亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        紫外活化過硫酸鈉去除水體中的三氯卡班

        2017-09-25 07:05:30駱靖宇李學(xué)艷李青松姚寧波陸保松李國新陳國元廖文超高乃云蘇州科技大學(xué)環(huán)境科學(xué)與工程學(xué)院江蘇蘇州5009廈門理工學(xué)院水資源環(huán)境研究所福建廈門604同濟(jì)大學(xué)污染控制與資源化研究國家重點(diǎn)實(shí)驗(yàn)室上海0009浙江工業(yè)大學(xué)建筑工程學(xué)院浙江杭州004
        中國環(huán)境科學(xué) 2017年9期
        關(guān)鍵詞:三氯氯苯苯胺

        駱靖宇,李學(xué)艷,李青松,姚寧波,陸保松,李國新,陳國元,廖文超,高乃云(.蘇州科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 蘇州 5009;.廈門理工學(xué)院水資源環(huán)境研究所,福建 廈門 604;.同濟(jì)大學(xué)污染控制與資源化研究國家重點(diǎn)實(shí)驗(yàn)室,上海 0009;4.浙江工業(yè)大學(xué)建筑工程學(xué)院,浙江 杭州 004)

        紫外活化過硫酸鈉去除水體中的三氯卡班

        駱靖宇1,2,李學(xué)艷1,李青松2*,姚寧波1,2,陸保松2,4,李國新2,陳國元2,廖文超2,高乃云3(1.蘇州科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 蘇州 215009;2.廈門理工學(xué)院水資源環(huán)境研究所,福建 廈門 361024;3.同濟(jì)大學(xué)污染控制與資源化研究國家重點(diǎn)實(shí)驗(yàn)室,上海 200092;4.浙江工業(yè)大學(xué)建筑工程學(xué)院,浙江 杭州 310014)

        采用紫外活化過硫酸鈉(UV/PS)降解三氯卡班(TCC).考察了UV、PS和UV/PS聯(lián)用工藝去除TCC的效果,研究了PS投加量、反應(yīng)初始pH值和腐殖酸(HA)等因素對(duì)UV/PS降解TCC的影響,推測(cè)了UV/PS工藝中TCC可能的降解途徑,并對(duì)比了UV/PS和UV/H2O2工藝對(duì)TCC的去除效果和經(jīng)濟(jì)性.研究表明:UV與PS聯(lián)用能夠高效去除TCC,其降解過程符合擬一級(jí)動(dòng)力學(xué)模型(R2≥0.95);擬一級(jí)反應(yīng)速率常數(shù)k隨著PS投加量的增加先增大再減小,在PS投加量為250μmol/L時(shí),k達(dá)到最大值0.0810min-1;偏酸性條件(pH=6.0)有利于TCC的降解;HA對(duì)TCC的降解有抑制作用,抑制作用與HA的濃度呈正相關(guān); GC/MS鑒定表明, TCC降解過程中主要的中間產(chǎn)物有異氰酸4-氯苯酯和對(duì)氯苯胺,其可能的降解途徑為 TCC分子結(jié)構(gòu)中與酮羰基相連的 C-N鍵斷裂,脫氯,經(jīng)過一系列的反應(yīng)形成對(duì)氯苯胺和異氰酸 4-氯苯酯;UV/PS降解TCC過程中溶液中脫氯反應(yīng)導(dǎo)致Cl-濃度增加;與UV/H2O2工藝相比, 相同條件下UV/PS工藝中k值增大了96.65%,單位電能消耗量提高了97%.

        UV/PS;三氯卡班;硫酸根自由基;中間產(chǎn)物

        三氯卡班(triclocarban, TCC)是一種典型的藥品和個(gè)人護(hù)理用品(PPCPs),廣泛應(yīng)用于抗菌香皂、洗手液、化妝品和消毒劑中[1].其親水性低,親脂性強(qiáng)(pH=7.0時(shí),logKow為4.9)[2],物理化學(xué)性質(zhì)穩(wěn)定,自然環(huán)境中較難降解.研究表明 TCC對(duì)一些藻類和老鼠、魚類、蝸牛具有慢性毒性影響,還會(huì)導(dǎo)致人類癌癥、生殖功能障礙和發(fā)育異常等健康問題[3-8].近年來,不同水體中均檢測(cè)出了TCC[9-15].我國五大水系的TCC檢出率達(dá)到了的100%[16-17].目前,水體中的TCC已引起國內(nèi)外學(xué)者專家廣泛關(guān)注.

        Gledhill[18]和Ying等[19]分別對(duì)TCC的生物降解做了相關(guān)的研究,發(fā)現(xiàn)生物去除TCC的效果不佳,且耗時(shí)長、條件嚴(yán)格;Sirés等[20]探究了電芬頓法對(duì)TCC的去除,去除效果受pH值影響大.傳統(tǒng)的水處理技術(shù)難以有效地去除水中的TCC[13,21-24],因此,亟待探尋水體中TCC經(jīng)濟(jì)有效去除的方法.UV活化PS具有反應(yīng)條件溫和、自由基產(chǎn)生快速、氧化性強(qiáng)且穩(wěn)定、無選擇性、操作簡單等特點(diǎn),逐步受到廣大學(xué)者的關(guān)注.

        實(shí)驗(yàn)采用UV活化PS的工藝來去除水中的TCC,對(duì)比了UV、PS和UV/PS聯(lián)用三種工藝對(duì)TCC的去除效果,考察了 PS投加量、反應(yīng)初始pH值、腐殖酸(HA)和溫度等因素的影響,探討了TCC在UV/PS工藝中可能的降解途徑,以期為實(shí)際應(yīng)用中UV/PS降解水中TCC提供理論指導(dǎo)和實(shí)驗(yàn)基礎(chǔ).

        1 實(shí)驗(yàn)部分

        1.1 試劑與儀器

        三氯卡班(TCC)(德國 Dr.Ehrenstorfer公司,純度>99.5%);過硫酸鈉(PS)(AR,≥98.0%);腐殖酸(HA)(Tech,美國 Sigma-Aldrich);異氰酸 4-氯苯酯(德國 Dr.Ehrenstorfer公司,99.5%);對(duì)氯苯胺(德國Dr.Ehrenstorfer公司,≥98.0%),HCl、NaOH均為分析純;甲醇、乙腈(HPLC級(jí),德國 Merck); 30%過氧化氫(H2O2)(AR)實(shí)驗(yàn)室用水為 Mili-Q超純水(≤18.2M?).

        LC-20A高效液相色譜儀(Shimadzu,日本),自動(dòng)進(jìn)樣器(SIL-20A),檢測(cè)器(SPD-M20A);氣相色譜質(zhì)譜聯(lián)用儀(GCMS-QP2010Ultra,日本島津);GC/MS自動(dòng)進(jìn)樣器(AOC-5000,日本島津),色譜柱(Rxi?-5ms: 30m×0.32mm×0.25μm,日本島津);離子色譜儀(戴安 ICS-1100);pH計(jì)(Eutevch,美國);HJ-6A型磁力恒溫?cái)嚢杵?江蘇金壇崢嶸儀器);HC-C18小柱(Anpel);紫外線光源(主波長254nm,楊紫特種紫外線光源,低壓汞燈,9W),紫外線強(qiáng)度計(jì)(TN-2365A,臺(tái)灣泰納).

        1.2 實(shí)驗(yàn)方法

        實(shí)驗(yàn)前開啟紫外燈預(yù)熱5min,然后置于燒杯中,保持紫外燈的位置相對(duì)燒杯固定,燒杯邊緣位置(圖中距離燒杯底部 8cm處的燒杯壁)的光強(qiáng)為11.5μW/cm2;投加一定量的PS溶液后打開紫外燈開始反應(yīng),分別在0、5、10、20、30、45、60min時(shí)取樣,隨即加入適量甲醇淬滅,經(jīng)0.45μm的玻璃纖維濾膜過濾后分析.GC/MS產(chǎn)物鑒定前用固相萃取對(duì)樣品進(jìn)行富集.反應(yīng)裝置見圖1.

        圖1 實(shí)驗(yàn)裝置示意Fig.1 Schematic description of the reactor

        1.3 分析方法

        HPLC 條件:色譜柱為 Inertsil?ODS-SP(250mm×4.6mm,5μm);流動(dòng)相為乙腈:水=65:35 (V:V),流動(dòng)相流速為 1.0mL/min;檢測(cè)波長為265nm;進(jìn)樣體積為10μL; S/N>3.

        GC/MS條件:載氣為高純度氦氣,90kPa;進(jìn)樣量為1μL;無分流進(jìn)樣方式;進(jìn)樣口溫度為280℃;爐溫控制:初始溫度為60℃,保留時(shí)間安3min,然后以 5℃/min升溫至 150℃,持續(xù) 5min,然后以10℃/min升溫至280℃,持續(xù)3min;MS離子化溫度為 250℃;接口溫度為 280℃;采用 Scan掃描:質(zhì)荷比 m/z起始為 50,終止為 600,掃描時(shí)間為0~40min.

        2 結(jié)果與分析

        2.1 UV、PS和UV/PS工藝對(duì)TCC的降解

        UV、PS和UV/PS工藝對(duì)TCC的降解結(jié)果如圖2所示.

        圖2 PS、UV和UV/PS對(duì)TCC的降解效果Fig.2 Removal of TCC by direct UV irradiation, PS oxidation alone, and UV/PS process [TCC]=400μg/L, [PS]=0.25mmol/L, pH=6.0

        實(shí)驗(yàn)表明,60min內(nèi)單獨(dú)PS對(duì)TCC的去除率小于 14%;單獨(dú) UV對(duì) TCC的去除增加至61.52%;相同條件下,UV/PS聯(lián)用對(duì)TCC的去除可達(dá)99.95%,表明UV/PS聯(lián)用工藝具有協(xié)同作用,可以更有效地降解TCC.TCC降解曲線的擬一級(jí)動(dòng)力學(xué)擬合結(jié)果表明,UV/PS工藝中擬一級(jí)動(dòng)力學(xué)常數(shù)k比單獨(dú)UV光降解的增大了4.6倍.

        PS分子中含有過氧基且在水中可電離產(chǎn)生S2O82-,其氧化還原電位為2.01V,具有一定的氧化能力[25],因此,單獨(dú)PS對(duì)TCC有一定的降解能力;單獨(dú) UV照射下,對(duì) TCC降解起主要作用的是·O2[26].UV/PS工藝中,PS在UV的照射下,其中的O-O鍵會(huì)因吸收能量而斷裂,產(chǎn)生含有孤電子對(duì)的·SO4-,·SO4-不僅具有超強(qiáng)氧化性,還可以與水(H2O)或者氫氧根(OH-)反應(yīng)生成羥基自由基(·OH),增加溶液中自由基的濃度,使得TCC能夠高效降解,其反應(yīng)過程如方程(1)-(3)所示:

        2.2 PS投加量的影響

        實(shí)驗(yàn)中考察了PS投加量對(duì)UV/PS降解TCC的影響,不同PS投加量下TCC的降解曲線的擬一級(jí)動(dòng)力學(xué)擬合結(jié)果見圖3.

        圖3 PS投加量對(duì)UV/PS降解TCC的影響Fig.3 Effect of PS concentration on TCC degradation by UV/PS process [TCC]=400μg/L, pH=6.0

        由圖3可知,在實(shí)驗(yàn)范圍內(nèi),TCC的降解符合擬一級(jí)動(dòng)力學(xué)(R2≥0.91).PS投加量從 0增加到0.25mmol/L,擬一級(jí)動(dòng)力學(xué)常數(shù)k由0.0151min-1增大為0.0810min-1,PS投加量為0.25mmol/L時(shí),實(shí)驗(yàn)中60min TCC的降解率可達(dá)99.44%;繼續(xù)增加至0.75mmol/L,擬一級(jí)動(dòng)力學(xué)常數(shù)k反而減小為0.0344min-1.因此,UV/PS工藝中TCC的去除并不是隨著PS投加量的增加而越高.

        由式(1)~(3)可知,PS濃度的增加可以提高溶液中自由基·SO4-和·OH的穩(wěn)態(tài)濃度,從而加速TCC的降解,因此,在投加量0~0.25mmol/L范圍內(nèi)TCC的去除隨著PS濃度的增加而增加;但有研究表明PS也會(huì)消耗·SO4-和·OH,生成氧化性較弱的·S2O8-[式(5)和(6)],影響 TCC的降解(PS與·SO4-和·OH 反應(yīng)的速率常數(shù)分別是 5.5× 105M-1s-1[27]和 1.4×107M-1s-1[28]),故實(shí)驗(yàn)中當(dāng) PS投加量較大(0.5mmol/L和 0.75mmol/L)時(shí) TCC的降解效果反而下降.

        2.3 初始pH的影響

        pH是影響高級(jí)氧化(AOPs)處理效果的重要參數(shù).實(shí)驗(yàn)中考察了pH對(duì)TCC去除的影響.不同pH值時(shí)TCC的去除擬合結(jié)果見圖4.

        圖4 pH對(duì)UV/PS降解TCC的影響Fig.4 Effect of initial pH on TCC degradation by UV/PS process

        實(shí)驗(yàn)中 pH值為 4.0、6.0、7.0、8.0和 9.5時(shí),60min內(nèi) TCC的去除率分別為 76.50%、99.44%、91.20%、91.71%和 74.74%.pH=6.0時(shí)TCC的去除率最高.

        由圖 4可知,實(shí)驗(yàn)范圍內(nèi),隨著 pH的增大,k先增大后減小,在 pH=6.0時(shí),k達(dá)到最大值0.0810min-1.這與Saien等在考察pH對(duì)UV/PS去除水楊酸的影響時(shí)的研究結(jié)果相一致[29-31].

        過硫酸根離子非催化反應(yīng)的活化能為33.5Kcal,而酸催化反應(yīng)的活化能為26.0Kcal[32],酸性條件下S2O82-會(huì)與H+發(fā)生酸催化反應(yīng)[33-34],因此過硫酸根在酸催化反應(yīng)中更易轉(zhuǎn)化為硫酸根自由基,產(chǎn)生更多的·SO4-[式(7)和(8)],促進(jìn)TCC的降解.但強(qiáng)酸條件下,更易發(fā)生式9和10的反應(yīng),反而消耗·SO4-產(chǎn)生氧化性更弱的自由基[35],導(dǎo)致TCC的降解速率降低.因此,相比于中性和強(qiáng)酸條件,偏酸性條件更有利于TCC的降解.

        堿性條件下·SO4-會(huì)與 OH-反應(yīng)生成·OH(式3),但堿性環(huán)境中·OH的氧化性較弱[36],因此盡管堿性條件下有·OH產(chǎn)生,但效果沒有偏酸性和中性條件下好.有研究表明,堿性環(huán)境中大量生成的SO42-[式(3)]對(duì)·SO4-和·OH 均有抑制作用[31,37].因此,在一定 pH范圍內(nèi),偏酸性條件(本實(shí)驗(yàn)為pH=6.0)下TCC的降解效果更好.

        2.4 腐殖酸的影響

        腐殖酸(HA)是天然水體中主要的有機(jī)物,因此本實(shí)驗(yàn)采用 HA來模擬天然水體中的有機(jī)物(NOM),考察了HA對(duì)TCC去除的影響,結(jié)果如圖5所示.

        實(shí)驗(yàn)中 HA 濃度為 0,0.5,1.0,3.0,5.0mg/L時(shí),TCC的去除率分別為 99.45%、96.99%、96.36%、89.03%和63.78%;另外由圖4可知,TCC降解的動(dòng)力學(xué)常數(shù) k隨著 HA濃度的增加由0.0810min-1減小到 0.0158min-1.表明 HA 對(duì)UV/PS降解TCC有著的抑制作用.

        基于UV的高級(jí)氧化體系中HA有兩方面的影響,一方面,UV激發(fā)下NOM可以產(chǎn)生·OH、·O等活性自由基,促進(jìn)污染物的降解;另一方面NOM中的各種不飽和官能團(tuán)對(duì)UV有一定的吸收能力,削弱光的透射能力,同時(shí)會(huì)與目標(biāo)污染物競爭自由基[38].

        實(shí)驗(yàn)中HA一直起抑制作用,原因可能是HA屏蔽了UV光輻射,降低了UV的活化作用;HA分子中的酚羥基、胺基、羧基等活性基團(tuán)與目標(biāo)污染物TCC競爭·SO4-和·OH等自由基,導(dǎo)致自由基的穩(wěn)態(tài)濃度降低[39].

        圖5 腐植酸對(duì)UV/PS降解TCC的影響Fig.5 Effect of humic acid on TCC degradation by UV/PS process

        2.5 UV/PS降解TCC的反應(yīng)途徑分析

        TCC的初始濃度為 900μg/L, PS投加量0.25mmol/L,反應(yīng)60min后取出溶液固相萃取富集500倍后經(jīng)GC/MS鑒定,發(fā)現(xiàn)在9.97min和11.9min有兩個(gè)明顯的出峰(圖 6),特征離子碎片的質(zhì)荷比分別為 m/z=63,90,125,153和 m/z= 65,92,127.經(jīng)譜庫檢索鑒定為異氰酸 4-氯苯酯(1-chloro-4-isocyanato-benzen)和對(duì)氯苯胺(4-chloroaniline).

        據(jù)此推斷出TCC的降解產(chǎn)物可能有異氰酸4-氯苯酯和對(duì)氯苯胺.TCC在UV/PS系統(tǒng)中可能的光降解途徑如圖7所示.

        圖6 總離子色譜Fig.6 Total ion chromatogram (TIC)

        圖7 TCC可能的光降解途徑Fig.7 Proposed reaction pathway for TCC degradation by UV/PS process

        根據(jù)降解過程中中間產(chǎn)物的生成及Cl-濃度的增加,可以推測(cè)TCC的降解路徑:TCC分子結(jié)構(gòu)中酮羰基左側(cè)的C—N鍵(與二氯苯胺環(huán)相連)斷裂,形成異氰酸4-氯苯酯和3,4-二氯苯胺,然后3,4-二氯苯胺脫掉一個(gè)Cl形成對(duì)氯苯胺,這條降解途徑與丁世玲[26]的研究結(jié)果相似.還有一種可能的途徑:酮羰基兩側(cè)的 C-N鍵(分別與二氯苯胺環(huán)和對(duì)氯苯胺環(huán)相連)斷裂,經(jīng)過一系列的反應(yīng)形成主要中間產(chǎn)物對(duì)氯苯胺.TCC的降解過程中兩種降解途徑可能同時(shí)存在,異氰酸 4-氯苯酯和對(duì)氯苯胺等中間產(chǎn)物繼續(xù)被降解,生成其他物質(zhì),最終苯環(huán)開環(huán)轉(zhuǎn)化為CO2、H2O等[40-43].

        2.6 TCC降解過程中主要成分的變化

        實(shí)驗(yàn)考察了TCC的去除和降解產(chǎn)物的生成情況,結(jié)果見圖8.

        TCC的快速降解發(fā)生在前30min,去除率達(dá)到 95.34%,之后反應(yīng)速率逐漸減小,在 60min時(shí)TCC濃度已經(jīng)低于檢出限.TCC降解產(chǎn)生異氰酸4-氯苯酯和對(duì)氯苯胺.在前15min異氰酸4-氯苯酯和對(duì)氯苯胺穩(wěn)定增加至 142.45μg/L 和169.55μg/L,然后開始緩慢減少,在 60min時(shí)濃度降低至70.30μg/L和100.55μg/L.從TCC的降解路徑分析,對(duì)氯苯胺的產(chǎn)生量應(yīng)該比異氰酸4-氯苯酯多,但其在反應(yīng)過程中的濃度一直比后者低,這可能是因?yàn)門CC分子結(jié)構(gòu)中的對(duì)氯苯胺環(huán)比二氯苯胺環(huán)降解更快[18]導(dǎo)致的.實(shí)驗(yàn)中隨著反應(yīng)的進(jìn)行,TCC分子結(jié)構(gòu)中的3個(gè)氯不斷脫離形成異氰酸 4-氯苯酯和對(duì)氯苯胺及大量 Cl-等,部分異氰酸4-氯苯酯和對(duì)氯苯胺降解也會(huì)有Cl-脫離,導(dǎo)致溶液中Cl-的濃度增大,在前15minCl-快速增加至242.73μg/L,之后Cl-的增加速率較之前有所下降,60min時(shí) Cl-濃度達(dá)到 429.19μg/L,這表明UV/PS可以快速降解TCC并脫氯,進(jìn)而可以降低溶液的毒性[44-45].

        圖8 TCC降解過程中主要物質(zhì)的濃度變化Fig.8 Concentration changes of main products during TCC degradation by UV/PS process

        在降解過程中TCC與異氰酸4-氯苯酯和對(duì)氯苯胺的摩爾比并不是 1:1.可能是因?yàn)樵诋惽杷?4-氯苯酯和對(duì)氯苯胺形成的同時(shí)一部分已經(jīng)被反應(yīng)消耗;可能有其它反應(yīng)途徑產(chǎn)生其它的中間產(chǎn)物,馮振濤等[46]的研究表明,有更為復(fù)雜的降解產(chǎn)物產(chǎn)生.

        2.7 與UV/H2O2工藝比較

        實(shí)驗(yàn)中對(duì)比考察了UV/PS與典型的高級(jí)氧化工藝UV/H2O2去除TCC的效能,結(jié)果見圖9.

        圖9 UV/PS、UV/H2O2對(duì)TCC處理效果比較Fig.9 Removal of TCC by UV/PS and UV/H2O2processes

        H2O2與 PS的投加量均為 250mmol/L時(shí), TCC的去除均遵循自由基反應(yīng)的擬一級(jí)動(dòng)力學(xué),反應(yīng)速率常數(shù)k分別是0.04117min-1(UV/ H2O2)和 0.08096min-1(UV/PS),相比 UV/H2O2, UV/PS降解TCC的k增加了96.65%.

        表1 不同體系的單位電能消耗量和氧化劑成本Table 1 The electrical energy per order and oxidant costs in different systems

        采用單位電能消耗量(EE/O)來評(píng)價(jià)兩種工藝的電能利用效率,其公式如下[47]:式中:EE/O:單位電能消耗量,kW·h/m3;P:紫外燈的功率,kW;V為時(shí)間t內(nèi)處理溶液的體積,L;k為反應(yīng)速率常數(shù),min-1.

        EE/O值越低,體系中的電能利用率越高,效率也越高[48].

        將反應(yīng)速率常數(shù) k帶入公式得到兩個(gè)體系的單位電能消耗表1所示,可以看出,UV/PS具有更高的電能利用率.另外,氧化劑的成本方面, UV/PS也略低于UV/H2O2.

        3 結(jié)論

        3.1 UV活化PS工藝能有效去除水體中的TCC,降解過程符合擬一級(jí)反應(yīng)動(dòng)力學(xué)模型,UV輻射強(qiáng)度為 11.5μW·cm-2,PS投加量為 250μmol·L-1, pH=6.0時(shí),60min的后,初始濃度為 400μg·L-1的TCC去除率可達(dá)99.44%.

        3.2 TCC的去除隨PS投加量的增加和pH值的升高,先增強(qiáng)后減弱,偏酸性環(huán)境更有利于 TCC的降解,腐殖酸對(duì) TCC的去除有抑制作用,且抑制作用與腐殖酸濃度呈線性關(guān)系.

        3.3 UV/PS降解TCC的中間產(chǎn)物主要有異氰酸4-氯苯酯和對(duì)氯苯胺,可能是TCC分子結(jié)構(gòu)中酮羰基兩側(cè)的C-N鍵斷裂產(chǎn)生的.

        3.4 UV/PS聯(lián)用工藝比UV/H2O2工藝更加有優(yōu)勢(shì),其動(dòng)力學(xué)常數(shù)k提高了96.65%.

        [1]紀(jì) 春.三氯卡班研究現(xiàn)狀與展望 [J]. 山西農(nóng)業(yè)科學(xué), 2010, 38(10):82-87.

        [2]孫 靜.環(huán)境介質(zhì)中三氯生和三氯卡班的分析研究 [D]. 青島:山東輕工業(yè)學(xué)院, 2011.

        [3]Nolen G, Dierckman T. Reproduction and teratogenic studies of a 2:1mixture of 3,4,4'-trichlorocarbanilide and 3-trifluoromethyl-4,4'-dichlorocarbanilide in rats and rabbits [J]. Toxicology & Applied Pharmacology, 1979,51(3):417-425.

        [4]Pone C, Richard J, Bonte C. Methemoglobinemia in the newborn. Discussion of the etiologic role of trichlorocarbanilide [J]. Semaine Des Hopitaux, 1974,50:359-365.

        [5]Johnson R, Navone R, Larson E. An Unusual Epidemic of Methemoglobinemia [J]. Pediatrics, 1963,31(31):222-225.

        [6]Coogan MA, Point TWL. Snail bioaccumulation of triclocarban, triclosan, and methyltriclosan in a north texas, usa, stream affected by wastewater treatment plant runoff [J]. Environmental Toxicology and Chemistry, 2008,27(8):1788-1793.

        [7]Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, S M, et al. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens [J]. Environmental Health Perspectives, 2008, 116(9):1203-1210.

        [8]Chen J, Ahn K C, Gee N A, et al. Triclocarban enhances testosterone action: a new type of endocrine disruptor? [J]. Endocrinology, 2008,149(3):1173-1179.

        [9]Heidler J, Halden R U. Fate of organoha- logens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling [J]. Journal of Environmental Monitoring, 2009,11(12):2207-2215.

        [10]Golovko O, Kumar V, Fedorova G, Randak T, Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihista- mines and lipid regulators in a wastewater treatment plant [J]. Chemosphere, 2014,111(111C):418-426.

        [11]Li X, Zheng W, Kelly W. Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons [J]. Science of the Total Environment, 2013, 445-446:22-28.

        [12]W. Kolpin D, T.Furlong E, T.Meyer M, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999~2000: a national reconnaissance [J]. Environmental Science & Technology, 2002,36(6):1202-1211.

        [13]Sapkota A, Heidler J, Halden RU. Dete- ction of triclocarban and two cocontaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry [J]. Environmental Research, 2007,103(1):21-29.

        [14]Cha J, Cupples A M. Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids [J]. Water Research, 2009,43(9):2522-2530.

        [15]Miller T R, Heidler J, Chillrud S N, et al. Fate of Triclosan and Evidence for Reductive Dechlorination of Triclocarban in Estuarine Sediments [J]. Environmental Science & Technology, 2008,42(12):4570-4576.

        [16]Zhao J L, Zhang Q Q, Chen F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: Implications for controlling of urban domestic sewage discharge [J]. Water Research, 2013,47(1):395-405.

        [17]Dai G, Wang B, Huang J, et al. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China [J]. Chemosphere, 2015,119: 1033-1039.

        [18]Gledhill W E. Biodegradation of 3,4,4′-trichlorocarbanilide, TCC, in sewage and activated sludge [J]. Water Research, 1975, 9(7):649-654.

        [19]Ying G-G, Yu X-Y, Kookana RS. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobicconditions and comparison with environmental fate modelling [J]. Environmental Pollution, 2007,150(3):300-305.

        [20]Sirés I, Oturan N, Oturan M A, et al. Electro-Fenton degradation of antimicrobials triclosan and triclocarban [J]. Electrochimica Acta, 2007,52(17):5493-5530.

        [21]A. Coogan M, Edziyie R E, Point T W L, et al. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream [J]. Che- mosphere, 2007,67(10):1911-1918.

        [22]Halden R U, Paull D H. Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectro- metry [J]. Environmental Science & Technology, 2004, 38(18):4849-4855.

        [23]Halden R U, Paull D H. Co-Occurrence of Triclocarban and Triclosan in U.S. Water Resources [J]. Environmental Science & Technology, 2005,39(6):1420-1426.

        [24]Young T A, Heidler J, Matos-Pérez C R, et al. Ab Initio and in Situ Comparison of Caffeine, Triclosan, and Triclocarban as Indicators of Sewage-Derived Microbes in Surface Waters [J]. Environmental Science & Technology, 2008,42(9):3335-3340.

        [25]Monteagudo J M, Durán A, González R, et al. In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ions, and H2O2[J]. Applied Catalysis B: Environmental, 2015,176-177: 120-129.

        [26]丁世玲.三氯卡班的光降解行為的研究 [D]. 濟(jì)南:齊魯工業(yè)大學(xué), 2013.

        [27]Xiao-Ying Yu, Zhen-Chun Bao, John R. Barker. Free radical reactions involving Cl·, Cl2-·, and SO4-· in the 248nm photolysis of aqueous solutions containing S2O82-and Cl-[J]. Journal of Physical Chemistry A, 2004,35(14):295-308.

        [28]Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988,17(2):513-886.

        [29]Saien J, Osali M, Soleymani A R. UV/persulfate and UV/ hydrogen peroxide processes for the treatment of salicylic acid: effect of operating parameters, kinetic, and energy consumption [J]. Des- alination and Water Treatment, 2015,56(11):3087-3095.

        [30]Salari D, Niaei A, Aber S, et al. The photooxidative destruction of C.I. Basic Yellow 2using UV/S2O82-process in a rectangular continuous photoreactor [J]. Journal of Hazardous Materials, 2009,166(1):61-66.

        [31]Saien J, Soleymani A R, Sun J H. Parametric optimization of individual and hybridized AOPs of Fe2+/H2O2and UV/S2O82-for rapid dye destruction in aqueous media [J]. Desalination, 2011, 279(1-3):298-305.

        [32]Leea Y-C, Loa S-L, Kuob J, Lin Y-L. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20~40℃ [J]. Chemical Engineering Journal, 2012,198-199:27-32.

        [33]高乃云,朱延平,談超群,等.熱激活過硫酸鹽氧化法降解敵草隆[J]. 華南理工大學(xué)學(xué)報(bào), 2013,12:36-42.

        [34]張乃東,張曼霞,彭永臻.S2O82-派生氧化法催化降解水中的甲基橙 [J]. 催化學(xué)報(bào), 2000,27(5):445-448.

        [35]郭洪光,劉 楊,張永麗.紫外激活過硫酸鈉降解環(huán)境雌激素17β-雌二醇分析 [J]. 東北大學(xué)學(xué)報(bào), 2016,37(6):880-885.

        [36]WU Y. The research on advanced oxidation processes with hydroxyl radical (HO·) and ssulfate radical (SO4·-) [D]. 上海:復(fù)旦大學(xué), 2014.

        [37]E. Lipczynska-Kochany, G. Sprah, S. Harms. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction [J]. Chemosphere, 1995,30(1):9-20.

        [38]謝鵬超.紫外/過硫酸鹽氧化除嗅并控制消毒副產(chǎn)物生成的效能研究 [D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2015.

        [39]姚寧波,李學(xué)艷,李青松,等. Fe( )Ⅱ活化過硫酸鈉去除水中三氯生 [J]. 環(huán)境工程學(xué)報(bào), 2016,10(9):4737-4744.

        [40]熊重鐸,程 強(qiáng),施 薇,等.微波無極紫外光催化降解茜素綠的性能研究及產(chǎn)物分析 [J]. 環(huán)境工程學(xué)報(bào), 2014,8(12):5185-5190.

        [41]徐 蕾.基于硫酸根自由基反應(yīng)的 2,4,6-三氯苯酚氧化降解的研究 [D]. 上海:東華大學(xué), 2012.

        [42]Geeta S, Rao B, Mohan H, Mittal J. Radiation-induced oxidation of substituted benzaldehydes: A pulse radiolysis study [J]. Journal of Physical Organic Chemistry, 2004,17(17):194-198.

        [43]Singh T, Gejji S, Rao B, et al. Radiation chemical oxidation of aniline derivatives [J]. Journal of the Chemical Society Perkin Transactions, 2001,7(7):1205-1211.

        [44]魏 杰,王麗莎,寧大亮,等.脫氯對(duì)降低消毒污水致生物毒性的作用 [J]. 中國給排水, 2004,20(4):16-19.

        [45]吳德禮,王紅武,馬魯銘.催化鐵還原去除含氯有機(jī)物生物毒性的研究 [C]//持久性有機(jī)污染物論壇暨持久性有機(jī)污染物全國學(xué)術(shù)研討會(huì)論文集, 2006:203-207.

        [46]馮振濤.UV光照和UV/H2O2聯(lián)用法降解三氯卡班的研究 [D].新鄉(xiāng):河南師范大學(xué), 2015.

        [47]Bricher K G, Bolton J R. Figures-of- merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report) [J]. Pure and App. Chem., 2001,73(4):627-637.

        [48]程麗華,倪福祥.UV/草酸鐵/H2O2法降解苯系物的研究 [J]. 環(huán)境科學(xué)與技術(shù), 2006,29(2):89-90.

        Degradation of triclocarban aqueous solution through UV irradiation-activated sodium persulfate process.

        LUO Jing-yu1,2, LI Xue-yan1, LI Qing-song2*, YAO Ning-bo1,2, LU Bao-song2,4, LI Guo-xin2, CHEN Guo-yuan2, LIAO Wen-chao2, GAO Nai-yun3(1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;2.Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China;3.National Key Laboratory of Pollution Control and Reuse, Tongji University, Shanghai 200092, China;4.College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China). China Environmental Science, 2017,37(9):3324~3331

        Triclocarban (TCC) in aqueous solution was degraded by UV-activated persulfate. The removal efficiency of TCC by direct UV irradiation, PS oxidation alone, and UV/PS process was compared in this experiment. The effect of PS dosage, initial pH and HA on TCC degradation by UV/PS was investigated. The possible degradation approach and intermediates was proposed, meanwhile, the effect of degradation and economical efficiency for UV/PS were compared with UV/H2O2. The results showed that UV irradiation-activated sodium persulfate process could remove TCC efficiently and TCC degradation followed the pseudo-first order kinetic model well (R2≥0.95). The pseudo-first-order-constant k increased firstly and then decreased with the increase of PS dosage. The value of k reached a maximum of 0.0810min-1when the dosage of PS was 250μmol/L. Slightly acidic condition (pH=6.0) was better for TCC degradation. The removal of TCC was inhibited in the presence of HA, and the effect of inhibition was significantly positively correlated with the concentration of HA. 1-chloro-4-isocyanato-benzen and 4-chloroaniline were identified as the main intermediates by GC/MS. The possible degradation approach is that the C-N chemical bonds of the keto carbonyl group were broken during the degradation process, and thus 1-chloro-4-isocyanato-benzen and 4-chloroaniline was generated via the dechlorinationand other reactions. The concentration of Cl-was increased through the degradation process of TCC by UV/PS. Compared with UV/H2O2process, the pseudo-first-order-constant k and the electrical energy per order of UV/PS process increased by 96.65% and 97%, respectively.

        UV/PS;triclocarban;sulfate radical;intermediates

        X703

        A

        1000-6923(2017)09-3324-08

        2017-02-28

        國家自然科學(xué)基金項(xiàng)目(51378446,51678527,51408518);福建省科技計(jì)劃引導(dǎo)性項(xiàng)目(2017Y0079);福建省高校新世紀(jì)優(yōu)秀人才支持計(jì)劃項(xiàng)目(JA14227);福建省自然科學(xué)基金項(xiàng)目(2016J01695);江蘇省企業(yè)研究生工作站合作項(xiàng)目;廈門市科技局項(xiàng)目(3502Z20131157,3502Z20150051)

        * 責(zé)任作者, 副研究員, leetsingsong@sina.com

        駱靖宇(1992-),男,江蘇南通人,蘇州科技大學(xué)碩士研究生,主要研究方向?yàn)樗幚砝碚撆c技術(shù).

        猜你喜歡
        三氯氯苯苯胺
        漲瘋了!碘漲50%,三氯漲超30%,溶劑漲超250%……消毒劑要漲價(jià)了
        一種有效回收苯胺廢水中苯胺的裝置
        能源化工(2021年6期)2021-12-30 15:41:26
        氧化鈣抑制固體廢物焚燒過程中氯苯生成
        歐盟食品安全局:三氯蔗糖無致癌風(fēng)險(xiǎn)
        三氯生對(duì)4種水生生物的急性毒性研究
        抗氧劑壬基二苯胺的合成及其熱穩(wěn)定性
        2-(4-氯苯氨基)甲基苯酚降解的動(dòng)力學(xué)研究
        混二氯硝基苯氯化制備1,2,4-/1,2,3-三氯苯
        中國氯堿(2014年10期)2014-02-28 01:04:59
        淺析2,4-二硝基氯苯的最佳合成技術(shù)
        河南科技(2014年8期)2014-02-27 14:07:42
        添加有機(jī)酸加速2,4,6-三氯酚的生物降解
        国产内射视频在线免费观看| 四虎影视亚洲精品| 亚洲视频一区| 不卡高清av手机在线观看| 日韩精品av在线一区二区| 日产精品高潮一区二区三区5月| 精品香蕉99久久久久网站| 日日摸日日碰夜夜爽无码| 2021精品国产综合久久| 久天啪天天久久99久孕妇| 青青青视频手机在线观看| h视频在线播放观看视频| 午夜福利av无码一区二区| 高中生粉嫩无套第一次| 久久与欧美视频| 最近中文字幕精品在线| 少妇粉嫩小泬喷水视频| 国产精品丝袜黑色高跟鞋| 久久久久久国产精品免费网站| 精品国产三级国产av| 日本刺激视频一区二区| 亚洲乱码无人区卡1卡2卡3| 国产白丝无码视频在线观看| 中文字幕日产人妻久久| 日韩一区三区av在线| 人妻诱惑中文字幕在线视频| 国产精品夜间视频香蕉| 最新69国产成人精品视频免费| 99热成人精品国产免| 人妻少妇被猛烈进入中文| 男人的天堂一区二av| 成熟丰满熟妇高潮xxxxx视频| 亚洲欲色欲香天天综合网| 亚洲一区二区三区在线| 美女露出自己的性感大胸一尤内衣| 免费国产黄网站在线观看| 国产成人精品三上悠亚久久| 白白色发布在线观看视频| www国产亚洲精品久久麻豆| 久久99精品九九九久久婷婷| 激情亚洲一区国产精品|