亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        徑流泥沙實(shí)時(shí)自動(dòng)監(jiān)測(cè)儀的研制

        2017-09-15 06:16:43展小云郭明航趙向輝
        關(guān)鍵詞:測(cè)量

        展小云,郭明航,趙 軍※,趙向輝

        ·農(nóng)業(yè)水土工程·

        徑流泥沙實(shí)時(shí)自動(dòng)監(jiān)測(cè)儀的研制

        展小云1,2,郭明航1,2,趙 軍1,2※,趙向輝3

        (1. 西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 中國(guó)科學(xué)院水利部水土保持研究所,楊凌 712100;3. 西安三智科技有限公司,西安 710075)

        針對(duì)徑流泥沙過程監(jiān)測(cè)儀缺乏和監(jiān)測(cè)誤差大的狀況,研制了一種具有野外復(fù)雜條件下普遍適用的徑流泥沙高精度實(shí)時(shí)自動(dòng)監(jiān)測(cè)儀,并建立了數(shù)據(jù)/站點(diǎn)管理云平臺(tái)。該儀器從徑流泥沙過程中提取驅(qū)動(dòng)儀器運(yùn)轉(zhuǎn)的物理量并將其轉(zhuǎn)換為測(cè)控信號(hào),實(shí)現(xiàn)徑流泥沙過程的實(shí)時(shí)自動(dòng)監(jiān)測(cè);通過對(duì)儀器總體結(jié)構(gòu)及各功能部件的優(yōu)化設(shè)計(jì),消減泥沙粘附和沉積,提高監(jiān)測(cè)精度。通過標(biāo)準(zhǔn)泥沙樣品驗(yàn)證了該儀器的適用性,結(jié)果表明該儀器監(jiān)測(cè)的含沙量相對(duì)誤差均值為3.67%,決定系數(shù)為0.997。土槽試驗(yàn)獲取了徑流過程中變幅較寬的徑流量和含沙量的動(dòng)態(tài)過程曲線。可見,該儀器不僅可以準(zhǔn)確地監(jiān)測(cè)徑流泥沙過程,而且創(chuàng)新了水土流失監(jiān)測(cè)技術(shù)和方法,推動(dòng)了水土流失監(jiān)測(cè)的自動(dòng)化和信息化。

        土壤;侵蝕;徑流;含沙量;自動(dòng)化監(jiān)測(cè)

        展小云,郭明航,趙 軍,趙向輝. 徑流泥沙實(shí)時(shí)自動(dòng)監(jiān)測(cè)儀的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):112-118. doi:10.11975/j.issn.1002-6819.2017.15.014 http://www.tcsae.org

        Zhan Xiaoyun, Guo Minghang, Zhao Jun, Zhao Xianghui. Development of real-time and automatic measuring equipment for runoff and sediment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 112-118. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.014 http://www.tcsae.org

        0 引 言

        中國(guó)是世界上水土流失最嚴(yán)重的國(guó)家之一。2004年全國(guó)土壤侵蝕量高達(dá)16.22億 t,相當(dāng)于12.5萬(wàn)km2面積上流失掉1 cm厚的表層土壤,而形成1 cm厚的土壤卻需要100年。截止2011年,全國(guó) (未含香港、澳門特別行政區(qū)和臺(tái)灣省)土壤侵蝕面積為294.91萬(wàn)km2,占國(guó)土面積的30.7%[1]。水土流失不但導(dǎo)致土壤退化,土地生產(chǎn)力降低,而且對(duì)生態(tài)環(huán)境、人類生存和社會(huì)經(jīng)濟(jì)發(fā)展帶來嚴(yán)重影響[2-4]。為實(shí)現(xiàn)生態(tài)文明建設(shè)和社會(huì)經(jīng)濟(jì)的可持續(xù)發(fā)展,中國(guó)已將水土保持確定為一項(xiàng)長(zhǎng)期的基本國(guó)策。

        水土流失監(jiān)測(cè)是水土保持學(xué)科發(fā)展、防治水土流失和實(shí)施生態(tài)文明戰(zhàn)略的基礎(chǔ)。近年來,中國(guó)已建成738個(gè)水土保持監(jiān)測(cè)點(diǎn),在此基礎(chǔ)上水利部又制定了全國(guó)水土保持信息化規(guī)劃(2013-2020年),將“國(guó)家級(jí)水土保持監(jiān)測(cè)點(diǎn)升級(jí)”列為重點(diǎn)建設(shè)項(xiàng)目,擬開展監(jiān)測(cè)點(diǎn)數(shù)據(jù)采集智能化升級(jí),配置自動(dòng)化泥沙監(jiān)測(cè)采集設(shè)施設(shè)備。除此之外,國(guó)家野外站觀測(cè)研究網(wǎng)絡(luò)、中國(guó)生態(tài)研究網(wǎng)絡(luò)、國(guó)家水文監(jiān)測(cè)網(wǎng)絡(luò)、國(guó)家地質(zhì)環(huán)境監(jiān)測(cè)站等部門都建有流域控制站、水土流失監(jiān)測(cè)站和水文監(jiān)測(cè)站,其中徑流量和含沙量均為重要的監(jiān)測(cè)指標(biāo)。面對(duì)量大面寬的徑流泥沙監(jiān)測(cè)的迫切需要,現(xiàn)有的徑流泥沙監(jiān)測(cè)技術(shù)和儀器設(shè)備卻相形見絀。隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,人們一直試圖利用各種原理和方法以實(shí)現(xiàn)對(duì)含沙量較為準(zhǔn)確地測(cè)量。目前,含沙量的測(cè)量方法主要包括稱重法、γ射線法、振動(dòng)法、超聲波法、電容法、光電法、激光法和遙感法等[5-8]。由于稱重法相對(duì)容易實(shí)現(xiàn),至今仍被廣泛應(yīng)用[9-13],但是該方法測(cè)量周期長(zhǎng),過程繁瑣,不能實(shí)時(shí)測(cè)量,測(cè)量結(jié)果只是隨機(jī)時(shí)間段內(nèi)的平均值,無法反映含沙量的即時(shí)變化,并且測(cè)量誤差較大[14-15]。近年來,雷廷武等[16-17]研制基于γ-射線測(cè)量含沙量的系統(tǒng),盡管該方法有很大的測(cè)量?jī)?yōu)勢(shì),但是由于137Cs放射源安全防護(hù)很困難,對(duì)人體危害很大,因而無法廣泛使用[18-19]。振動(dòng)法測(cè)量含沙量時(shí)由于零點(diǎn)漂移嚴(yán)重,測(cè)量結(jié)果穩(wěn)定性較差[20]。Bonta[21]提出的超聲波法測(cè)量含沙量的范圍較窄,僅適合于低含沙溶液的測(cè)量[22]。電容法中由于電容受溫度影響較大,電容兩端輸出電壓隨溫度、土壤含鹽量升高而呈非線形增加趨勢(shì),電容測(cè)量精度要達(dá)到1 PF,目前電容測(cè)量技術(shù)遠(yuǎn)不能達(dá)到,加之徑流流速的影響,使得電容法的適用條件受到很大限制[23-24]。曾為軍等[8]提出了一種基于計(jì)時(shí)法和光電法的徑流量與含沙量的測(cè)量方法,設(shè)計(jì)了坡面徑流量及含沙量同步在線檢測(cè)的自動(dòng)監(jiān)測(cè)系統(tǒng),但是該方法仍然是受到泥沙比重、不同顆粒組成及泥沙沉積等狀況的嚴(yán)重影響而未能廣泛應(yīng)用[25-27]。此外,由于在坡面侵蝕過程中,徑流中泥沙粒徑的組成隨時(shí)間不斷變化,使得激光法具有了一定的測(cè)量誤差[28]。遙感法根據(jù)衛(wèi)星遙感攝影獲得的河口、河流、水庫(kù)、湖泊等地區(qū)懸浮泥沙的光譜特性影像,反演計(jì)算大面積水域水體的平均含沙量,該方法多用于大范圍低含沙量測(cè)量,不能在坡面、溝道進(jìn)行定點(diǎn)高精度的測(cè)量[29-30]。

        可見,上述方法存在各種問題:或者由于受樣品采集或元器件性能的限制,不能克服或完全適應(yīng)泥沙顆粒大小組成的不確定性以及泥沙的粘附性、沉積性的影響,造成監(jiān)測(cè)誤差大;或者由于監(jiān)測(cè)現(xiàn)場(chǎng)復(fù)雜性,使得儀器不能兼顧變幅較寬的徑流量和含沙量的監(jiān)測(cè);或者由于儀器設(shè)備功能設(shè)計(jì)的缺陷,不能實(shí)時(shí)監(jiān)測(cè)徑流泥沙全過程。有鑒于此,徑流泥沙監(jiān)測(cè)亦然繼續(xù)采用幾乎沒有儀器概念可言的傳統(tǒng)的稱重法進(jìn)行徑流泥沙的監(jiān)測(cè),而這種方法與現(xiàn)代科技發(fā)展水平極不匹配,也與當(dāng)代水土保持學(xué)科的發(fā)展和水土流失防治需求極不適應(yīng)。水土保持學(xué)術(shù)界堪憂,徑流泥沙監(jiān)測(cè)的新技術(shù)、新設(shè)備以及技能型人才缺乏,使得水土保持學(xué)科的發(fā)展存在嚴(yán)重的科學(xué)和技術(shù)危機(jī)[31]。

        因此,本研究將經(jīng)典的測(cè)量原理與現(xiàn)代科學(xué)技術(shù)結(jié)合,研制具有全自動(dòng)、全過程、高精度、實(shí)時(shí)監(jiān)測(cè)的徑流泥沙監(jiān)測(cè)儀器設(shè)備,以實(shí)現(xiàn)多場(chǎng)景(徑流小區(qū)和流域控制站)徑流泥沙實(shí)時(shí)自動(dòng)監(jiān)測(cè)。通過研制徑流泥沙自動(dòng)監(jiān)測(cè)儀,不但能夠獲取徑流泥沙的過程資料,提高徑流泥沙的監(jiān)測(cè)精度,而且可以提升徑流泥沙監(jiān)測(cè)的自動(dòng)化和信息化水平,推動(dòng)水土保持向定量化、精準(zhǔn)化發(fā)展,提升國(guó)產(chǎn)水土保持監(jiān)測(cè)儀器設(shè)備的研發(fā)能力。

        1 測(cè)量原理及參數(shù)計(jì)算

        該監(jiān)測(cè)儀主要是基于定體積的體積-質(zhì)量轉(zhuǎn)換原理測(cè)量含沙量。相對(duì)于光電法、透射法等傳統(tǒng)的監(jiān)測(cè)方法,該方法可以完全消除泥沙顆粒大小對(duì)測(cè)量結(jié)果的影響。對(duì)于特定的徑流泥沙樣品,當(dāng)所采集的樣品體積一定時(shí),其水、沙所占的體積比和質(zhì)量比是一定的,即一定體積的徑流泥沙樣品其總質(zhì)量等于該樣品中泥沙的質(zhì)量與水的質(zhì)量之和,總體積等于泥沙的體積與水的體積之和。即

        式中G總為徑流泥沙樣品的總質(zhì)量,kg;V總為徑流泥沙樣品的總體積,m3;V水為徑流泥沙測(cè)量樣品中水的體積,m3;V沙為徑流泥沙測(cè)量樣品中泥沙的體積,m3;ρ水為泥沙測(cè)量樣品中水的密度,kg/m3;ρ沙為泥沙測(cè)量樣品中泥沙的密度,kg/m3。

        由式(1)可見,只要準(zhǔn)確測(cè)量出徑流泥沙樣品的總質(zhì)量(G總)和總體積(V總),便可計(jì)算出水的體積(V水)和泥沙的體積(V沙)。

        根據(jù)含沙量的定義可得

        式中S為含沙量,kg/m3。

        所以,樣品的含沙量的計(jì)算公式為

        可見,只要量測(cè)出采樣時(shí)間段內(nèi),徑流泥沙的總質(zhì)量和總體積,便可求解出徑流泥沙樣品中泥沙、水的體積和相應(yīng)的質(zhì)量,繼而計(jì)算出含沙量。為了提高測(cè)量結(jié)果的準(zhǔn)確度,土壤比重用土壤比重計(jì)進(jìn)行實(shí)時(shí)修正,水的密度則取實(shí)測(cè)時(shí)徑流液溫度所對(duì)應(yīng)的水的密度。

        徑流量計(jì)算公式為

        式中Q為徑流泥沙樣品的徑流量,L/s;Δt為采集徑流泥沙樣品所用的時(shí)間,s;1 000為單位換算系數(shù)。鑒于徑流量的測(cè)定方法簡(jiǎn)單可靠,下面不做詳細(xì)介紹和驗(yàn)證。

        2 系統(tǒng)結(jié)構(gòu)與組成

        2.1 系統(tǒng)總體結(jié)構(gòu)

        徑流泥沙自動(dòng)監(jiān)測(cè)儀由3部分構(gòu)成,即樣品采集部分、樣品測(cè)量部分和站點(diǎn)/數(shù)據(jù)管理部分,其結(jié)構(gòu)及邏輯關(guān)系如圖1所示。

        圖1 儀器結(jié)構(gòu)示意圖Fig.1 Structure diagram of equipment

        2.1.1 樣品采集部分

        樣品采集首先是通過徑流診斷傳感器探測(cè)有無徑流,若徑流出現(xiàn),則利用導(dǎo)流管路連接進(jìn)樣開關(guān)裝置,使徑流導(dǎo)入樣品測(cè)量艙,進(jìn)而進(jìn)行徑流量和含沙量的測(cè)量。若徑流診斷傳感器未探測(cè)到徑流,則樣品采集的相關(guān)部件休眠。對(duì)于徑流小區(qū)而言,所采集的樣品是樣品采集期間的全部徑流。而對(duì)于流域控制站而言,所采集的樣品是全部徑流的一部分,因此,在儀器機(jī)械構(gòu)成上需要增加水位傳感器和電機(jī)等功能部件,如圖2所示。

        圖2 流域控制站采樣部分結(jié)構(gòu)示意圖Fig.2 Schematic diagram of sample component of monitoring station in watershed

        2.1.2 樣品測(cè)量部分

        樣品測(cè)量部分主要是利用連接在樣品測(cè)量艙上的溢流傳感器、稱重傳感器、進(jìn)/排樣開關(guān)裝置、測(cè)量控制器和數(shù)據(jù)采集器等功能部件完成對(duì)徑流樣品體積和質(zhì)量的精確測(cè)量,隨之將測(cè)量數(shù)據(jù)存儲(chǔ)到監(jiān)測(cè)儀的存儲(chǔ)卡并通過無線網(wǎng)絡(luò)(GMS)發(fā)送到站點(diǎn)/數(shù)據(jù)管理云平臺(tái),如圖3所示。

        圖3 樣品測(cè)量部分結(jié)構(gòu)示意圖Fig.3 Schematic diagram of measuring component

        2.1.3 站點(diǎn)/數(shù)據(jù)管理云平臺(tái)

        站點(diǎn)/數(shù)據(jù)管理云平臺(tái)是基于“互聯(lián)網(wǎng)+”框架建立的適用于從一臺(tái)監(jiān)測(cè)設(shè)備到無數(shù)臺(tái)監(jiān)測(cè)設(shè)備的徑流泥沙監(jiān)測(cè)及其數(shù)據(jù)管理云平臺(tái),其結(jié)構(gòu)如圖4所示。用戶可自行布設(shè)專屬的站點(diǎn)/數(shù)據(jù)管理云平臺(tái)(私有平臺(tái)),也可將監(jiān)測(cè)設(shè)備連接到公共的站點(diǎn)/數(shù)據(jù)管理云平臺(tái)(公有平臺(tái)),站點(diǎn)/數(shù)據(jù)管理云平臺(tái)通過開發(fā)站點(diǎn)管理、用戶管理、遠(yuǎn)程數(shù)據(jù)接收、數(shù)據(jù)計(jì)算與匯編、數(shù)據(jù)可視化等功能模塊,為使用者提供便捷、安全、自主的監(jiān)測(cè)站/數(shù)據(jù)管理。

        2.2 測(cè)量艙的結(jié)構(gòu)和設(shè)計(jì)

        測(cè)量艙是盛裝所采集的待測(cè)徑流泥沙樣品的部件,其容積、幾何形狀、材質(zhì)和表面處理與泥沙的粘附、沉積關(guān)系密切,而粘附、沉積的泥沙量直接影響待測(cè)樣品體積和質(zhì)量,進(jìn)而影響含沙量測(cè)量的精度和準(zhǔn)確度。所以,測(cè)量艙的容積、幾何形狀、材質(zhì)選擇、表面處理等就成為測(cè)量艙研制的重點(diǎn)。測(cè)量艙的結(jié)構(gòu)如圖5所示。

        圖4 站點(diǎn)/數(shù)據(jù)管理云平臺(tái)示意圖Fig.4 Schematic diagram of a cloud station/data management platform

        圖5 測(cè)量艙結(jié)構(gòu)示意圖Fig.5 Schematic diagram of measuring chamber

        1)容積的設(shè)計(jì)

        測(cè)量艙容積的設(shè)計(jì)主要考慮3個(gè)因素,一是所采集的樣品量對(duì)總體的代表性;二是所采集的樣品量要能反映徑流泥沙的變化過程;三是儀器完成一個(gè)測(cè)量周期需要的時(shí)間。綜合分析以上3個(gè)因素,確定測(cè)量艙容積為5 L。

        2)幾何形狀的設(shè)計(jì)

        測(cè)量艙設(shè)計(jì)為形似“葫蘆”的容器,其上、下兩端口徑較小,中部口徑較大,變徑部分為流線型圓滑過渡,不留“棱坎”。在測(cè)量艙的頸部設(shè)計(jì)一個(gè)溢流口,并連接一個(gè)溢流管,溢流口下沿所在的平面作為測(cè)量艙體積測(cè)量的上限。測(cè)量艙的下端與排樣開關(guān)裝置連接,當(dāng)排樣開關(guān)關(guān)閉時(shí),排樣開關(guān)裝置的閥板應(yīng)處于水平狀態(tài),作為測(cè)量艙體積量測(cè)的下限。

        3)溢流口和溢流管的設(shè)計(jì)

        溢流口是自動(dòng)測(cè)量過程控制和徑流泥沙體積測(cè)量的重要部分。當(dāng)徑流液到達(dá)溢流口的下沿后,后續(xù)的徑流液就會(huì)從溢流口溢出,以保證測(cè)量艙的容積是一個(gè)定值,較之測(cè)量液面水位高度來計(jì)算體積的方法大幅度提高了體積測(cè)量的精度和準(zhǔn)確度。其另一個(gè)作用是觸發(fā)溢流傳感器,進(jìn)而觸發(fā)進(jìn)/排樣開關(guān)裝置。由于溢流口和溢流管一直是開放的,當(dāng)進(jìn)樣開關(guān)關(guān)閉后,多余的徑流泥沙會(huì)從溢流管自動(dòng)排出,使樣品測(cè)量艙的液面最終穩(wěn)定在溢流口下沿所在的平面,所以將溢流口下沿所在的平面作為測(cè)量艙體積測(cè)量的上限。

        4)材質(zhì)選擇與表面處理

        測(cè)量艙和徑流泥沙傳輸管線的材質(zhì)和表面處理對(duì)徑流泥沙的粘附、沉積作用影響很大。本研究選取不同的材料,如不銹鋼、鍍鋅鋼板、鋁板、有機(jī)玻璃等,噴涂不同的表面處理材料,如超疏水納米自潔防水劑、杜邦特氟龍材料、汽車面漆等,制作了多種測(cè)量艙和泥沙傳輸管線,通過對(duì)徑流泥沙的粘附性檢測(cè),尋求泥沙粘附和沉積作用最低的材料和表面處理方法,最終確定采用汽車面漆噴涂方式處理的不銹鋼板,其幾乎無泥沙沉積和粘附。

        2.3 測(cè)控流程設(shè)計(jì)

        測(cè)控流程設(shè)計(jì)時(shí)需要考慮以下4個(gè)主要因素:

        1)徑流是隨降雨而發(fā)生的隨機(jī)事件,并且在以年為周期的時(shí)間范圍內(nèi),其發(fā)生屬于一個(gè)低頻率事件。對(duì)于徑流泥沙自動(dòng)監(jiān)測(cè)儀多數(shù)時(shí)間處于休眠狀態(tài)是比較合理的選擇。而當(dāng)徑流出現(xiàn)后需要將檢測(cè)儀從休眠狀態(tài)喚醒并轉(zhuǎn)換為工作狀態(tài)。

        2)徑流一旦發(fā)生,其歷時(shí)長(zhǎng)短是不可預(yù)知的,所以,要求監(jiān)測(cè)儀可以無限制地重復(fù)測(cè)量。

        3)選擇合理的測(cè)量結(jié)束信號(hào),控制監(jiān)測(cè)儀在徑流結(jié)束后由工作狀態(tài)轉(zhuǎn)換為休眠狀態(tài)。

        4)為了減少殘留、稱質(zhì)量時(shí)的晃動(dòng)對(duì)體積、質(zhì)量測(cè)量的影響,需要在測(cè)量流程中設(shè)計(jì)“沖洗” “空淋” “靜置”環(huán)節(jié)。

        綜合分析徑流泥沙過程的特點(diǎn)、功能部件的結(jié)構(gòu)、性能以及工作過程,設(shè)計(jì)測(cè)控流程及其控制電路如圖6和7所示。

        圖6 測(cè)控流程示意圖Fig.6 Measured and control flow diagram

        圖7 測(cè)控流程電路圖Fig.7 Measured and control circuit diagram

        3 精度和準(zhǔn)確度檢測(cè)

        為了檢測(cè)該儀器的精度和準(zhǔn)確度,進(jìn)行了標(biāo)準(zhǔn)泥沙樣品的測(cè)試試驗(yàn)。試驗(yàn)選用的是黃綿土,該土壤比重為2.65 mg/m3,含水量為10.94%。根據(jù)標(biāo)定的測(cè)量艙體積配制不同濃度的標(biāo)準(zhǔn)泥沙樣品,即0、2、4、6、8、10、20、30、40、50、60、70、80、90、100、150、200、250、300、400、500 kg/m3,每個(gè)濃度樣品重復(fù)測(cè)量3次。結(jié)果表明,含沙量的測(cè)量值和實(shí)際值回歸系數(shù)接近1,為0.95,決定系數(shù)為0.997(圖8)。相對(duì)于實(shí)際值,測(cè)量值偏小,這可能是由于配制標(biāo)準(zhǔn)泥沙樣品時(shí)的人為誤差造成的,亦或是土壤含水量測(cè)量過程中的誤差造成的。此外,分析監(jiān)測(cè)結(jié)果的相對(duì)誤差表明,相對(duì)誤差波動(dòng)范圍為0.62%~14.00%,均值為3.67%。其中,低含沙量樣品(2~10 kg/m3)測(cè)量的相對(duì)誤差為7.00%,中含沙量樣品(20~90 kg/m3)測(cè)量的相對(duì)誤差為3.10%,高含沙量樣品(100~300 kg/m3)測(cè)量的相對(duì)誤差為2.61%(圖9a)。對(duì)相對(duì)誤差進(jìn)行頻率分布分析(圖9b),發(fā)現(xiàn)大部分樣本的相對(duì)誤差較小,相對(duì)誤差<10%的樣本僅占樣本總數(shù)的96.30%。以上結(jié)果表明,該監(jiān)測(cè)儀對(duì)檢驗(yàn)樣本數(shù)據(jù)的預(yù)測(cè)準(zhǔn)確度達(dá)到了較高水平,可準(zhǔn)確的監(jiān)測(cè)含沙量。

        圖8 實(shí)際含沙量與測(cè)量含沙量關(guān)系Fig.8 Relationship between actual and measured values of sediment concentration

        圖9 含沙量的相對(duì)誤差Fig.9 Relative error of sediment concentration

        4 徑流泥沙過程的實(shí)測(cè)分析

        4.1 試驗(yàn)設(shè)計(jì)

        為了驗(yàn)證該儀器對(duì)徑流泥沙過程監(jiān)測(cè)的寬泛性,2017年5月10日在黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室人工模擬降雨大廳進(jìn)行觀測(cè)試驗(yàn)。試驗(yàn)小區(qū)為可調(diào)坡度的鋼制土槽,小區(qū)規(guī)格長(zhǎng)×寬×深=3.0 m× 1.0 m×0.5 m,土槽坡度為15°,供試土壤為黃綿土。小區(qū)布設(shè)完成后,在正式降雨試驗(yàn)進(jìn)行之前,供試小區(qū)土壤表面均勻噴水后靜置7 d,使土槽內(nèi)部土壤水分的再分配達(dá)到應(yīng)力均勻、土壤結(jié)構(gòu)穩(wěn)定。試驗(yàn)為次降雨,不設(shè)重復(fù),降雨歷時(shí)為240 min,降雨強(qiáng)度45、60、80和120 mm/h各持續(xù)60 min,從降雨開始至降雨結(jié)束對(duì)試驗(yàn)下墊面進(jìn)行徑流泥沙樣品監(jiān)測(cè),據(jù)此獲取徑流過程中徑流量和含沙量的變化曲線。

        4.2 徑流泥沙過程分析

        圖10給出了不同降雨強(qiáng)度下徑流量和含沙量的變化曲線。由圖10可見,隨著時(shí)間的推移和降雨強(qiáng)度的增加,徑流量和含沙量均呈現(xiàn)顯著的同步增加趨勢(shì),徑流量的波動(dòng)范圍為19~127 L/s,均值為75.5 L/s,含沙量的波動(dòng)范圍為4.6~275.1 kg/m3,均值為88.6 kg/m3。

        圖10 徑流量和含沙量的動(dòng)態(tài)變化過程Fig.10 Dynamic change process of runoff volume and sediment concentration

        其中,在降雨強(qiáng)度為45和60 mm/h的情況下,含沙量的變化并不明顯,其波動(dòng)范圍為4.6~30.5 kg/m3。當(dāng)降雨強(qiáng)度增加至80 mm/h時(shí),水流中的含沙量在整個(gè)產(chǎn)流階段迅速增加,含沙量的均值為76.7 kg/m3。當(dāng)降雨強(qiáng)度增加至120 mm/h時(shí),由于下墊面侵蝕溝的產(chǎn)生,水流中的含沙量均在200 kg/m3以上,最大值高達(dá)275.1 kg/m3。由此可見,本研究中的監(jiān)測(cè)儀可以監(jiān)測(cè)變幅較寬的徑流量和含沙量,其彌補(bǔ)了現(xiàn)有儀器監(jiān)測(cè)范圍小的不足,具有一定的應(yīng)用前景。

        5 結(jié) 論

        1)以獲取水土流失過程數(shù)據(jù)為核心,基于經(jīng)典的稱重法原理,結(jié)合自動(dòng)化控制技術(shù)、精密傳感技術(shù)等現(xiàn)代科學(xué)技術(shù),研制了一種適用于徑流小區(qū)和流域控制站等多場(chǎng)景的徑流泥沙全自動(dòng)、全過程、高精度、實(shí)時(shí)監(jiān)測(cè)的徑流泥沙監(jiān)測(cè)儀,并建立“互聯(lián)網(wǎng)+”框架下的徑流泥沙監(jiān)測(cè)站點(diǎn)/數(shù)據(jù)管理云平臺(tái)。相對(duì)于傳統(tǒng)方法,此方法不受徑流泥沙過程歷時(shí)長(zhǎng)短、泥沙顆粒粒徑組成以及徑流量、含沙量大小的限制。

        2)對(duì)自行研制的監(jiān)測(cè)儀進(jìn)行精度和準(zhǔn)確度檢驗(yàn),結(jié)果表明含沙量的真實(shí)值與測(cè)量值具有較好的一致性,含沙量的測(cè)量值和實(shí)際值的線性回歸方程斜率高達(dá)0.95,測(cè)量的相對(duì)誤差均值為3.67%,該方法監(jiān)測(cè)誤差小,可有效、準(zhǔn)確地的監(jiān)測(cè)徑流泥沙含量。

        3)通過土槽模擬試驗(yàn)監(jiān)測(cè)了徑流量和含沙量的動(dòng)態(tài)過程曲線,監(jiān)測(cè)到的徑流量和含沙量的變化范圍分別為19~127 L/s和4.6~275.1 kg/m3。由此可見,本研究中的監(jiān)測(cè)儀具有較高的普適性,應(yīng)用前景廣泛,可以促進(jìn)水土保持學(xué)科試驗(yàn)監(jiān)測(cè)技術(shù)的發(fā)展,籍以深化土壤侵蝕過程、機(jī)理等水土保持學(xué)科基礎(chǔ)研究,支撐水土流失防治等應(yīng)用研究。

        [1] 中華人民共和國(guó)水利部. 中國(guó)水土保持公報(bào)[R]. 中華人民共和國(guó)水利部,2013.

        [2] Pimentel D C, Kounang N. Ecology of soil erosion in ecosystems[J]. Ecosystems, 1998, 1(5): 416-426.

        [3] Lantican M A, Guerra L C, Bhuiyan S I. Impacts of soil erosion in the upper Manupali watershed on irrigated lowlands in the Philippines[J]. Paddy and Water Environment, 2003, 1(1): 19-26.

        [4] Marques M J, Bienes R, Perez-Rodriguez R, et al. Soil degradation in Central Spain due to sheet water erosion by low-intensity rainfall events[J]. Earth Surface Processes and Landforms, 2008, 33(3): 414-423.

        [5] Wren D G, Barkdoll B D, Kuhnle R A, et al. Field techniques for suspended sediment measurement[J]. Journal of Hydraulic Engineering, 2000, 126(2): 97-104.

        [6] Zhao S L, Dorsey E C, Gupta S C, et al. Automated water sampling and flow measuring devices for runoff and subsurface drainage[J]. Journal of Soil and Water Conservation, 2001, 56(4): 299-306.

        [7] Klik A, Sokol W, Steindl F. Automated erosion wheel: A new measuring device for field erosion plots[J]. Journal of Soil and Water Conservation, 2004, 59(3): 116-121.

        [8] 曾為軍,張?jiān)苽?,陳嶺,等. 基于計(jì)時(shí)與光照法的坡面徑流量及含沙量動(dòng)態(tài)檢測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):114-123.

        Zeng Weijun, Zhang Yunwei, Chen Ling, et al. Dynamic measured system for hillslope runoff rate and sediment concentration based on time method and illumination method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 114-123. (in Chinese with English abstract)

        [9] Pinson W T, Yoder D C, Buchanan J R, et al. Design and evaluation of an improved flow divider for sampling runoff plots[J]. Applied Engineering in Agriculture, 2004, 20(4): 433-437.

        [10] 葉芝菡,劉寶元,路炳軍,等. 徑流小區(qū)集流桶含沙量全深剖面采樣器的研制與試驗(yàn)[J]. 泥沙研究,2005(3):24-29.

        Ye Zhihan, Liu Baoyuan, Lu Bingjun, et al. Design and testing of the depth profile sediment sampler for runoff plots[J]. Journal of Sediment Research, 2005(3): 24-29. (in Chinese with English abstract)

        [11] 趙軍,屈麗琴,趙曉芬,等. 稱重式坡面徑流小區(qū)水流流量自動(dòng)測(cè)量系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):36-40.

        Zhao Jun, Qu Liqin, Zhao Xiaofen, et al. Automated weighting system for measuring flow rate from runoff plots[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 36-40. (in Chinese with English abstract)

        [12] 曹建生,張萬(wàn)軍. 小流域徑流泥沙自動(dòng)采集器的試驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(1):45-49.

        Cao Jiansheng, Zhang Wanjun. Experimental investigation on instrument for auto-sampling water from runoff and sediment in a small catchment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 45-49. (in Chinese with English abstract)

        [13] 李續(xù)峰,張興義,劉洪家. 徑流泥沙混合裝置研發(fā)[J]. 水土保持研究,2012,19(1):23-27. Li Xufeng, Zhang Xingyi, Liu Hongjia. Design of integrated equipment on runoff and sediment[J]. Research of Soil and Water Conservation, 2012, 19(1): 23-27. (in Chinese with English abstract)

        [14] Einstein H A. The bed-load function for sediment transportation in open channel flows[J]. Technical Bulletins, 1950(71): 75-81.

        [15] Guy B T, Dickinson W T, Rudra R P. The roles of rainfall and runoff in the sediment transport capacity of interrill flow[J]. Transactions of the American Society of Agricultural Engineers (Transactions of the ASAE), 1987, 30(5): 1378-1386.

        [16] 雷廷武,趙軍,袁建平,等. 利用γ射線透射法測(cè)量徑流含沙量及算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(1):18-21.

        Lei Tingwu, Zhao Jun, Yuan Jianping, et al. Determining sediment concentration in runoff flow with γ ray attenuation and the related theoretical algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(1): 18-21. (in Chinese with English abstract)

        [17] 雷廷武,劉清坤,黃興法,等. 伽瑪射線測(cè)量徑流泥沙含量算法中質(zhì)量吸收系數(shù)優(yōu)選及其對(duì)測(cè)量誤差影響的分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(1):51-53.

        Lei Tingwu, Liu Qingkun, Huang Xingfa, et al. Optimal choice of mass absorption coefficient and analysis ofits influence on measured error in algorithm of using gamma ray to measure runoff sediment concentration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 51-53. (in Chinese with English abstract)

        [18] 高佩玲,雷廷武,邵明安,等. 小流域土壤侵蝕及徑流過程自動(dòng)測(cè)量系統(tǒng)的實(shí)驗(yàn)應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(10):164-166.

        Gao Peiling, Lei Tingwu, Shao Ming’an, et al. Laboratory applications of an automated measuring system for soil erosion and runoff processes in small watershed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(10): 164-166. (in Chinese with English abstract)

        [19] 王輝,雷廷武,趙軍,等. 坡面徑流量與含沙量動(dòng)態(tài)測(cè)量系統(tǒng)[J] . 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(1):79-82.

        Wang Hui, Lei Tingwu, Zhao Jun, et al. System for dynamic measurements of hillslope runoff rate and sediment concentration[J]. Transactions of the Chinese Society of Agricultural Machinery (Transactions of the CSAM), 2005, 36(1): 79-82. (in Chinese with English abstract)

        [20] 黃建龍,高艷雯,陳文科. 基于Lab VIEW的振動(dòng)式懸移質(zhì)測(cè)沙系統(tǒng)[J]. 蘭州理工大學(xué)學(xué)報(bào),2007,33(2):46-49.

        Huang Jianlong, Gao Yanwen, Chen Wenke. Vibratory suspending sandiness measuring system based on Lab VIEW[J]. Journal of Lanzhou University of Technology, 2007, 33(2): 46-49. (in Chinese with English abstract)

        [21] Bonta J V. Water sampler and flow measurement for runoff containing large sediment particles[J]. Transactions of the American Society of Agricultural Engineers (Transactions of the ASAE), 1999, 42(1): 107-144.

        [22] 方彥軍,唐懋官. 超聲衰減法含沙量測(cè)試研究[J]. 泥沙研究,1990(2):1-12.

        Fang Yanjun, Tang Maoguan. Ultrasonic attenuation method for measuring sediment concentration[J]. Journal of Sediment Research, 1990(2): 1-12. (in Chinese with English abstract)

        [23] 李小昱,雷廷武,王為. 電容式傳感器測(cè)量水流泥沙含量的研究[J]. 土壤學(xué)報(bào),2002,39(3):429-435.

        Li Xiaoyu, Lei Tingwu, Wang Wei. Capacitance sensor measuring sediment concentration in water current[J]. Acta Pedologica Sinica, 2002, 39(3): 429-435. (in Chinese with English abstract)

        [24] 沈逸,李小昱,雷廷武,等. 電容式水流泥沙含量傳感器數(shù)據(jù)融合的研究[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,23(4):459-462.

        Shen Yi, Li Xiaoyu, Lei Tingwu, et al. Data fusion of capacitance sensor of sediment concentration in water current[J]. Journal of Huazhong Agricultural University, 2004, 23(4): 459-462. (in Chinese with English abstract)

        [25] Campbell C G, Laycak D T, Hoppes W, et al. High concentration suspended sediment measurements using a continuous fiber optic in-stream transmissometer[J]. Journal of Hydrology, 2005, 311(1/2/3/4): 244-253.

        [26] Downing J. Twenty-five years with OBS sensors: The good, the bad, and the ugly[J]. Continental Shelf Research, 2006, 26(17/18): 2299-2318.

        [27] 王婭娜,蔡輝,馬洪蛟,等. 紅外實(shí)時(shí)測(cè)沙儀研制及其應(yīng)用[J]. 海洋工程,2007,25(3):132-135.

        Wang Yana, Cai Hui, Ma Hongjiao, et al. Research on real-time wireless sediment measurement system and its application in annular flume[J]. The Ocean Engineering, 2007, 25(3): 132-135. (in Chinese with English abstract)

        [28] 王文堅(jiān). 新型現(xiàn)場(chǎng)激光測(cè)沙儀[J].水利水電快報(bào),2001(16):22-23.

        [29] 唐兆民,何志剛,韓玉梅. 懸浮泥沙濃度的測(cè)量[J]. 中山大學(xué)學(xué)報(bào):自然科學(xué)版,2003,42(增刊2):244-247.

        Tang Zhaomin, He Zhigang, Han Yumei. The measurement on suspended sediment concentration[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(Suppl.2): 244-247.

        [30] 王艷姣. 基于懸浮泥沙影響的水深遙感方法研究[D]. 南京:南京師范大學(xué),2006.

        Wang Yanjiao. Application of Remote Sensing Technology to map Water Depth by Weakening the Influence of Suspended Sediment[D]. Nanjing: Nanjing Normal University, 2006. (in Chinese with English abstract)

        [31] Stroosnijder L. Measurement of erosion: is it possible?[J]. Catena, 2005, 64: 162-173.

        Development of real-time and automatic measuring equipment for runoff and sediment

        Zhan Xiaoyun1,2, Guo Minghang1,2, Zhao Jun1,2※, Zhao Xianghui3
        (1. State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, China; 2. Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, China; 3. Xi’an San Intelligent Technology Co’LTD, Xi’an 710075, China)

        Monitoring processes of runoff and sediment are the foundation of the dynamic assessment of soil erosion. Runoff volume and sediment concentration are 2 important hydrodynamic parameters to forecast slope runoff variation, reveal soil erosion mechanism and find out movement rule of soil in the field. However, the equipment which can be used widely to monitor precisely the runoff volume and sediment concentration at the same time is lacking. In view of the inaccuracy or the lack of equipment for automatic monitoring of runoff and sediment processes, real-time and automatic measuring equipment with high precision was explored in this study. The equipment could be applied to multi-scenario, including runoff plot and watershed. In our study, firstly, through the integration of signal sensing and automatic control technology, physical characteristics driving the operation of the equipment were extracted and converted into TT&C signals to automatically monitor runoff and sediment yield processes. On the one hand, continuous flow of runoff and sediment was discretized by optimizing the design of equipment overall structure and the functional unit. On the other hand, optical material of sampling device was used and the most reasonable shape and surface treatment of sampling device was designed, to reduce the influences of sediment adhesion and deposition on the accuracy and precision of measurement. Finally, based on “internet+”framework, a cloud station/data management platform was established, including station management, data integration, calculation and analysis, and application service. The equipment was able to get the values of runoff volume and sediment concentration synchronously, which overcame the limitation of tradition method. Furthermore, the reliability and applicability of the equipment were validated by the simulation experiment, and the results showed that the relative error of sediment concentration was averaged as 3.67%. Specifically, the relative error was averaged as 7.00%, when the sediment concentration was less than10 kg/m3, and when the sediment concentration varied from 20 to 90 kg/m3and from 100 to 300 kg/m3, the averaged relative errors were 3.10% and 2.61% respectively. The relative error greater than 10% accounted for only 3.70% of the total samples, while the relative error of the remaining 96.3% was less than 10%. The results also showed that the slope of linear regression between measured and actual sediment concentration was close to 1, and the coefficient of determination was up to 0.997. The research demonstrates that the equipment can detect precisely the dynamic processes of runoff volume and sediment concentration. We also monitored the dynamic process of runoff volume and sediment concentration through soil bin simulation experiment, and found that runoff volume varied from 19 to 127 L/s, with an average of 75.5 L/s, sediment concentration ranged from 4.6 to 275.1 kg/m3, and sediment concentration in the single rainfall was, on average, 88.6 kg/m3. The finding demonstrates that the equipment is capable of monitoring the large variation of runoff and sediment concentration, and can be used to complex field observations, and therefore, the self-designed equipment for auto-sampling water from runoff has a good prospect. This research can provide new techniques and methods for water and soil loss study, and promote the automation and informatization in water and soil loss monitoring.

        soils; erosion; runoff; sediment concentration; automatic monitoring

        10.11975/j.issn.1002-6819.2017.15.014

        S157; TP216

        A

        1002-6819(2017)-15-0112-07

        2017-04-26

        2017-07-12

        國(guó)家自然科學(xué)基金項(xiàng)目(41371278;41503078);黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室重要方向創(chuàng)新項(xiàng)目(A314021403-C3)

        展小云,女,博士,主要從事水土流失過程與水土保持研究。楊凌 西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,712100。Email:zhanxiaoyun2005@163.com

        ※通信作者:趙軍,男,高級(jí)工程師,主要從事科研信息化與裝備研究。楊凌 西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,712100。Email:zhaojun629@vip.sina.com

        猜你喜歡
        測(cè)量
        測(cè)量重量,測(cè)量長(zhǎng)度……
        把握四個(gè)“三” 測(cè)量變簡(jiǎn)單
        滑動(dòng)摩擦力的測(cè)量和計(jì)算
        滑動(dòng)摩擦力的測(cè)量與計(jì)算
        測(cè)量的樂趣
        二十四節(jié)氣簡(jiǎn)易測(cè)量
        日出日落的觀察與測(cè)量
        滑動(dòng)摩擦力的測(cè)量與計(jì)算
        測(cè)量
        測(cè)量水的多少……
        亚洲国产午夜精品乱码| 久久婷婷五月国产色综合| 成人国内精品久久久久一区| 国内少妇人妻丰满av| 操B小视频国产| 中文字幕乱码亚洲三区| 久久精品国产亚洲av影院 | 亚洲自拍另类制服在线| 熟妇与小伙子露脸对白| 中文字幕34一区二区| 国产xxx69麻豆国语对白| 国产喷水福利在线视频| 中文字幕日本人妻一区| 中文字幕人妻在线少妇| 亚洲熟女乱综合一区二区| 最新亚洲人成网站在线| 国产成人精品中文字幕| 亚洲中文字幕av天堂自拍| 成人欧美一区二区三区的电影| 91精品国产福利尤物免费 | 亚洲av成人av三上悠亚| 天堂а√在线最新版中文在线| 国产精品无码专区视频| 国产av一区仑乱久久精品| 国产精品国产三级国产av品爱 | 人妻精品丝袜一区二区无码AV| 中文字幕亚洲精品综合| 婷婷伊人久久大香线蕉av| 国产肉体ⅹxxx137大胆| 丝袜人妻无码中文字幕综合网 | 国产在线精品成人一区二区三区| 亚洲偷自拍另类图片二区| 青青草久久久亚洲一区| 国产极品视觉盛宴| 国产精品揄拍100视频| 91国产自拍视频在线| 国产一区二区视频免费在线观看| 在线观看免费人成视频| 北岛玲中文字幕人妻系列| 国产精品亚洲综合久久系列| 夜夜揉揉日日人人青青|