吳國環(huán),俞高紅,項筱潔,王林偉
·農(nóng)業(yè)裝備工程與機械化·
三移栽臂水稻缽苗移栽機構(gòu)設(shè)計與試驗
吳國環(huán)1,2,俞高紅2,3※,項筱潔1,王林偉2,3
(1. 溫州職業(yè)技術(shù)學(xué)院機械工程系,溫州 325035;2. 浙江理工大學(xué)機械與自動控制學(xué)院,杭州 310018;3. 浙江省種植裝備技術(shù)重點實驗室,杭州 310018)
為了實現(xiàn)水稻缽苗的高效、穩(wěn)定的移栽,在分析現(xiàn)有水稻缽苗移栽機構(gòu)的研究現(xiàn)狀基礎(chǔ)上,該文設(shè)計了一種應(yīng)用于水稻缽苗自動移栽機的三移栽臂非圓齒輪行星系水稻缽苗移栽機構(gòu)。構(gòu)建了一種非圓齒輪節(jié)曲線方程,建立了非圓-不完全非圓齒輪機構(gòu)的運動學(xué)理論模型。開發(fā)了該水稻缽苗移栽機構(gòu)的計算機輔助分析與優(yōu)化軟件,通過人機交互的方式得到一組較優(yōu)的滿足水稻缽苗移栽機構(gòu)工作要求的參數(shù),然后進行虛擬仿真及物理樣機試驗,通過對比分析虛擬仿真得到的工作軌跡與物理樣機試驗得到的工作軌跡基本一致;理論計算得到的角度差為45.18°,實際測量得到的角度差為45.77°,誤差為1.31%,在誤差范圍以內(nèi),驗證了該移栽機構(gòu)設(shè)計的正確性。該機構(gòu)的提出解決了秧苗倒伏、低移栽成功率的問題,提高了移栽效率。
機械化;設(shè)計;優(yōu)化;移栽機;水稻缽苗移栽;試驗
吳國環(huán),俞高紅,項筱潔,王林偉. 三移栽臂水稻缽苗移栽機構(gòu)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(15):15-22. doi:10.11975/j.issn.1002-6819.2017.15.002 http://www.tcsae.org
Wu Guohuan, Yu Gaohong, Xiang Xiaojie, Wang Linwei. Design and test of rice potted-seedling transplanting mechanism with three transplanting arms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 15-22. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.002 http://www.tcsae.org
大米作為中國最重要的主食之一,水稻生產(chǎn)在中國糧食生產(chǎn)中占有十分重要的地位。但中國水稻種植機械化水平還處于比較低的水平,而日本、韓國等發(fā)達國家機械化水平均達97%以上[1-4]。因此,提高水稻移栽機械化水平迫在眉睫。
移栽又分為毯狀苗、半缽毯狀苗和缽苗移栽3種,其中毯狀苗移栽靠栽植臂旋轉(zhuǎn)將秧苗從毯狀苗上撕下插入水田,造成傷秧,移栽后需要一定的緩苗期對苗傷害大,影響緩苗,從而影響產(chǎn)量;水稻缽苗移栽具有不傷秧、扎根快、無緩苗期等特點,因此,水稻缽苗移栽在未來將有很好發(fā)展前景,但目前中國推廣應(yīng)用的水稻缽苗移栽機型較少[5-7]。目前國外水稻缽苗移栽機械化種植以日本為主,但日本水稻缽苗移栽機結(jié)構(gòu)復(fù)雜、價格昂貴,不適合中國的國情[8-9];國內(nèi)市場上常見的水稻缽苗移栽機構(gòu)采用多桿式移栽機構(gòu),由于結(jié)構(gòu)限制,存在振動大、效率低的問題[10-15];陳建能等[16-17]提出的旋轉(zhuǎn)式水稻缽苗移栽機構(gòu)移栽臂夾秧片尖點形成“企鵝形”特殊運動軌跡,依次完成取苗、持苗和栽植3個動作,相對于毯狀苗移栽效率低,但相對現(xiàn)有的多桿式移栽機構(gòu)具有較高移栽效率(旋轉(zhuǎn)一周移栽2次)、立苗率高等優(yōu)點。但是當移栽效率達到200次/分鐘時,機器振動較大,取秧成功率受到影響。
為了提高移栽效率且不降低移栽成功率,本文提出一種三臂水稻缽苗移栽機構(gòu)即非圓-不完全非圓齒輪行星輪系水稻缽苗移栽機構(gòu),該機構(gòu)達到同樣的移栽效率時,允許中心軸轉(zhuǎn)速是原來的三分之二,減小震動且提高了移栽成功率。通過對機構(gòu)運動學(xué)模型建立,開發(fā)計算機輔助優(yōu)化軟件,開展ADAMS三維虛擬樣機仿真和臺架試驗等一系列工作,以確定較為理想的機構(gòu)參數(shù),確保機構(gòu)能夠?qū)崿F(xiàn)水稻缽苗的移栽工作軌跡及農(nóng)藝要求。
根據(jù)水稻缽苗移栽的農(nóng)藝要求和移栽臂姿態(tài)要求,提出圖1中軌跡2為移栽軌跡,該軌跡在文獻[17]提出的橢圓—不完全非圓齒輪行星系水稻缽苗移栽機構(gòu)中有良好應(yīng)用。但文獻[17]的機構(gòu)在3套移栽臂的機構(gòu)中無法滿足秧苗直立度的要求,在模擬田間作業(yè)時,軌跡前傾明顯,容易造成秧苗的倒伏、漂秧現(xiàn)象。在空轉(zhuǎn)模擬時,移栽臂之間容易干涉。若要實現(xiàn)較好移栽效果,需要修改軌跡的形狀,同時為了滿足移栽農(nóng)藝要求,仍需保留圖1所示軌跡右上方的“環(huán)扣狀”軌跡。因此本文重新提出了圖1中的軌跡1,該軌跡在保留右上方的 “環(huán)扣狀”的同時,軌跡明顯后凸,在推完苗后,讓移栽臂能往后移動更多距離,有利于田間模擬試驗的動軌跡(提高直立度);同時軌跡變大,可以增大移栽臂之間的距離,有效減小移栽臂干涉的概率;而且相比較于圖中的軌跡2,環(huán)扣略有增大,將會有利于取苗。
圖1 水稻缽苗移栽軌跡Fig.1 Rice potted-seedling transplanting trajectory
圖2 非圓-不完全非圓齒輪行星輪系水稻缽苗移栽傳動機構(gòu)Fig.2 Transmission schematic of rice potted-seedlingtransplanting mechanism of planetary gear train with non-circular gears and incomplete non-circular
如圖2所示,移栽機構(gòu)的傳動部分包括三對共軛非圓齒輪(分別是中間非圓齒輪2和行星非圓齒輪3、中間非圓齒輪4和行星非圓齒輪5、中間非圓齒輪6和行星非圓齒輪7),3個凹鎖止弧9、10、11,一個不完全非圓齒輪1和凸鎖止弧8。其中不完全非圓齒輪1通過牙嵌式法蘭固定在機架上,凸鎖止弧8與不完全非圓齒輪1固接;凹鎖止弧9、10、11分別與中間非圓齒輪2、4、6固接。3個移栽臂固接在行星軸上,與行星非圓齒輪實現(xiàn)同步轉(zhuǎn)動,取苗爪尖點形成如圖2所示軌跡。由于3個移栽臂工作軌跡、工作狀態(tài)一致,因此本文以右下側(cè)的結(jié)構(gòu)為例,說明移栽機構(gòu)的工作機理。當機構(gòu)開始運行時,行星架15繞著旋轉(zhuǎn)中心O順時針轉(zhuǎn)動,此時,凹鎖止弧9和凸鎖止弧8進入嚙合狀態(tài),中間非圓齒輪2和行星非圓齒輪3相對于行星架靜15止,整個機構(gòu)形成一種間歇運動,移栽臂12的尖點H從F點開始向下滑動,在鎖止弧嚙合時段,形成FAB段持苗軌跡;當凹凸鎖止弧開始分離,中間非圓齒輪2和不完全非圓齒輪1有齒部分開始嚙合,行星非圓齒輪3開始轉(zhuǎn)動,移栽臂在B點推苗;推苗完成后,行星架15繼續(xù)轉(zhuǎn)動,整個機構(gòu)開始非勻速運動,移栽臂12的尖點H形成BCD段回程軌跡,即彈性取苗爪在釋放秧苗后保持張開的狀態(tài),該機構(gòu)在D點開始取秧,通過DE段軌跡完成取秧動作,持秧到F點完成DEF段取苗軌跡。
在進行移栽機構(gòu)的運動學(xué)建模時,假設(shè)各構(gòu)件均為剛體,不考慮零件間的配合間隙,設(shè)定主動件行星架的工作轉(zhuǎn)速為順時針100 r/mim,行星架角速度為常數(shù)w1。(本文規(guī)定逆時針為正方向)。
中間非圓齒輪與不完全非圓齒輪嚙合形成的非勻速間歇傳動是形成本文所需的移栽軌跡的關(guān)鍵組成部分[18-26],圖3為不完全非圓齒輪與中間非圓齒輪嚙合關(guān)系圖。不完全非圓齒輪有齒部分的圓心角為α,凸鎖止弧的圓心角為(2π-α)。圖3a為機構(gòu)的起始位置,圖3b為行星架順時針轉(zhuǎn)過角度(2π-α)后的位置,圖3c為行星架順時針轉(zhuǎn)過大于角度(2π-α)后的位置。
圖3 不完全非圓齒輪和中間非圓齒輪嚙合Fig.3 Engagement of incomplete non-circular gear and intermediate non-circular gears
設(shè)不完全非圓齒輪的旋轉(zhuǎn)中心O到嚙合點J的距離為R1(φ1),嚙合點J到中間非圓齒輪的旋轉(zhuǎn)中心M1的距離為R2(φ2),由構(gòu)造的非圓節(jié)曲線方程可得到如下的公式
式中a、b、c為非圓齒輪系數(shù),mm;φ2為中間非圓齒輪相對于行星架轉(zhuǎn)過的角位移,rad。
參考文獻[17]中的公式推導(dǎo),可得如下關(guān)系
式中φ1為行星架在一段時間內(nèi)轉(zhuǎn)過的角度,rad;L1為不完全非圓齒輪和中間非圓齒輪之間的中心距,mm。
由式(2)可知:當φ1=α?xí)r,φ2=2π。當行星架順時針轉(zhuǎn)過α角度,同時a,b,c參數(shù)確定時,通過數(shù)值積分,不完全非圓齒輪與中間非圓齒輪的中心距L1便可以確定。設(shè)
則有φ1=f(φ2)。中間非圓齒輪相對于行星架轉(zhuǎn)過的角度φ2就可以得到
由于反函數(shù)f-1(φ2)不是常規(guī)函數(shù),無法直接得到表達式,求解難度較大,但是利用數(shù)值計算的方法,就能快速建立φ1和φ2的關(guān)系,步驟如下:
1)已知行星架的轉(zhuǎn)角φ1取值范圍,φ1∈[0,2π]。由式(4)可知,當φ1∈[α,2π]時,φ2=2π,φ2保持不變;因此只要建立φ1∈[0,α]時,φ1和φ2的關(guān)系即可。設(shè)行星架轉(zhuǎn)角每次遞增角度為Δφ1。
2)當行星架的轉(zhuǎn)角為φ1時,則根據(jù)不完全非圓齒輪與中間非圓齒輪嚙合關(guān)系可知,中間非圓齒輪相對行星架轉(zhuǎn)過的角度φ2大于行星架轉(zhuǎn)角φ1。則有φ1<φ2<φ1+η,其中η為大于0的常數(shù)。
對φ2在(φ1,φ1+δ]區(qū)間內(nèi)進行求解,每次遞增步長為Δφ2。通過數(shù)值積分方法可求得該區(qū)間內(nèi)每次迭代數(shù)值φ′1。此時φ2的迭代初始值為φ2=φ1+Δφ2。而φ′1為
3)設(shè)置計算精度ε,當|φ1′?φ1|≤ε時,此時輸出φ2的值,建立了滿足一定計算精度的φ1和φ2的關(guān)系。
4)以Δφ1為步長,重復(fù)上述計算過程,即可求出行星架轉(zhuǎn)角φ1∈[0,α]時φ2的值。根據(jù)幾何關(guān)系,可以求得凹鎖止弧圓心角θ。
式中Rt為凸鎖止弧半徑,mm。
以上述非圓—不完全非圓齒輪行星系水稻缽苗移栽機構(gòu)一端為例進行位移模型的建立。如圖4所示,以凹凸鎖止弧開始嚙合為起始位置,分析轉(zhuǎn)過φ1角度后的位移方程。坐標原點為不完全非圓齒輪旋轉(zhuǎn)中心O,建立坐標系XOY,此處為整個機構(gòu)運動學(xué)分析,角位移設(shè)定順時針為負,逆時針為正。圖4a為起始位置,凹凸鎖止弧剛進入嚙合狀態(tài),行星架相對于X軸順時針轉(zhuǎn)過φ0,行星架在中間非圓齒輪中心M1點處逆時針旋轉(zhuǎn)δ。中間非圓齒輪與行星非圓齒輪嚙合的節(jié)曲線半徑R′2的表達式
式中R3(φ2)為行星非圓齒輪節(jié)曲線半徑,mm;φ3為行星非圓齒輪相對行星架轉(zhuǎn)過的角位移,rad;L2為中間非圓齒輪和行星非圓齒輪之間的中心距,mm;δ為行星架M1O1與M1O的夾角,rad。
圖4 非圓齒輪—不完全非圓齒輪行星系運動圖Fig.4 Schematic of planetary gear train with non-circular gears and incomplete non-circular gear
由圖4a可知,行星非圓齒輪和中間非圓齒輪之間行星架有一拐角δ,因此行星非圓齒輪在初始安裝位置時已轉(zhuǎn)過ξ,有非圓齒輪之間的特性可得
中間非圓齒輪2旋轉(zhuǎn)中心M1的位移為
行星非圓齒輪3旋轉(zhuǎn)中心O1位移為
取秧爪尖點H的位移
式中λ為取苗爪尖點與行星非圓齒輪旋轉(zhuǎn)中心連線與行星非圓齒輪軸線之間的夾角,rad;S為行星非圓齒輪旋轉(zhuǎn)中心O1到取苗爪尖點H的距離,mm。
已知行星架以勻速轉(zhuǎn)動,因此角速度11=φω˙為參數(shù)。通過分析不完全非圓齒輪和中間非圓齒輪間的傳動比關(guān)系,可以求得中間非圓齒輪相對于行星架的角速度2φ˙
同理,通過中間非圓齒輪和行星非圓齒輪之間傳動比關(guān)系,可以求得行星非圓齒輪相對行星架的角速度3φ˙
通過對式(11)進行時間t求導(dǎo),可得中間非圓齒輪旋轉(zhuǎn)中心M1的速度方程為
通過對(12)進行時間t求導(dǎo),可得行星非圓齒輪旋轉(zhuǎn)中心O1的速度方程為
通過對式(13)進行時間t求導(dǎo),可得彈性取苗爪尖點H的速度方程為
基于Visual Basic可視化編程軟件,開發(fā)了三移栽臂非圓-不完全非圓齒輪行星輪系水稻缽苗移栽機構(gòu)的輔助分析與優(yōu)化軟件,借助人機交互的方式對移栽機構(gòu)進行參數(shù)優(yōu)化[27]。通過優(yōu)化軟件綜合分析不同參數(shù)對移栽靜軌跡的影響,得到一組滿足移栽目標的較優(yōu)的移栽機構(gòu)參數(shù)。圖5為各參數(shù)對移栽靜軌跡的影響。
由圖5可知,機構(gòu)不同結(jié)構(gòu)參數(shù)對移栽靜軌跡形狀、直立度、姿態(tài)等均有不同程度的影響,太陽輪以回轉(zhuǎn)中心為坐標原點,X軸為移栽靜軌跡X方向坐標,Y軸為移栽靜軌跡Y方向坐標(單位:mm),隨著參數(shù)的增大,具體影響結(jié)果如表1所示。
綜合上述參數(shù)的影響,參數(shù)各自確定的范圍內(nèi)進行微調(diào),直至獲得滿足姿態(tài)和尖點軌跡的一組較優(yōu)參數(shù):a=14.3,b=0.55,c=?0.6,α=288°,λ=46°,δ=26°,φ0=76°,S=152 mm;優(yōu)化得到移栽軌跡如圖6所示,其中該動軌跡為株距為180 mm情況下移栽臂取苗爪尖點運動得到的軌跡,通過動軌跡可以看出移栽機在田間作業(yè)的工作情況,豎直線假設(shè)為秧苗,動軌跡回程段基本與豎直線基本平齊,降低了秧苗回帶的可能。
在完成了水稻缽苗移栽機構(gòu)的三維實體建模、虛擬裝配后,利用虛擬仿真軟件ADAMS仿真,得到了三移栽臂非圓-不完全非圓齒輪行星輪系水稻缽苗移栽機構(gòu)工作軌跡[28-30]。因此,可以與分析輔助軟件可得到的理論工作軌跡比較分析,初步驗證移栽機構(gòu)的正確性。由于在機構(gòu)結(jié)構(gòu)設(shè)計時添加了緩沖裝置,使得移栽軌跡下端的尖點變成了圓弧。圖7為ADAMS仿真靜軌跡。
為了進一步驗證移栽機構(gòu)設(shè)計的正確性與實際工作的可行性,加工制造了移栽機構(gòu)的物理樣機,安裝到試驗臺開展移栽機構(gòu)物理樣機的運動學(xué)試驗。利用高速攝影設(shè)備對移栽機構(gòu)工作進行高速攝像完成圖像采集,利用Blaster’s MAS圖像分析軟件對采集得到的圖片進行處理及分析,用紅色線逐個連接(如圖8所示)并與虛擬樣機模擬仿真得到的移栽靜軌跡進行對比,同時測得取秧角和推秧角與理論計算得到的取秧角和推秧角進行對比。通過水平測量儀分別測量移栽機構(gòu)的取秧角和推秧角,如表2所示。
圖5 各參數(shù)對移栽靜軌跡的影響Fig.5 Influence of different parameters doing to transplanting static trajectory
表1 各參數(shù)影響結(jié)果Table 1 Effect of various parameters
圖6 VB理論計算移栽軌跡Fig.6 Transplanting trajectory of theoretical calculation in VB
圖7 ADAMS仿真靜軌跡Fig.7 Static trajectory of ADAMS simulation
圖8 物理樣機試驗軌跡Fig.8 Test trajectory of physical prototype
表2 理論計算和實際測量的比較Table 2 Comparison of theoretical calculation and actual measurement
將該軌跡與圖7移栽機構(gòu)的虛擬仿真得到移栽靜軌跡對比,物理樣機的工作軌跡與虛擬仿真得到的工作軌跡基本一致;理論計算得到的角度差為45.18°,實際測量得到的角度差為45.77°,誤差為1.31%,在誤差范圍以內(nèi),因此,該水稻缽苗移栽機構(gòu)的設(shè)計具有可行性和正確性。
1)基于Visual Basic6.0 可視化編程軟件,開發(fā)了非圓-不完全非圓齒輪行星輪系水稻缽苗移栽機構(gòu)的輔助分析與優(yōu)化軟件,根據(jù)不同結(jié)構(gòu)參數(shù)對移栽靜軌跡的影響優(yōu)選出一組較優(yōu)機構(gòu)結(jié)構(gòu)參數(shù),完成機構(gòu)結(jié)構(gòu)設(shè)計。
2)基于Adams軟件開展虛擬樣機仿真,將其得到的移栽靜軌跡與VB計算得到的運動軌跡對比,證明了VB模型的可行性。
3)研制物理樣機并在試驗臺上進行高速攝像試驗,處理得到機構(gòu)移栽臂彈簧片尖點靜軌跡,同時測得移栽機構(gòu)取秧角、推秧角及其角度差誤差為1.31%,驗證姿態(tài)的合理性;比較VB計算、虛擬仿真及物理樣機試驗得到的移栽靜軌跡驗證軌跡的合理性,最終驗證了三移栽臂非圓-不完全非圓齒輪行星輪系水稻缽苗移栽機構(gòu)的正確性及應(yīng)用于田間作業(yè)的可行性。
[1] 申承均,韓休海,于磊. 國內(nèi)外水稻種植機械化技術(shù)的現(xiàn)狀與發(fā)展趨勢[J]. 農(nóng)機化研究,2010,32(12):240-243.
Shen Chengjun, Han Xiuhai, Yu Lei. The situation and development trend of rice cultivation mechanization technology in domestic[J]. Agricultural Mechanization Research, 2010, 32(12): 240-243. (in Chinese with English abstract)
[2] 于曉旭,趙勻,陳寶成,等. 移栽機械發(fā)展現(xiàn)狀與展望[J].農(nóng)業(yè)機械學(xué)報,2014,45(8):44-53.
Yu Xiaoxu, Zhao Yun, Chen Baocheng, et al. Current situation and prospect of transsplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 44-53. (in Chinese with English abstract)
[3] 高一銘,閆濤,劉文杰. 國內(nèi)外水稻直播機械化研究進展[J].農(nóng)業(yè)科技與裝備,2013(1):28-29.
Gao Yiming, Yan Tao, Liu Wenjie, et al. Research and progress of direct rice seeding mechanization at home and abroad[J]. Agricultural Science & Technology and Equipment, 2013(1): 28-29. (in Chinese with English abstract)
[4] 邴延忠,陳宗凱. 水稻缽苗移栽機械化技術(shù)研發(fā)與應(yīng)用[J].農(nóng)機科技推廣,2012(4):52.
Bing Yanzhong,Chen Zongkai. Development and application of mechanization technology for rice pot seedling transplanting[J]. Agriculture Machinery Technology Extension, 2012(4): 52. (in Chinese with English abstract)
[5] 莊乃生,李斌,宋建農(nóng). 水稻缽體苗機插秧推廣前景廣闊[J].農(nóng)機科技推廣,2010(12):38-39.
Zhuang Naisheng,Li Bin,Song Jiannong. Popularize prospect is vast for rice pot seedling transplanted by machine[J]. Agriculture Machinery Technology Extension, 2010(12): 38-39. (in Chinese with English abstract)
[6] 呂亞洲. 我國水稻栽插機械發(fā)展介紹[J]. 農(nóng)業(yè)機械,2009(3):76-79.
[7] 李建橋,張國鳳,陳建能,等. 缽苗有序移栽機構(gòu)的研究進展及應(yīng)用展望[J]. 農(nóng)機化研究,2008(2):1-5.
Li Jianqaio, Zhang Guofeng, Chen Jianneng, et al. Developments and prospects of application of the ordered throwing mechanism for plotted rice-seedling[J]. Journal of Agricultural Mechanization Research, 2008(2): 1-5. (in Chinese with English abstract)
[8] 修德龍,范淼. 兩種日本水稻缽育擺栽機在墾區(qū)的對比試驗[J]. 現(xiàn)代化農(nóng)業(yè),2008(3):37-38.
Xiu Delong, Fan Miao. Two Japanese rice bowl planted machine set in agricultural areas of contrast test[J]. Journal of Agricultural Modernization, 2008(3): 37-38. (in Chinese with English abstract)
[9] 伊藤尚勝,清水修一,和田俊郎. 移植機的苗移植機構(gòu):199118740.7[P]. 2000-07-13.
[10] 趙勻,朱慧軒,辛亮,等. 擬合齒輪五桿水稻缽苗移栽機構(gòu)的機理分析與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(1):12-21.
Zhao Yun, Zhu Huixuan, Xin Liang, et al. Mechanism analysis and experiment of transplanting mechanism with fitting gear five-bar for rice pot seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 12-21. (in Chinese with English abstract)
[11] 張敏. 擬合齒輪五桿水稻缽苗移栽機構(gòu)的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2014.
Zhang Min. Research on Fitting Gear Five Linkage Rice Seedling Transplanting Mechanism[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract)
[12] 趙勻,徐洪廣,張允慧,等. 探出式缽苗移栽機分秧機構(gòu)取苗臂:201110264626.X[P]. 2011-09-08.
[13] 徐洪廣. 旋轉(zhuǎn)“探出式”水稻缽苗分秧機構(gòu)的機理分析與優(yōu)化設(shè)計[D]. 杭州:浙江理工大學(xué),2012.
Xu Hongguang. Principle Analysis and Optimal Design of Rotary Transplanting Mechanism with Extensile Claw Picking Seedlings[D]. Hangzhou: Zhejiang Sci-Tech University, 2012. (in Chinese with English abstract)
[14] 趙勻,辛亮,馮江,等. 雙曲柄水稻缽苗移栽機夾缽式分插機構(gòu):201220206603. 3[P]. 2012-04-27.
[15] 宋建農(nóng),黃育仕,魏文軍,等. 水稻缽苗對輥式拔秧機構(gòu)[J].江蘇大學(xué)學(xué)報,2006(4):92-94.
Song Jiannong, Huang Yushi,Wei Wenjun, et al. Evulsing rice potted-seedling mechanism equipped with double roller[J]. Journal of Jiangsu University, 2006(4): 92-94. (in Chinese with English abstract)
[16] 陳建能,黃前澤,王英,等. 缽苗移栽機非圓齒輪行星輪系栽植機構(gòu)參數(shù)分析與反求[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(8):18-26.
Chen Jianneng, Huang Qianze, Wang Ying, et al. Parametric analysis and inversion of transplanting mechanism with planetary non-circular gears for potted- seedling transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 18-26. (in Chinese with English abstract)
[17] 俞高紅,黃小艷,葉秉良,等. 旋轉(zhuǎn)式水稻缽苗移栽機構(gòu)的機理分析與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(3):16-22.
Yu Gaohong, Huang Xiaoyan, Ye Bingliang, et al. Principle analysis and parameters optimization of rotary rice pot seedling transplanting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 16-22. (in Chinese with English abstract)
[18] 李麗. 水稻缽苗移栽機構(gòu)的優(yōu)化設(shè)計及試驗研究[D]. 杭州:浙江理工大學(xué),2015.
Li Li. Optimization Design and Tests of Rice Pot-Seedling Transplanting Mechanism of Planetary Gear Train with Incomplete Eccentric Circle Gear[D]. Hangzhou: Zhejiang Sci-Tech University, 2015. (in Chinese with English abstract)
[19] 俞亞新,駱春曉,俞高紅,等. 橢圓-不完全非圓齒輪行星系取苗機構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(6):62-68.
Yu Yaxin, Luo Chunxiao, Yu Gaohong, et al. Parameters optimization of pick-up mechanism of planetary gear train with ellipse gears and incomplete non-circular gear[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 62-68. (in Chinese with English abstract)
[20] 左彥軍,曹鵬,趙勻,等. B樣條非圓齒輪行星輪系水稻缽苗移栽機構(gòu)的設(shè)計與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(15):10-17.
Zuo Yanjun, Cao Peng, Zhao Yun, et al. Design and optimization of transplanting mechanism with B-spline non-circular planet gear train for rice pot seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 10-17. (in Chinese with English abstract)
[21] 代麗,孫良,趙雄,等. 基于運動學(xué)目標函數(shù)的插秧機分插機構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(3):35-42.
Dai Li, Sun Liang, Zhao Xiong, et al. Parameters optimization of separating-planting mechanism in transplanter based on kinematics objective function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3): 35-42. (in Chinese with English abstract)
[22] 俞高紅,俞騰飛,葉秉良,等. 一種新型行星輪系機構(gòu)的研究[J]. 機械工程學(xué)報,2013,49(15):55-61.
Yu Gaohong, Yu Tengfei, Ye Bingliang, et al. Research on a new planetary gear train mechanism[J]. Journal of Mechanical Engineering, 2013, 49(15): 55-61. (in Chinese with English abstract)
[23] Jovan D,Ivan K,Marko D. One approach for modelling intermittent motion mechanism with non-circular gears[J]. Machine Design, 2011, 3(2): 121-126.
[24] 俞高紅,陳志威,葉秉良,等. 一種新型非勻速間歇機構(gòu)的研究[J]. 中國機械工程,2012,23(23):2778-2787.
Yu Gaohong, Chen Zhiwei, Ye Bingliang, et al. Study on a new non-uniform and intermittent mechanism[J]. China Mechanical Engineering, 2012, 23(23): 2778-2787. (in Chinese with English abstract)
[25] Mundo D. Geometric design of a planetary gear train with non-circular gears[J]. Mechanism and Machine Theory, 2006, 41(4): 456-472.
[26] Modler K H, Lovasz E C, B?r G F, et al. General method for the synthesis of geared linkages with non-circular gears[J]. Mechanism and Machine Theory, 2009, 44(4): 726-738.
[27] 武傳宇,趙勻,陳建能. 水稻插秧機分插機構(gòu)人機交互可視化優(yōu)化設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2008,39(1):46-49.
Wu Chuanyu, Zhao Yun, Chen Jianneng. Optimization design of rice transplanter separating-planting mechanism with visualization human-computer interaction method[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2008, 39(1): 46-49. (in Chinese with English abstract)
[28] 高楊. 不完全偏心圓齒輪行星輪系水稻缽苗移栽機構(gòu)的優(yōu)化設(shè)計與試驗[D]. 杭州:浙江理工大學(xué),2016. Gao Yang. Optimization Design and Tests of Rice Pot-seedling Transplanting Mechanism of Planetary Gear Train with Incomplete Eccentric Circle Gear[D]. Hangzhou: Zhejiang Sci-Tech University, 2016. (in Chinese with English abstract)
[29] 葉秉良,吳國環(huán),俞高紅,等. 非圓齒輪行星輪系水稻缽苗移栽機構(gòu)優(yōu)化設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2016,48(11):68-73.
Ye Bingliang,Wu Guohuan,Yu Gaohong, et al. Optimized design and tests on rice potted Seedling transplanting mechanism of planetary gear train with non-circular gears[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 48(11): 68-73. (in Chinese with English abstract)
[30] Ye Bingliang, Jin Xuejun, Yu Gaohong, et al. Parameter modification guiding optimization design and tests of a rotary transplanting mechanism for rice plug seedlings[J]. Applied Engineering in Agriculture, 2015, 31(6): 863-873.
Design and test of rice potted-seedling transplanting mechanism with three transplanting arms
Wu Guohuan1,2, Yu Gaohong2,3※, Xiang Xiaojie1, Wang Linwei2,3
(1. Department of Mechanical Engineering, Wenzhou Vocational & Technical College, Wenzhou 325035, China; 2. College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; 3. Zhejiang Province Key Laboratory of Transplanting Equipment and Technology, Hangzhou 310018, China)
Rice potted-seedlings transplanting is one kind of rice planting way, and it can increase the production and improve rice quality because it has the advantages of not hurting root and not needing recovering period. The rice pot seedling transplanting will have a good prospect in the future, but at present the application of rice pot seedling transplanting machine is less in China because there are defects for domestic transplanter with tossing transplanting such as uncontrollable seedling perpendicularity, complex structure, low efficiency and heavy vibration. Foreign rice potted-seedling planting technology is not suitable in China for complicated structure and high cost, and the key to improve the mechanization of rice planting is to research the rice potted-seedling transplanting mechanism suitable to China. Aiming to the above problems, a three-transplanting-arm rice potted-seedling transplanting mechanism of planetary gear train with non-circular gears and incomplete non-circular gear, which is applied in automatic rice potted-seedling transplanter, was designed. The mechanism consists of an incomplete non-circular gear, 3 pairs of conjugate non-circular gears and 3 planting arms, which can transplant seedlings 3 times a week. It means that under the same transplanting efficiency, it can reduce the transplanting spindle rotation, so as to reduce the vibration and improve the success rate of transplanting. Firstly, the shortcomings of the rotary transplanting mechanism with 2 transplanters were analyzed, and the design requirements were put forward. According to the requirements, the implementation plan was advanced. Then, the operation principle of rice potted-seedling transplanting mechanism was introduced, the mathematical expression in parametric form for the trajectory and the equations of non-circular gears and incomplete non-circular gears were derived, and the kinematic model of transplanting mechanism was established. A computer-aided analysis and optimization software of this kind of rice potted-seedling transplanting mechanism was developed with the Visual Basic 6.0. With the method of human-computer interaction based on visualization, the optimization design of the transplanting mechanism was carried out. Using this software, by tuning the design parameters, the influence of every parameter on the optimization object could be found out. The curve of non-circular gears was optimized and the structural parameters were obtained, which can satisfy the requirements of trajectory and attitude in the transplanting process for rice potted-seedling. The 3D (three-dimensional) model of transplanting mechanism was built and assembled in UG’s entity modeling module. The virtual prototype was imported into Adams software after the interference checking of 3D model assembly was finished. According to the comparison between the virtual prototype simulation and the theoretical analysis of VB (Visual Basic), the trajectory of them was fundamentally consistent, so the correctness of the model of VB was verified, and the simulation results initially showed the design of mechanism was rational. In order to further verify the correctness of the design, the core components of transplanting mechanism were machined and assembled. Then, the physical prototype of the transplanting mechanism was developed to carry out the kinematics test in the test shelf. The results turned out that the static trajectory of the elastic tip of this transplanting arm and transplanting posture were basically consistent between the virtual prototype simulation and the physical prototype test, which proved the rationality and effectiveness of the parameters of transplanting mechanism. And the feasibility of this transplanting mechanism was verified. At the same time, the mechanism proposed solved the problem of seedling lodging and low transplanting success rate, and the efficiency of transplanting was improved. The research can provide a theoretical basis for developing transplanting mechanisms of rice potted-seedling.
mechanization; design; optimization; transplanters; rice potted-seedling transplanting; test
10.11975/j.issn.1002-6819.2017.15.002
S223.94
A
1002-6819(2017)-15-0015-08
2017-02-16
2017-06-01
浙江省教育廳一般項目(Y201636516)和國家自然科學(xué)基金項目(51575495)
吳國環(huán),男,助教,博士生,主要從事農(nóng)業(yè)機械設(shè)計和機構(gòu)數(shù)值分析與綜合研究。溫州 溫州職業(yè)技術(shù)學(xué)院機械工程系,325035。Email:422361992@qq.com.
※通信作者:俞高紅,男,教授,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)種植機械設(shè)計與機構(gòu)學(xué)研究。杭州 浙江理工大學(xué)機械與自動控制學(xué)院,310018。
Email:yugh@zstu.edu.cn