,提高運(yùn)營(yíng)效率.而快遞配送中心一天中各時(shí)段來件量具有一定的隨機(jī)性,這使得人員調(diào)配對(duì)企業(yè)優(yōu)化資源配置與提升績(jī)效起到關(guān)鍵作用.相關(guān)工作主要有:對(duì)快遞產(chǎn)品時(shí)效性與快遞企業(yè)邊界問題的研究[1];軸輻式快遞網(wǎng)絡(luò)的樞紐選址和分配優(yōu)化[2];基于作業(yè)成本法快遞網(wǎng)絡(luò)配送中心建立的優(yōu)化決策[3];基于改進(jìn)遺傳算法的同城快遞配送模型[4];基于時(shí)間閾值與運(yùn)價(jià)折扣的區(qū)域快遞網(wǎng)絡(luò)優(yōu)化[5]等.本文從配送中心人力資源角度出發(fā),對(duì)配送中心面對(duì)同類客戶與不同類客戶分別建立極小化快件剩余量模型與極小化配送中心成本模型,進(jìn)而通過求解得到快遞企業(yè)人員調(diào)配的優(yōu)化方案.
對(duì)服務(wù)于一類客戶與服務(wù)于三類客戶的兩個(gè)配送中心進(jìn)行分析,依據(jù)其一天中各時(shí)段來件的隨機(jī)性分別對(duì)來件量進(jìn)行預(yù)測(cè).對(duì)服務(wù)于一類客戶的配送中心,將其主要人員分為快件處理人員與配送人員,且該中心所有人員都能夠進(jìn)行快件處理,其中只有固定數(shù)量的人員能從事快件配送工作,以極小化處理快件的剩余量為目標(biāo),合理分配各時(shí)段的快件處理人員與配送人員;對(duì)服務(wù)于三類客戶的配送中心,僅考慮派往不同客戶的快件數(shù)量、配送人員與車輛因素.將配送中心成本分為配送時(shí)段庫存成本與運(yùn)輸成本,通過調(diào)整配送人員數(shù)量來達(dá)到使其成本極小化的目標(biāo).
2.1 極小化快件剩余量模型
2.1.1 剩余量模型假設(shè)與符號(hào)說明
2.1.2 建立極小化快件剩余量模型
由于快遞企業(yè)配送中心一天中的來件量具有隨機(jī)性,同時(shí)在一天中各個(gè)時(shí)段的來件量有類似季節(jié)性波動(dòng)的特點(diǎn),因此應(yīng)用時(shí)間序列季節(jié)系數(shù)法[6-8]進(jìn)行預(yù)測(cè),其步驟如下:
1) 以天和每天各時(shí)間段為單位收集數(shù)據(jù).
3) 計(jì)算出每天所有時(shí)間段的算數(shù)平均值,即
(1)
4) 計(jì)算同時(shí)段數(shù)據(jù)的算數(shù)平均值,即
(2)
5) 計(jì)算系數(shù),即
(3)
6) 先求出預(yù)測(cè)天的加權(quán)平均,即
(4)
(5)
7) 所得出的預(yù)測(cè)值為
(6)
計(jì)算t時(shí)間段內(nèi)返回配送中心車輛數(shù),即
(7)
對(duì)一天結(jié)束后快件剩余量進(jìn)行統(tǒng)計(jì),可得
(8)
計(jì)算t時(shí)間段內(nèi)配送中心可發(fā)車輛數(shù),即
(9)
計(jì)算t時(shí)間段內(nèi)配送中心可用人力總量,即
(10)
(11)
s.t.
0
(12)
0≤nyt≤ut+zt
(13)
(14)
(15)
0≤yt≤Nt
(16)
ut+zt-μxt≤ε
(17)
其中,式(17)表示為了保證服務(wù)質(zhì)量,在每個(gè)時(shí)間段內(nèi)未處理的快件量不得多于ε.
2.2 極小化配送中心成本模型
2.2.1 成本模型假設(shè)與符號(hào)說明
2.2.2 建立極小化配送中心成本模型
配送中心各時(shí)間段來件量與請(qǐng)假人數(shù)都具有隨機(jī)性與季節(jié)性波動(dòng)特點(diǎn),因此應(yīng)用時(shí)間序列季節(jié)系數(shù)法進(jìn)行統(tǒng)計(jì)預(yù)測(cè).
計(jì)算t時(shí)間段內(nèi)從客戶i處返回的車輛數(shù),即
(18)
對(duì)一天結(jié)束后快件剩余量進(jìn)行統(tǒng)計(jì),可得
(19)
(20)
計(jì)算t時(shí)間段內(nèi)可用配送人員數(shù)量,即
(21)
計(jì)算t時(shí)間段內(nèi)配送中心可發(fā)車輛數(shù),即
(22)
建立極小化成本模型,即
(23)
s.t.
(24)
(25)
(26)
(27)
1) 編碼方式分別為:目標(biāo)函數(shù)式(11)用各配送時(shí)間段快件處理人員與配送人員的數(shù)組向量作為粒子的表達(dá)方式;目標(biāo)函數(shù)式(23)用各配送時(shí)間段派往不同客戶的配送人員的數(shù)組向量作為粒子的表達(dá)方式.
2) 應(yīng)用罰函數(shù)法對(duì)模型約束進(jìn)行處理.將目標(biāo)函數(shù)式(11)的約束條件表示為
g1=xt+yt-Mt≤0
(28)
g2=nyt-(ut+zt)≤0
(29)
(30)
(31)
g5=yt-Nt≤0
(32)
g6=ut+zt-μxt-ε≤0
(33)
則其適值函數(shù)可以表示為
(34)
式中:r為懲罰因子;G(·)的表達(dá)式如式(35)所示.
(35)
3) 應(yīng)用粒子群優(yōu)化算法求解具體步驟如下.
① 初始化最大迭代次數(shù)n1max(n1=1)、種群規(guī)模以及粒子群中粒子的位置和速度.
② 計(jì)算每個(gè)粒子的適應(yīng)值.
③ 更新粒子的個(gè)體歷史最優(yōu)適應(yīng)值與最優(yōu)位置及整個(gè)群體的歷史最優(yōu)適應(yīng)值與最優(yōu)位置.
(36)
(37)
4.1 極小化快件剩余量模型的仿真試驗(yàn)
A快遞企業(yè)配送中心一周內(nèi)來件量數(shù)據(jù)如表1所示.
表1 同類客戶配送中心來件量Tab.1 Parcel receiving quantity in distributioncenter for similar kind of customers 件
仿真試驗(yàn)中,令n=35,Nmax=29,M=60,M′=32,μ=40,ε=30,θ=98.5%,a=2,u1=52.應(yīng)用時(shí)間序列季節(jié)系數(shù)法預(yù)測(cè)得到一天中6個(gè)時(shí)間段來件量分別為386.48、463.06、497.23、489.26、404.56、398.53件.利用式(11)建立極小化快件剩余量模型,運(yùn)用粒子群優(yōu)化算法求解模型可得r=1 000,n1max=100,種群規(guī)模為50,ω=0.8,c1=2,c2=1.得到當(dāng)前最佳人員調(diào)配方案為
((11,12),(12,12),(14,15),(13,15),
(13,14),(11,12))
當(dāng)前最好解為
4.2 極小化配送中心成本模型的仿真試驗(yàn)
B快遞企業(yè)配送中心一周內(nèi)來件量數(shù)據(jù)如表2所示.
表2 不同類客戶配送中心來件量Tab.2 Parcel receiving quantity in distributioncenter for different kinds of customers 件
仿真試驗(yàn)中,令Nmax=33,M=38,θ1=98.5%,θ2=99.5%,θ3=98.9%,u1=71,a1=1,a2=2,a3=3,n=35,C=9,A1=22,A2=25,A3=28.應(yīng)用時(shí)間序列季節(jié)系數(shù)法得到6個(gè)時(shí)間段來件量分別為496.51、570.34、585.53、569.05、508.51、493.50件.統(tǒng)計(jì)配送中心一周內(nèi)各時(shí)間段請(qǐng)假人數(shù),應(yīng)用時(shí)間序列季節(jié)系數(shù)法預(yù)測(cè)得到6個(gè)時(shí)間段的缺席人數(shù)分別為3.22、2.87、1.49、3.15、3.43、3.46人.統(tǒng)計(jì)得到派往各類客戶快件比例數(shù)據(jù)如表3所示.
表3 客戶配送比例數(shù)據(jù)Tab.3 Proportional data for customer distribution %
(5,6,4))
當(dāng)前最好解為
本文在快遞企業(yè)配送中心來件的隨機(jī)性背景下,通過建立數(shù)學(xué)模型并求解,分別得到了服務(wù)于一類客戶與三類客戶的配送中心人員調(diào)配的不同優(yōu)化方案.依照此方案,一類客戶的配送中心可以優(yōu)化其快件處理人員與配送人員數(shù)量,三類客戶的配送中心能夠合理安排每次配送中派往不同客戶的人員數(shù)量,因此,使得企業(yè)能夠有效整合人力資源,降低成本并提高競(jìng)爭(zhēng)力.
[1] 郭云,譚克虎.快遞產(chǎn)品時(shí)效性與快遞企業(yè)邊界問題研究 [J].商業(yè)經(jīng)濟(jì)管理,2015(1):6-12.
(GUO Yun,TAN Ke-hu.The timeliness of product delivery and boundary problem of express delivery corporations [J].Journal of Business Economics,2015(1):6-12.)
[2] 李莉,丁以中.軸輻式快遞網(wǎng)絡(luò)的樞紐選址和分配優(yōu)化 [J].上海海事大學(xué)學(xué)報(bào),2012,33(2):33-39.
(LI Li,DING Yi-zhong.Optimization of hub location and allocation for hub-spoke express delivery network [J].Journal of Shanghai Maritime University,2012,33(2):33-39.)
[3] 謝祥添,張畢西,張勁珊.基于作業(yè)成本法快遞網(wǎng)絡(luò)配送中心建立的優(yōu)化決策 [J].系統(tǒng)科學(xué)學(xué)報(bào),2014,22(4):60-68.
(XIE Xiang-tian,ZHANG Bi-xi,ZHANG Jin-shan.The optimization decision built by express delivery network distribution center based on activity-based costing [J].Journal of System Science,2014,22(4):60-68.)
[4] 宋娟,崔艷.基于改進(jìn)遺傳算法的同城快遞配送模型 [J].電子技術(shù)應(yīng)用,2014,40(12):136-139.
(SONG Juan,CUI Yan.A city express delivery model based on improved genetic algorithm [J].Application of Electronic Technique,2014,40(12):136-139.)
[5] 葛雪,于波,靳志宏.基于時(shí)間閾值與運(yùn)價(jià)折扣的區(qū)域快遞網(wǎng)絡(luò)優(yōu)化 [J].大連海事大學(xué)學(xué)報(bào),2013,39(2):73-77.
(GE Xue,YU Bo,JIN Zhi-hong.Optimization of regional express network based on time threshold and tariff discounts [J].Journal of Dalian Maritime University,2013,39(2):73-77.)
[6] 林德榮,張軍洲.旅游時(shí)間序列的季節(jié)性特征研究:以城市入境旅游為例 [J].旅游學(xué)刊,2015,30(1):63-71.
(LIN De-rong,ZHANG Jun-zhou.Research on seasonality of tourism time series:urban inbound tourism as a case study [J].Tourism Tribune,2015,30(1):63-71.)
[7] 李勇,施艷春.基于動(dòng)態(tài)熵權(quán)的短期風(fēng)速組合預(yù)測(cè) [J].沈陽工業(yè)大學(xué)學(xué)報(bào),2016,38(3):247-251.
(LI Yong,SHI Yan-chun.Short-term wind speed combination forecast based on dynamic entropy weight [J].Journal of Shenyang University of Technology,2016,38(3):247-251.)
[8] 丁明,鮑玉瑩,畢銳.應(yīng)用改進(jìn)馬爾科夫鏈的光伏出力時(shí)間序列模擬 [J].電網(wǎng)技術(shù),2016,40(12):459-464.
(DING Ming,BAO Yu-ying,BI Rui.Simulation of PV output time series used improved Markov chain [J].Power System Technology,2016,40(12):459-464.)
[9] 馬天兵,裘進(jìn)治,季宏麗,等.基于粒子群的壓電結(jié)構(gòu)多目標(biāo)同步優(yōu)化控制 [J].沈陽工業(yè)大學(xué)學(xué)報(bào),2012,34(5):569-575.
(MA Tian-bing,QIU Jin-zhi,JI Hong-li,et al.Multi-objective simultaneous optimization control for piezoelectric structure based on particle swarm [J].Journal of Shenyang University of Technology,2012,34(5):569-575.)
[10]林國漢,章兢,劉朝華.采用異構(gòu)搜索的多子群協(xié)同進(jìn)化粒子群算法 [J].計(jì)算機(jī)應(yīng)用研究,2016,33(3):677-681.
(LIN Guo-han,ZHANG Jing,LIU Zhao-hua.Multi-swarm cooperative particle swarm algorithm with hete-rogeneous search strategy [J].Application Research of Computers,2016,33(3):677-681.)
(責(zé)任編輯:鐘 媛 英文審校:尹淑英)
Modelingandsolvingmethodforpersonnelallocationprobleminexpresscompany
ZHANG Ying, ZHAO Yu-qi, LIU Yan-qiu
(School of Science, Shenyang University of Technology, Shenyang 110870, China)
Aiming at the personnel allocation problem in the express company, a method which could forecast the express delivery quantity with the time series seasonal coefficient method and analyze the personnel and vehicle factors in the process of express handling and distribution under the conditions of serving the same and different kinds of customers was proposed. For the same kind of customers, the quantity of both express handling personnel and distribution personnel in the distribution center was adjusted with the proposed method, and thus the goal of minimizing the express remainder was achieved. For the different kinds of customers, the quantity of distribution personnel was adjusted, and thus the goal of minimizing the cost of distribution center was achieved. In addition, the mathematical model was established. The model was solved with the particle swarm algorithm, and the simulation test was performed with the examples. Furthermore, the optimal way for the personnel allocation in the distribution center is obtained, which can guide the reasonable operation of companies.
express company; distribution center; personnel allocation; time series seasonal coefficient method; express delivery quantity forecast; minimization; mathematical model; particle swarm algorithm
TB 114.1
: A
: 1000-1646(2017)05-0513-05
2016-09-01.
遼寧省科學(xué)技術(shù)計(jì)劃項(xiàng)目(2013216015); 沈陽市科學(xué)技術(shù)計(jì)劃項(xiàng)目(F14-231-1-24).
張 穎(1964-),女,遼寧撫順人,教授,博士,主要從事復(fù)雜系統(tǒng)的建模及優(yōu)化等方面的研究.
* 本文已于2017-01-19 17∶56在中國知網(wǎng)優(yōu)先數(shù)字出版. 網(wǎng)絡(luò)出版地址: http:∥www.cnki.net/kcms/detail/21.1189.T.20170119.1756.020.html
10.7688/j.issn.1000-1646.2017.05.07