張杰+穆玉明
[摘要] 利用干細胞修復梗死心肌的方法極具潛力,但單純外源性移植存在免疫排斥、病原體傳播、儲存、包裝等問題,更重要的是,干細胞無法高效歸巢到靶區(qū)。而超聲靶向微泡破壞技術憑借其非侵入性、低免疫原性、可重復性、靶向性等優(yōu)點成為一種新型基因傳遞體系,在干細胞趨化和基因治療的研究中被廣泛應用。本文就超聲及微泡輔助干細胞治療心肌梗死的方法進行綜述。
[關鍵詞] 超聲;微泡;干細胞治療;心肌梗死
[中圖分類號] R542.2 [文獻標識碼] A [文章編號] 1673-7210(2017)08(b)-0029-04
[Abstract] The method of using stem cells to repair infarcted myocardium has great potential. But there are a series of questions with simple exogenous transplantation, such as immunological rejection, transmission of pathogens, storage, packing and more, the stem cells can′t home to the targeted area efficiently. As a novel gene delivery system, ultrasound-targeted microbubble destruction has been widely used for recruiting stem cells and gene therapy for its advantages of noninvasiveness, low immunogenicity, repeatability, spatial target specificity, etc. This article reviewes the methods of ultrasound and microbubble mediated stem cell in the treatment of myocardial infarction.
[Key words] Ultrasound; Microbubble; Stem cell therapy; Myocardial infarction
隨著全球經濟的迅猛發(fā)展,城市化和生活方式的改變使心血管疾病患病率與日俱增,盡管新的研究成果已經開始用于診斷和治療,但在很多國家,心血管疾病仍是主要的致死原因[1],因此,利用干細胞替代、修復和改善受損心肌的方法前景廣闊[2]。事實上,心肌梗死后機體本身釋放的趨化因子可誘導外周骨髓干細胞自發(fā)歸巢,修復受損的心肌組織,通過外力作用放大此種效應無疑可起到治療心肌梗死的作用。但是,“軸向移動”效應[3]使毛細血管中的干細胞主要位于血管中軸附近,嚴重限制了干細胞向內皮組織的靶向黏附能力。
自Imada等[4]首次利用超聲聯(lián)合微泡干預的方法增效干細胞移植治療缺血骨骼肌以來,超聲微泡開始在細胞、基因治療方面倍受關注。超聲輻照微泡通過聲孔效應使周圍組織的生物屏障通透性增加,有利于移植細胞向缺血區(qū)的遷移和浸潤;同時使血管內容物外滲產生炎性反應、通過旁分泌作用增加內源性細胞因子的產生,改變局部微環(huán)境,促進新生血管形成,促進干細胞的歸巢、黏附、增殖、分化,增強移植干細胞的增殖活性和靶向性,修復受損心肌組織[5-7]。因此,本文對超聲及微泡介導干細胞治療心肌梗死的方法進行綜述。
1 超聲、微泡對心肌梗死組織預處理后行干細胞移植
鑒于心肌微環(huán)境在干細胞移植中的決定性作用[8],許多研究者將超聲輻照微泡對心肌微環(huán)境的影響作為研究重點,在經冠脈干細胞移植前利用超聲靶向微泡破壞技術(ultrasound-targeted microbubble destruction,UTMD)對心梗組織預處理,通過刺激炎性反應、改變局部心肌微環(huán)境,促進骨髓間充質干細胞(bone marrow-derived mesenchymal stem cells,BMSCs)向心肌歸巢、分化[9-11],同時促進歸巢干細胞的存活[12],提高治療效果。隨著聚焦超聲(focused ultrasound,F(xiàn)US)的發(fā)展[13],Ghanem等[14]用發(fā)射能量較低的高強度聚焦超聲介導的微泡刺激(highly focused ultrasound-mediated stimulation of microbubbles,fh-UMS)代替普通的UTMD,對大鼠梗死心肌預處理后經主動脈根部導管注射BMSCs增強了內皮細胞的靶向黏附能力,促進了干細胞移植??紤]到不同的超聲輻照參數(shù)產生的生物學效應不同,較弱的炎性反應有助于干細胞的動員和歸巢,但過度的炎癥細胞浸潤可能會使干細胞凋亡和壞死,不利于細胞治療,Ling等[15]以犬為研究對象,利用不同參數(shù)UTMD對梗死心肌預處理后經冠狀動脈注射間充質干細胞(mesenchymal stem cells,MSCs),證明此方法治療心肌梗死的同時,亦得出一組較佳的超聲輻照參數(shù):頻率1 Hz,脈沖超聲強度1 W/cm2。通過對最佳超聲輻照參數(shù)的研究,UTMD得到進一步的發(fā)展,通過改變局部心肌微環(huán)境,誘導干細胞歸巢,增強了干細胞治療心肌梗死的效果。
2 超聲、微泡對干細胞預處理后行干細胞移植
隨著UTMD的不斷成熟,一些研究者開始對超聲輻照微泡(ultrasound-exposed microbubbles,UM)預處理的干細胞進行移植,探究其對心肌梗死的治療效果。經冠脈注射UM預處理的BMSCs較注射未預處理的BMSCs可明顯增加向受損心肌歸巢的干細胞數(shù)量,促進新生血管形成,改善心功能[16]。對BMSCs進行UM預處理可以促使BMSCs向基質細胞衍生因子-1(stromal derived factor-1,SDF-1)濃度遷移、向缺血的大鼠心肌靶向歸巢[17-18],Gu等[19]檢測BMSCs內CXCR4的轉染和表達以及鈣離子的含量,證明外源性移植經UM預處理的干細胞可增強干細胞移植效果,其機制可能與UM-鈣離子-CXCR4軸有關。至此,超聲及微泡介導干細胞治療心肌梗死的研究層次得到提高。endprint
3 干細胞移植后注射微泡行超聲輻照
將UTMD與干細胞移植相結合治療心肌梗死的方法很多,為了探求一個最佳的結合方法,也有研究者對心肌梗死的新西蘭兔經靜脈MSCs移植后注射微泡進行超聲輻照,發(fā)現(xiàn)此方法亦可誘導局部新生血管形成,改善心肌灌注,同時抑制心肌纖維化和心肌重構[20],改善心功能。通過進一步分析SDF-1/CXCR4的表達、計數(shù)向心梗區(qū)域歸巢的MSCs,Li等[7]提出,此方法促使經靜脈注射的MSCs向SD大鼠缺血心肌歸巢的機制與UTMD上調SDF-1/CXCR4軸有關。超聲及微泡介導干細胞治療心肌梗死的作用通過SDF-1/CXCR4軸得到印證。
4 超聲、微泡與其他方法相結合對干細胞預處理后進行移植
單純UTMD介導干細胞移植的作用有限,眾多研究者開始在體外將UTMD與其他方法相結合對干細胞進行預處理,共同促進干細胞移植。UTMD與去甲基化藥物5-氮雜胞苷(5-Azacytine,5-Aza)聯(lián)合應用,5-Aza誘導MSCs向心肌分化的效果增強[21];UTMD(t = 30 s,A = 0.6 W/cm2,MB = 106/mL)與低氧誘導(hypoxic preconditioning,HP)(1%O2,94%N2,5%CO2,24 h)相結合(HP-MB),SDF-1/CXCR4軸的表達上調,MSCs向心肌梗死區(qū)的趨化能力提高[22]。UTMD與其他方法聯(lián)合應用預處理干細胞促進其歸巢的作用得到證實。
5 超聲輻照經修飾的微泡促進干細胞移植
除了聯(lián)合其他方法對干細胞進行預處理外,對微泡進行修飾也可以提高移植效率:超聲輻照NO微泡可通過增加SDF-1和血管內皮生長因子(vascular endothelial growth factor,VEGF)的表達促進經靜脈注射的干細胞向大鼠梗死心肌歸巢、誘導新生血管形成,改善心功能[23-24];利用UTMD將銅-微泡傳遞至新西蘭兔缺血心肌,可通過激活銅相關低氧誘導轉錄因子(hypoxia-inducible transcription factor-1,HIF-1)重建BMSCs歸巢的信號通路,促進經靜脈注射的BMSCs歸巢[25]。
6 超聲輻照微泡-干細胞復合體促進干細胞移植
為了進一步提高干細胞移植的效率,Naaijkens等[26]將CD90抗體與CD54抗體同時偶聯(lián)到微泡表面,制成干細胞-微泡復合體(stem bells),通過CD90抗體使雙重靶向微泡與脂肪源性干細胞(adipose derived stem cells,ASCs)結合,通過抗ICAM-1的CD54抗體促使經靜脈注射的ASCs向兔心肌梗死區(qū)靶向運動,進一步增強了干細胞移植的靶向性。Kokhuis等[27]則通過活體顯微鏡直接在雞胚胎中對超聲輻照stem bells產生的效應進行光學觀察,證實了聯(lián)合應用UTMD和stem bells定向傳遞干細胞的可行性和高效性:增加干細胞靶向歸巢的同時將侵襲性降到最低,并在體外鑒定stem bells在超聲暴露下的活性以及對聲輻射的敏感性之后,在Wistar大鼠體內證實了超聲輻照經靜脈注射的stem bells來促進干細胞歸巢的安全性[28]。至此,超聲介導微泡-干細胞聯(lián)合治療心肌梗死以其較強的靶向性正吸引著越來越多的研究者。
7 UTMD介導的基因治療促進內源性干細胞移植
除了干細胞移植效率的問題外,外源性干細胞移植還存在著分離、純化、免疫排斥等問題,均限制了干細胞移植的應用。因此,促進內源性干細胞移植的研究應運而生。一些研究者[29-32]首先在體外證實,UTMD不但可提高基因轉染效率,還能保持干細胞轉染后的增殖活性和分化能力。在體內研究中,Du等[33]利用UTMD介導與功能恢復有關的GDF11[34]轉染促進了老年大鼠自身內皮祖細胞(endothelial progenitorcells,EPCs)歸巢和心臟干細胞(cardiac stem cells,CSCs)增殖,改善了心功能;Fujii等[35]將UTMD與VEGF、干細胞因子(stem cell factor,SCF)基因治療相結合,通過基因轉染促進C57BL/6小鼠自體干細胞[VEGF受體2+和SCF受體(c-kit)+]向心臟歸巢,之后又通過重復治療(至少6次)增強了治療效果[36]。因其廣闊的應用前景,UTMD介導基因轉染促內源性干細胞歸巢治療心肌梗死的研究日益增多。
8 小結和展望
超聲及微泡輔助干細胞移植治療心肌梗死的效果已得到證實,是一種極具潛力的治療方法。但迄今為止,UTMD的研究還只停留在體外和小動物模型等臨床前實驗的階段,在靶基因選擇、超聲輻照參數(shù)、微泡濃度和成分以及微泡和干細胞或基因的比例等顯著影響移植效率的重要方面[37]均無明確標準,考慮到安全性的問題,要將超聲及微泡輔助干細胞移植的方法真正用于心肌梗死的臨床治療,仍需進一步研究。
[參考文獻]
[1] Mozaffarian D,Benjamin EJ,Go AS,et al. Heart disease and stroke statistics—2015 update:a report from the American Heart Association [J]. Circulation,2015,131(4):e29-e322.
[2] Hao M,Wang R,Wang W. Cell therapies in cardiomyopathy:current status of clinical trials [J]. Anal Cell Pathol(Amst),2017,2017:9404057.
[3] Bayliss LE. The axial drift of the red cells when blood flows in a narrow tube [J]. J Physiol,1959,149:593-613.endprint
[4] Imada T,Tatsumi T,Mori Y,et al. Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response [J]. Arterioscler Thromb Vasc Biol,2005,25(10):2128-2134.
[5] Deng W,Chen QW,Li XS,et al. Bone marrow mesenchymal stromal cells with CD47 high expression via the signal transducer and activators of transcription signaling pathway preventing myocardial fibrosis [J]. Int J Clin Exp Pathol,2015,8(9):10555-10564.
[6] Liao YY,Chen ZY,Wang YX,et al. New progress in angiogenesis therapy of cardiovascular disease by ultrasound targeted microbubble destruction [J]. Biomed Res Int,2014, 2014:872984.
[7] Li L,Wu SZ,Liu Z,et al. Ultrasound-targeted microbubble destruction improves the migration and homing of mesenchymal stem cells after myocardial infarction by upregulating SDF-1/CXCR4:a pilot study [J]. Stem Cells Int,2015,2015:691310.
[8] Scuderi GJ,Butcher J. Naturally engineered maturation of cardiomyocytes [J]. Front Cell Dev Biol,2017,5:50.
[9] Song X,Zhu H,Jin L,et al. Ultrasound-mediated microbubble destruction enhances the efficacy of bone marrow mesenchymal stem cell transplantation and cardiac function [J]. Clin Exp Pharmacol Physiol,2009,36(3):267-271.
[10] Zhong S,Shu S,Wang Z,et al. Enhanced homing of mesenchymal stem cells to the ischemic myocardium by ultrasound-targeted microbubble destruction [J]. Ultrasonics,2012,52(2):281-286.
[11] Chang X,Liu J,Liao X,et al. Ultrasound-mediated microbubble destruction enhances the therapeutic effect of intracoronary transplantation of bone marrow stem cells on myocardial infarction [J]. Int J Clin Exp Pathol,2015, 8(2):2221-2134.
[12] Silva GV,Zheng Y,Quan X,et al. A novel strategy for increasing myocardial retention of stem cells delivered by intracoronary infusion in a porcine model of acute myocardial infarction [J]. Circulation,2011,124(21):A15663.
[13] Miller DB,O'Callaghan JP. New horizons for focused ultrasound (FUS)-therapeutic applications in neurodegenerative diseases [J]. Metabolism,2017,69(S):S3-S7.
[14] Ghanem A,Steingen C,Brenig F,et al. Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction [J]. J Mol Cell Cardiol,2009,47(3):411-418.
[15] Ling ZY,Shu SY,Zhong SG,et al. Ultrasound targeted microbubble destruction promotes angiogenesis and heart function by inducing myocardial microenvironment change [J]. Ultrasound Med Biol,2013,39(11):2001-2010.endprint
[16] Yin F,Battiwalla M,Ito S,et al. Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients:correlation of biological markers with clinical responses [J]. Stem Cells,2014,32(5):1278-1288.
[17] Purroy N,Abrisqueta P,Carabia J,et al. Co-culture of primary CLL cells with bone marrow mesenchymal cells,CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo [J]. Oncotarget,2015,6(10):7632-7643.
[18] Lourenco S,Teixeira VH,Kalber T,et al. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors [J]. J Immunol,2015,194(7):3463-3474.
[19] Gu JY,Shi HF,Gao XL,et al. Effect of CXCR4 pretreated with ultrasound-exposed microbubbles on accelerating homing of bone marrow mesenchymal stem cells to ischemic myocardium in AMI rats [J]. Asian Pac J Trop Med,2015,8(9):766-771.
[20] Xu YL,Gao YH,Liu Z,et al. Myocardium-targeted transplantation of mesenchymal stem cells by diagnostic ultrasound-mediated microbubble destruction improves cardiac function in myocardial infarction of New Zealand rabbits [J]. Int J Cardiol,2010,138(2):182-195.
[21] 陳玲玲,尹立雪.超聲輻照微泡介導5-氮雜胞苷誘導人骨髓間充質干細胞心肌樣分化的實驗研究[J].中華超聲影像學雜志,2013,22(11):991-996.
[22] Li L,Wu S,Li P,et al. Hypoxic preconditioning combined with microbubble-mediated ultrasound effect on MSCs promote SDF-1/CXCR4 expression and its migration ability:an in vitro study [J]. Cell Biochem Biophys,2015,73(3):749-757.
[23] Bian Y,Tong J,Shen X,et al. Expernment study of ultrasound combined with nitric oxide microbubbles enhance the efficacy of mesenchymal stem cells transplantation in myocardial infarction and the probable mechanism [J]. Heart,2012,98(s2):E120.
[24] Tong J,Ding J,Shen X,et al. Mesenchymal stem cell transplantation enhancement in myocardial infarction rat model under ultrasound combined with nitric oxide microbubbles [J]. PLoS One,2013,8(11):e80186.
[25] Zheng L,Sun W,Sun X,et al. Recovery of mesenchymal stem cells homing to rabbit myocardial ischemic infarct area by Cu-microbubble treatment [J]. FASEB J,2015, 29(1):s670.3.
[26] Naaijkens B,Krijnen P,Bogaards S,et al. Directing stem cells to the infarcted heart using stem bells TM:introducing a novel technique using targeted microbubbles [J]. Circulation,2013,128(s22):A15053.
[27] Kokhuis TJ,Skachkov I,Naaijkens BA,et al. Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force [J]. Biotechnol Bioeng,2015,112(1):220-227.endprint
[28] Woudstra L,Krijnen PA,Bogaards SJ,et al. Development of a new therapeutic technique to direct stem cells to the infarcted heart using targeted microbubbles:stem bells [J]. Stem Cell Res,2016,17(1):6-15.
[29] Otani K,Yamahara K,Ohnishi S,et al. Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles [J]. J Control Release,2009,133(2):146-153.
[30] Pu Z,You X,Xu Q,et al. Protein expression of mesenchymal stem cells after transfection of pcDNA3.1?-hVEGF by ultrasound-targeted microbubble destruction [J]. J Biomed Biotechnol,2011,2011:839653.
[31] Li P,Gao Y,Liu Z,et al. DNA transfection of bone marrow stromal cells using microbubble-mediated ultrasound and polyethylenimine:an in vitro study [J]. Cell Biochem Biophys,2013,66(3):775-786.
[32] Jin L,Li F,Wang H,et al. Ultrasound targeted microbubble destruction enhances gene transduction of adeno-associated virus in a less-permissive cell type,NIH/3T3 [J]. Mol Med Rep,2013,8(2):320-326.
[33] Du GQ,Shao ZB,Wu J,et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury [J]. Basic Res Cardiol,2017,112(1):7.
[34] Finkenzeller G,Stark GB,Strassburg S. Growth differentiation factor 11 supports migration and sprouting of endothelial progenitor cells [J]. J Surg Res,2015,198(1):50-56.
[35] Fujii H,Sun Z,Li SH,et al. Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice [J]. JACC Cardiovasc Imaging,2009,2(7):869-879.
[36] Fujii H,Li SH,Wu J,et al. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair [J]. Eur Heart J,2011,32(16):2075-2084.
[37] Zhang CB,Cao HL,Li Q,et al. Enhancement effect of ultrasound-induced microbubble cavitation on branched polyethylenimine-mediated VEGF(165) transfection with varied N/P ratio [J]. Ultrasound Med Biol,2013,39(1):161-171.endprint