時紅波, 時紅林, 張向穎, 陳德喜, 段鐘平, 任 鋒
首都醫(yī)科大學附屬北京佑安醫(yī)院 北京市肝病研究所,北京 100069
TNF-α/ActD協(xié)同內質網應激通過調控糖原合成酶激酶3β促進肝細胞凋亡
時紅波, 時紅林, 張向穎, 陳德喜, 段鐘平, 任 鋒
首都醫(yī)科大學附屬北京佑安醫(yī)院 北京市肝病研究所,北京 100069
目的研究腫瘤壞死因子(tumor necrosis factor α, TNF-α)和放線菌素D(Actinomycin D, ActD)與內質網應激(endoplasmic reticulum stress, ERS)誘導肝細胞凋亡的相互作用及分子機制。方法分離小鼠原代肝細胞,應用TNF-α和ActD聯(lián)合誘導的肝細胞凋亡,分別給予ERS激活劑(Tunicamycin, TM)和抑制劑(4-phenylbutyrate, 4-PBA),檢測細胞上清中分泌的乳酸脫氫酶(LDH)和細胞中caspase-3的表達;在TNF-α/ActD誘導凋亡的基礎上,加入4-PBA抑制ERS,檢測ERS相關蛋白和糖原合成酶激酶3β(Glycogen synthase kinase 3β,GSK3β)的表達情況。最后在TNF-α/ActD誘導凋亡和TM激活ERS的基礎上,加入GSK3β抑制劑(SB216763),檢測原代肝細胞凋亡情況。結果TNF-α/ActD可以明顯誘導肝細胞分泌LDH,加入TM后,肝細胞分泌LDH和表達的caspase-3明顯增多,而加入4-PBA后,肝細胞分泌LDH和表達的caspase-3明顯減少。TNF-α/ActD明顯促進了Grp78和CHOP的表達,促進ERS的活化;ERS抑制增強GSK3β磷酸化水平,降低GSK3β活性,但TNF-α/ActD對GSK3β活性無明顯影響;TNF-α/ActD可以直接誘導肝細胞發(fā)生凋亡,加入TM后,凋亡的細胞明顯增多,但是加入GSK3β抑制劑后,細胞凋亡明顯減少。結論TNF-α/ActD協(xié)同ERS誘導了肝細胞的凋亡,其分子機制可能與GSK3β的活化有關。
內質網應激;腫瘤壞死因子;放線菌素D;細胞凋亡;糖原合成酶激酶3β
內質網(endoplasmic reticulum, ER)是真核細胞中一種重要的細胞器,由于各種原因引起的錯誤折疊或未折疊蛋白在內質網腔內聚集及Ca2+平衡紊亂的狀態(tài),稱為內質網應激(ER stress, ERS)[1]。ERS可激活未折疊蛋白反應和caspase-12介導的凋亡等信號途徑,既能誘導內質網分子伴侶糖調節(jié)蛋白(glucose-regulated protein 78, GRP78)等表達而產生保護效應,也能獨立地誘導細胞凋亡[2]。
肝細胞凋亡是造成肝臟損傷和肝臟疾病最基本的中心環(huán)節(jié),既往研究認為,肝細胞凋亡主要通過兩條信號通路介導,即死亡受體通路和線粒體依賴性的細胞凋亡通路。但近來發(fā)現,ERS也介導肝細胞發(fā)生凋亡,且ERS介導的凋亡途徑與其他凋亡途徑之間存在著交叉,協(xié)同促進細胞凋亡的發(fā)生和發(fā)展[3-5],但ERS調控凋亡的機制尚不明確。因此本研究主要討論ERS內源性凋亡通路與腫瘤壞死因子(tumor necrosis factor α, TNF-α)聯(lián)合放線菌素D(Actinomycin D, ActD)外源性凋亡通路在肝細胞凋亡中的相互作用及其分子機制。
1.1材料TNF-α、ActD、ERS誘導劑衣霉素(Tunicamycin, TM)和ERS抑制劑4-苯基丁酸(4-phenylbutyrate, 4-PBA),糖原合成酶激酶-3β(Glycogen synthase kinase 3β, GSK3β),特異性抑制劑SB216763均購自美國Sigma公司。p-GSK3β、GSK3β、Caspase-3、Cleaved Caspase-3、CHOP、Grp78和β-actin兔單克隆抗體(一抗)以及HRP耦聯(lián)的羊抗兔多克隆抗體(二抗)均購自美國Cell Signaling公司;蛋白定量試劑盒購自美國Bio-Rad公司;細胞培養(yǎng)上清乳酸脫氫酶(lactate dehydrogenase, LDH)檢測試劑盒購自美國Antech Diagnostics公司。
1.2原代肝細胞的分離培養(yǎng)和處理7周齡Balb/c小鼠的肝臟用膠原酶溶液進行灌注,小鼠原代肝細胞通過密度梯度離心被分離出來。應用TNF-α(20 ng/ml)和ActD(1 nmol/L)誘導細胞凋亡。TM(20 μg/ml)在TNF-α和ActD處理之前2 h被加入原代肝細胞中,同時根據實驗需要在誘導凋亡前2 h加入SB216763(10 mmol/L)。4-PBA(1 mmol/L)被加入原代肝細胞中作用12 h。TNF-α和ActD處理12 h后收集細胞,檢測ERS和細胞凋亡相關指標。
1.3蛋白免疫印跡檢測收集細胞,加入100 μl預冷的組織裂解液,在-80℃反復凍溶3次,8 000×g,4 ℃離心5 min(離心半徑r=10 cm);取上清液進行蛋白濃度測定;經SDS-PAGE電泳分離,轉至PVDF膜上,25 V,4 ℃過夜;60 g/L脫脂奶粉封閉1 h后,加入一抗(1∶1 000稀釋)孵育,TBST漂洗3次;孵育二抗(1∶2 000稀釋),TBST漂洗后取等量的ECL發(fā)光試劑A液和B液混勻后孵育PVDF膜,壓片曝光。
1.4乳酸脫氫酶檢測將小鼠原代肝細胞種植于96微孔板過夜培養(yǎng),進行不同處理;250×g離心10 min(離心半徑r=13 cm);小心吸取100 μl上清培養(yǎng)液并轉移到相應的96孔分析板進行分析。具體操作步驟按照試劑盒說明書進行。
1.5凋亡細胞熒光染色細胞接種于24孔培養(yǎng)板中,過夜培養(yǎng);次日吸去培養(yǎng)液,PBS沖洗貼壁細胞;在500 μl的Binding Buffer中加入5 μl Annexin V-EGFP,5 μl碘化丙啶(propidium iodide, PI),混勻;上述溶液滴加細胞表面并均勻覆蓋,避光、室溫反應5 min;熒光顯微鏡下觀察,AnnexinV-EGFP熒光信號呈綠色,PI熒光信號呈紅色。
2.1ERS的激活協(xié)同促進TNF-α/ActD誘導的肝細胞凋亡TNF-α/ActD可以明顯誘導肝細胞分泌LDH,加入ERS特異性誘導劑TM后,肝細胞分泌LDH明顯增多(見圖1)。TNF-α/ActD的誘導使肝細胞中caspase-3激活片段切割的caspase-3蛋白表達增加,加入TM后,切割的caspase-3表達增加更加明顯(見圖2)。提示,ERS的激活加重TNF-α/ActD誘導的肝細胞凋亡。
圖1ERS的激活進一步增加TNF-α/ActD誘導的肝細胞分泌的LDH水平
Fig1ERSactivationincreasedthelevelofLDHinhepatocytesinducedbyTNF-α/ActD
2.2ERS的抑制減輕TNF-α/ActD誘導的肝細胞凋亡TNF-α/ActD可以明顯誘導肝細胞分泌LDH,加入ERS特異性抑制劑4-PBA后,肝細胞分泌LDH明顯減少(見圖3)。TNF-α/ActD的誘導使肝細胞中caspase-3激活片段切割的caspase-3蛋白表達增加,加入4-PBA后,切割的caspase-3表達明顯減少(見圖4)。提示,ERS的抑制減輕了TNF-α/ActD誘導的肝細胞凋亡。
圖2ERS的激活進一步促進TNF-α/ActD誘導的肝細胞cleavedcaspase-3表達水平
Fig2ERSactivationenhancedtheexpressionofcleavedcaspase-3inhepatocytesinducedbyTNF-α/ActD
圖3ERS的抑制使TNF-α/ActD誘導的肝細胞分泌的LDH減少
Fig3ERSinhibitiondecreasedthelevelofLDHinhepatocytesinducedbyTNF-α/ActD
圖4ERS的抑制使TNF-α/ActD誘導的肝細胞caspase-3表達減少
Fig4ERSinhibitiondecreasedtheexpressionofcleavedcaspase-3inhepatocytesinducedbyTNF-α/ActD
2.3TNF-α/ActD促進ERS的活化TNF-α/ActD明顯促進了Grp78和CHOP的表達(1.15±0.23vs0.14±0.02,0.11±0.03vs0.02±0.001,P<0.05)。作為ERS的特異性表達蛋白,Grp78和CHOP表達的增加反映了ERS的激活。在用ERS特異性抑制劑4-PBA抑制ERS后,TNF-α/ActD仍然能夠促進Grp78的表達(0.77±0.1vs0.12±0.02,P<0.05)。提示TNF-α/ActD能夠促進ERS的活化(見圖5)。
圖5 TNF-α/ActD促進ERS的活化
2.4ERS抑制增強GSK3β磷酸化水平,降低GSK3β活性應用ERS特異性抑制劑4-PBA后,無論加與不加TNF-α/ActD,GSK3β磷酸化水平都明顯升高。但是TNF-α/ActD對GSK3β磷酸化水平無明顯影響。GSK3β第9位絲氨酸位點磷酸化越弱,活性越強,磷酸化越強,活性越弱。提示ERS抑制可以降低GSK3β活性(見圖6)。
圖6ERS的抑制增強GSK3β的磷酸化水平
Fig6ERSinhibitionenhancedthephosphorylationlevelofGSK3β
2.5TNF-α/ActD協(xié)同ERS誘導的肝細胞凋亡可能與GSK3β有關TNF-α/ActD可以直接誘導肝細胞發(fā)生凋亡,加入TM后,凋亡細胞明顯增多,但是加入GSK3β抑制劑后,細胞凋亡明顯減少,提示TNF-α/ActD協(xié)同ERS誘導了肝細胞的凋亡,其分子調控機制可能與GSK3β活化有關(見圖7)。
圖7 激活ERS促進TNF-α/ActD誘導的肝細胞凋亡,但抑制GSK3β的活性使細胞凋亡減少
Fig7ERSactivationtriggeredhepatocytesapoptosisinducedbyTNF-α/ActD,butGSK3βinhibitionmadeapoptoticcellsdecrease
研究[6-11]發(fā)現,在肝損傷中,ERS可能通過促進肝細胞凋亡發(fā)揮著重要的作用。ERS在D-氨基半乳糖(D-GalN)和脂多糖(LPS)聯(lián)合誘導,或者四氯化碳誘導制備的小鼠和大鼠急性肝損傷中起到重要作用,ERS標志性蛋白GRP78的表達在肝臟組織中明顯增加,提示在急性肝損傷中發(fā)生了ERS[6-8];在小鼠急性肝損傷中,抑制ERS可以明顯減輕肝損傷,肝細胞凋亡途徑中切割的caspase-3表達明顯降低,細胞凋亡減少,這說明抑制ERS可能通過減少肝細胞凋亡從而對肝損傷起保護性作用[9-11]。但是,ERS如何參與到肝細胞凋亡途徑及其調控機制尚未明確。
GSK3β是一種絲氨酸/蘇氨酸類蛋白激酶,早期研究認為該酶的功能在于磷酸化肝糖原合成酶并使之失活;有研究表明,該酶可使眾多底物磷酸化,在炎癥反應和細胞凋亡等方面都扮演著相當重要的角色[12-15]。增強GSK3β活性抑制外源性途徑誘導的細胞凋亡(TNF-α 誘導),而促進內源性途徑誘導的細胞凋亡(ERS途徑和線粒體應激途徑)[16-19]。
本研究表明,ERS的激活加重TNF-α/ActD誘導的肝細胞凋亡,而ERS的抑制減輕TNF-α/ActD誘導的肝細胞凋亡,這與一些學者的研究結果相似[20-22],提示TNF-α/ActD可能協(xié)同ERS促進肝細胞凋亡。我們在此基礎上進行進一步的研究發(fā)現,TNF-α/ActD可以促進ERS的活化,TNF-α/ActD是經典的外源性細胞凋亡誘導途徑,這表明細胞凋亡的內源性途徑可能被外源性途徑激活,內源性和外源性凋亡途徑發(fā)揮協(xié)同作用,共同誘導細胞凋亡的發(fā)生和發(fā)展;接著我們發(fā)現ERS抑制增強了GSK3β磷酸化水平,降低了GSK3β活性,而TNF-α/ActD對GSK3β磷酸化水平無明顯影響,提示ERS可能通過增強GSK3β活性促進細胞凋亡;最后我們發(fā)現,TNF-α/ActD協(xié)同ERS誘導的肝細胞凋亡可能與GSK3β活性增強有關,因為TNF-α/ActD協(xié)同ERS誘導的肝細胞凋亡比TNF-α/ActD單獨誘導的肝細胞凋亡明顯增加,而抑制GSK3β活性之后,TNF-α/ActD協(xié)同ERS誘導的肝細胞凋亡明顯減少。因此我們得出結論:在肝細胞凋亡過程中,TNF-α/ActD首先激活ERS,TNF-α/ActD協(xié)同ERS促進肝細胞凋亡,其機制與GSK3β活化有關。
綜上所述,ERS可能被外源性細胞凋亡途徑激活,從而發(fā)揮協(xié)同作用,共同促進肝細胞凋亡的發(fā)生和發(fā)展。GSK3β信號分子在細胞凋亡過程中可能發(fā)揮著關鍵作用,為進一步研究GSK3β在細胞凋亡過程中的作用以及開發(fā)抑制細胞凋亡新靶點具有重要提示意義。
[1] Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response [J]. Nat Rev Mol Cell Biol, 2007, 8(7): 519-529.
[2] Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity [J]. Nat Rev Immunol, 2008, 8(9): 663-674.
[3] Zhao LH, Ackerman SL. Endoplasmic reticulum stress in health and disease [J]. Curr Opin Cell Biol, 2006, 18(4): 444-452.
[4] Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation [J]. J Biol Chem, 2001, 276(36): 33869-33874.
[5] Lebeaupin C, Proics E, de Bieville CH, et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death [J]. Cell Death Dis, 2015, 6: e1879.
[6] 鐘衛(wèi)衛(wèi), 林世德. 內質網應激與肝損傷研究進展[J]. 世界華人消化雜志, 2010, 18(10): 1021-1025. Zhong WW, Lin SD. Role of endoplasmic reticulum stress in hepatocytes in the pathogenesis of liver injury [J]. World Chinese Journal of Digestology, 2010, 18(10): 1021-1025.
[7] 王曉紅, 張衛(wèi)光, 林勝利, 等. 四氯化碳誘導性肝硬化大鼠肝組織葡萄糖調節(jié)蛋白78表達的研究[J]. 解剖學報,2006, 37(3): 290-293. Wang XH, Zhang WG, Lin SL, et al. The expression of glucose regulating protein 78 in the hepatocirrhosis induced by carbon tetrachloride [J]. Acta Anatomica Sinica, 2006, 37(3): 290-293.
[8] 溫韜, 張海燕, 樸正福, 等. 內質網應激在四氯化碳致大鼠急性肝損傷中的作用探討[J]. 胃腸病學和肝病學雜志, 2008, 17(10): 786-789. Wen T, Zhang HY, Piao ZF, et al. Endoplasmic reticulum stress in the development of acute liver injury induced by CCl4in rats [J]. Chin J Gastroenterol Hepatol, 2008, 17(10): 786-789.
[9] 張海燕, 溫韜, 樸正福, 等. 內質網及氧化應激在大鼠慢性肝損傷中的變化[J]. 肝臟, 2009, 14(1): 12-16. Zhang HY, Wen T, Piao ZF, et al. The changes of endoplasmic reticulum stress and oxidative stress in rat chronic liver injury induced by carbon tetrachloride [J]. Chinese Hepatology, 2009, 14(1): 12-16.
[10] Ren F, Liu J, Cheng Q, et al. Endoplasmic reticulum stress modulates tissue inflammatory immune responses in the pathogenesis of liver ischemia and reperfusion injury [J]. Transplantation, 2012, 94(3): 211-217.
[11] Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far [J]. Ann NY Acad Sci, 2003, 1010: 186-194.
[12] Martin M, Rehani K, Jope RS, et al. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3 [J]. Nat Immunol, 2005, 6(8): 777-784.
[13] 魏琳琳, 張莉, 楊蓉蓉, 等. 抑制糖原合成酶激酶-3β活性減少肝細胞凋亡保護D-氨基半乳糖/脂多糖誘導的小鼠急性肝衰竭損傷[J]. 肝臟, 2015, 20(5): 364-369. Wei LL, Zhang L, Yang RR, et al. Inhibition of GSK-3β activity can improve liver injury in acute liver failure induced by D-galactosamine/lipopolysaccharide in mice through reducing hepotocyte apoptosis [J]. Chinese Hepatology, 2015, 20(5): 364-369.
[14] 郭媛媛, 任鋒, 張向穎,等. 氧化應激介導糖原合成酶激酶-3促進D-氨基半乳糖聯(lián)合脂多糖誘導的急性肝衰竭肝損傷[J]. 胃腸病學和肝病學雜志, 2015, 24(3): 301-305. Guo YY, Ren F, Zhang XY, et al. Glycogen synthase kinase 3β protect D-GalN/LPS-induced acute liver failure and liver injury by decreasing oxidative stress [J]. Chin J Gastroenterol Hepatol, 2015, 24(3): 301-305.
[15] 張向穎, 郭媛媛, 張莉, 等. 氧化應激介導糖原合成酶激酶-3β促進肝細胞凋亡[J]. 細胞與分子免疫學雜志, 2015,31(1): 27-31. Zhang XY, Guo YY, Zhang L, et al. Oxidative stress promotes hepatocyte apoptosis mediated by glycogen synthase kinase [J]. Chin J Cell Mol Immunol, 2015, 31(1): 27-31.
[16] Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK-3 in the intrinsic and extrinsic apoptosis signaling pathways [J]. Prog Neurobiol, 2006, 79(4): 173-189.
[17] Ren F, Duan ZP, Cheng Q, et al. The inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury via an IL-10-mediated immune regulatory mechanism [J]. Hepatology, 2011, 54(2): 687-696.
[18] Koga T, Suico MA, Shimasaki S, et al. Endoplasmic reticulum (ER) stress induces sirtuin 1 (SIRT1) expression via the PI3K-Akt-GSK3β signaling pathway and promotes hepatocellular injury [J]. J Biol Chem, 2015, 290(51): 30366-30374.
[19] Ren F, Zhou L, Zhang X, et al. Endoplasmic reticulum stress-activated glycogen synthase kinase 3β aggravates liver inflammation and hepatotoxicity in mice with acute liver failure [J]. Inflammation, 2015, 38(3): 1151-1165.
[20] Lee AY, Han YA, Kim JE, et al. Saururus chinensis Baill induces apoptosis through endoplasmic reticulum stress in HepG2 hepatocellular carcinoma cells [J]. Food Chem Toxicol, 2015, 83: 183-192.
[21] Yan X, Jiang Z, Bi L, et al. Salvianolic acid A attenuates TNF-α- and D-GalN-induced ER stress-mediated and mitochondrial-dependent apoptosis by modulating Bax/Bcl-2 ratio and calcium release in hepatocyte LO2 cells [J]. Naunyn Schmiedebergs Arch Pharmacol, 2015, 388(8): 817-830.
[22] Jiang Z, Chen W, Yan X, et al. Paeoniflorin protects cells from GalN/TNF-α-induced apoptosis via ER stress and mitochondria-dependent pathways in human L02 hepatocytes [J]. Acta Biochim Biophys Sin (Shanghai), 2014, 46(5): 357-367.
(責任編輯:馬 軍)
TNF-α/ActD synergized with endoplasmic reticulum stress to induce hepatocyte apoptosis by glycogen synthase kinase3β
SHI Hongbo, SHI Honglin, ZHANG Xiangying, CHEN Dexi, DUAN Zhongping, REN Feng
Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
ObjectiveTo explore the interaction and molecular mechanism of tumor necrosis factor α (TNF-α)/ Actinomycin D (ActD) and endoplasmic reticulum stress (ERS) in hepatocyte apoptosis.MethodsMice primary hepatocytes were isolated and the apoptosis was induced by TNF-α/ActD. Tunicamycin (TM) as ERS activator and 4-phenylbutyrate (4-PBA) as ERS inhibitor were added respectively into apoptotic hepatocytes, and LDH secretion in supernatant and caspase-3 expression in cells were detected. Then 4-PBA was added into apoptotic hepatocytes and ERS related proteins and activity of glycogen synthase kinase 3β (GSK3β) was measured. Finally, GSK3β inhibitor was added into apoptotic hepatocytes in which ERS was activated by TM and hepatocyte apoptosis was observed.ResultsTNF-α/ActD induced LDH secretion and expression of cleaved caspase-3 in mice primary hepatocytes. Furthermore, TM addition increased LDH secretion and expression of cleaved caspase-3 in apoptotic hepatocytes and 4-PBA addition decreased. TNF-α/ActD enhanced significantly the expressions of Grp78 and CHOP, therefore, triggered the ERS activity. ERS inhibition enhanced the phosphorylation level of GSK3β and attenuated activity of GSK3β, but TNF-α/ActD had no effect on activity of GSK3β. TM addition triggered hepatocytes apoptosis was induced by TNF-α/ActD, but GSK3β inhibitor addition made apoptotic cells decrease.ConclusionERS synergizes with TNF-α/ActD to trigger hepatocyte apoptosis, which may relate to activation of GSK3β.
Endoplasmic reticulum stress; Tumor necrosis factor α; Actinomycin D; Apoptosis; Glycogen synthase kinase 3β
10.3969/j.issn.1006-5709.2017.09.012
R575
:A
:1006-5709(2017)09-1006-05
:2016-11-29
國家自然科學基金(81300349);北京市自然科學基金(7172102);北京市科技新星計劃 (Z131107000413016);北京市衛(wèi)生系統(tǒng)高層次衛(wèi)生技術人才培養(yǎng)項目資助(2014-3-090);北京市屬醫(yī)學科研院所公益發(fā)展改革試點項目(京醫(yī)研2016-2)
時紅波,博士,副研究員,研究方向:肝衰竭基礎與臨床研究。E-mail:shb411@126.com
任鋒,博士,研究員,研究方向:肝衰竭基礎與臨床研究。E-mail:renfeng7512@hotmail.com