王相文,徐立強(qiáng)
?
納米硫化錳在儲(chǔ)能裝置中的應(yīng)用
王相文1.2,徐立強(qiáng)2
(1. 德州職業(yè)技術(shù)學(xué)院,山東 德州 253000; 2 . 山東大學(xué), 山東 濟(jì)南 250100)
論述了硫化錳電子結(jié)構(gòu)、晶型、形貌、制備方法。通過(guò)控制反應(yīng)溫度、濃度、硫源、錳源等參數(shù)控制 MnS 的晶型、形貌等影響儲(chǔ)能裝置性能的特征。通過(guò)各種MnS 及其復(fù)合物首圈充放電性能、循環(huán)圈數(shù)、充放電穩(wěn)定性、比電容、能量密度和功率密度的對(duì)比,初步得到現(xiàn)階段性能優(yōu)良的用于儲(chǔ)能裝置中的 MnS 及其 MnS 復(fù)合材料。
氧化還原石墨烯(RGO);原子層沉積法;固相電解質(zhì)界面膜;水熱法
錳的核外電子排布為1s22s22p63s23p63d54s2,硫的核外電子排布1s22p22p63s23p4,錳原子的最外層2個(gè)電子容易失去被硫原子得到,形成穩(wěn)定的硫化錳固體。根據(jù)錳原子和硫原子的空間結(jié)構(gòu)不同,把硫化錳分為α-MnS有、β-MnS、γ-MnS三種晶型。其中α-MnS綠色結(jié)晶是一種常見(jiàn)的巖鹽立方相晶體結(jié)構(gòu)(=== 5.224 ?) ,密度4.05 g·cm-3,熔點(diǎn)1 620 ℃。β-MnS型為紅色粉末,閃鋅礦型,=0.561 1 nm。γ型為淺紅色粉末,纖維鋅礦型,=0.398 4 nm,=0.644 5 nm。700 ℃時(shí)呈p-型半導(dǎo)性。納米MnS具有較高的比表面積、具有較小的尺寸,廣泛用作高能量密度鋰離子二次電池、綠色環(huán)保超級(jí)電容器等儲(chǔ)能裝置的電極材料來(lái)研究。
硫化錳的工業(yè)方法主要是二氧化錳和硫酸反應(yīng),高溫焙燒還原制取硫化錳[1];在錳礦中用硫酸浸取硫化錳;用錳粉和硫粉直接高溫合成硫化錳[2]。但由于工業(yè)方法生產(chǎn)的硫化錳結(jié)晶度高,比表面積小,三種晶型共存等特點(diǎn),不適用于儲(chǔ)能裝置的電極材料。目前用于電池材料的硫化錳制備方法主要有:
1.1 還原法
以硫酸錳為還原劑,烏洛托品為氧化劑,在高壓反應(yīng)釜內(nèi),充入氮?dú)獗Wo(hù)并密閉,升溫至 300 ℃- 700 ℃,反應(yīng)一段時(shí)間后取出,洗滌干燥得到墨綠色MnS粉末[3]。
1.2 溶劑熱法[4-9]
把一種或幾種反應(yīng)物用溶劑溶解在反應(yīng)釜中,在液相或超臨界條件下,分散在溶液中的反應(yīng)物發(fā)生物理和化學(xué)反應(yīng)制備納米MnS。該方法易于操作、反應(yīng)體系密閉,可以制備易揮發(fā)和有毒物質(zhì)的納米材料,制備的納米材料分散性較好。
用水作溶劑即為水熱法[10-13],優(yōu)點(diǎn)是制備的產(chǎn)品純度高、晶型好、形狀大小可控,成本低。
1.3 沉淀法[14-19]
沉淀法在液態(tài)下將含有錳源的不同反應(yīng)物充分混合,在混合溶液中加入適當(dāng)?shù)某恋韯?如OH-,C2O42-,S2-等),根據(jù)猛的化合物溶度積常數(shù)制備納米粒子的前驅(qū)體沉淀物,再將此沉淀物進(jìn)行洗滌、干燥、煅燒,從而制得相應(yīng)的納米粒子。常見(jiàn)的沉淀方法有共沉淀法、水解法、均相沉淀法等。納米粒子的性質(zhì)與溶液的濃度、溫度、加熱方式、沉淀劑的釋放速度等因素有關(guān)。
1.4 其他制備方法
其他制備MnS的方法有生物制備法[20]、噴霧干燥法[21-23]、原子層沉積法[24-26]等。
目前利用各種方法制備的納米棒、納米線、納米管、納米帶等[27-29]材料,多用于陶瓷、涂料、光伏等行業(yè),用于儲(chǔ)能裝置的納米MnS及復(fù)合物材料要求充放電穩(wěn)定、容量高、不溶于電解質(zhì)溶液等特點(diǎn)。
由于MnS具有生產(chǎn)成本低,無(wú)污染、理論比容量較高等優(yōu)點(diǎn),廣泛由于鋰離子電池材料。根據(jù)納米MnS的形貌、包覆、摻雜等組成的復(fù)合材料,其放電電流密度,首圈比容量,循環(huán)壽命等電化學(xué)性能,如表1所示。
表1 MnS的電化學(xué)電性能
由表1可知,無(wú)論用何種材料和MnS摻雜、復(fù)合或者自身改變形貌,他們的首圈放電比容量都高于MnS的理論比容量616 mA·h·g-1。通過(guò)改變MnS自身的形貌來(lái)提高電極材料的比容量,對(duì)首圈放電容量非常有效,由于固體電解質(zhì)界面膜的存在和納米材料自身的團(tuán)聚性能,使得電極材料的循環(huán)壽命很低。
為了增加電極材料的比表面,降低材料的團(tuán)聚性,增加材料的電子和離子通透性,降低材料的內(nèi)阻;研究者在材料內(nèi)部進(jìn)行摻雜,外部進(jìn)行包覆和改變形貌以提高M(jìn)nS的電化學(xué)性能。由于石墨、碳等物質(zhì)具有很高的導(dǎo)電性、具有一定孔率、比表面積較高等特性,被廣泛用于MnS復(fù)合電極材料,像MnS/NC、 MnS/ BC、 MnS/C、MnS/G、MnS/RGO、MnS/MC等,大幅提高了MnS電極材料的首圈放電容量和循環(huán)性能。通過(guò)比較MnS/NC、MnS/C兩種材料具有高電流密度和高循環(huán)壽命的優(yōu)良特性,具有很大的市場(chǎng)應(yīng)用前景。
超級(jí)電容器除了和普通電容器具有的共性外,他還能在電極活性物質(zhì)和電解液之間形成2個(gè)雙電層,在某種意義上說(shuō),雙電層既是一種電容器;同時(shí)在充放電過(guò)程中活性物質(zhì)和電解液之間進(jìn)行可逆氧化還原反應(yīng)相當(dāng)于一個(gè)化學(xué)電源。簡(jiǎn)單的說(shuō)一個(gè)超級(jí)電容器就相當(dāng)于三個(gè)普通電容器和一個(gè)化學(xué)電源。
超級(jí)電容器具有高功率密度、高電荷充放電率、良好的循環(huán)壽命及對(duì)環(huán)境友好等特點(diǎn),吸引了廣大科研人員的興趣。尋找低成本、高比容量的電極材料開(kāi)展了大量的研究,其中在MnS為電極材料的超級(jí)電容器特性如表2。
表2 MnS電極材料在超級(jí)電容器中的性能
通過(guò)表2可以看出氧化還原石墨烯、氮雜化氧化還原石墨烯、三元錳鈷硫化物等MnS復(fù)合物作為超級(jí)電容器的活性物質(zhì),其超級(jí)電容器的性能較高,原因有:
(1) 在化學(xué)鍵和范德華力的作用下, MnS占據(jù)了rGO表面的含氧官能團(tuán)和活性中心的位置;
(2) MnS和rGO相互作用有利于電子在其中傳輸,這對(duì)超級(jí)電容器的高比電容其關(guān)鍵作用;
(3) MnS固定在層狀結(jié)構(gòu)的rGO表面,增加了活性物質(zhì)MnS和電解液的接觸面積同時(shí)縮短了電子傳輸?shù)耐ǖ溃?/p>
(4) 電子的高速傳輸提高了氧化還原反應(yīng)速度,增高了比電容;
(5) rGO表面的褶皺能夠阻止MnS的團(tuán)聚,保持MnS和電解液之間的距離;
(6) 大量而獨(dú)特的孔狀結(jié)構(gòu)有利于電解液向電極材料內(nèi)部擴(kuò)散和電解液和復(fù)合材料的接觸。
MnS/rGO、MnS/N-rGO、錳鈷硫復(fù)合物三種復(fù)合物的比電容、能量密度和功率密度較高,在未來(lái)超級(jí)電容器用電極材料中占有重要的地位。
在制備MnS各種方法中,溶劑熱法易于操作,可以根據(jù)產(chǎn)品要求選擇不同的溶劑進(jìn)行反應(yīng);聚四氟乙烯反應(yīng)釜可以耐酸堿腐蝕,反應(yīng)體系密閉可以制備易揮發(fā)和有毒物質(zhì)的納米材料。制備MnS分散性較好、產(chǎn)品純度高、晶型好、形狀以及大小可控等特點(diǎn),仍是一種比較受歡迎的傳統(tǒng)方法。沉淀法由于溶度積常數(shù)的制約,使其在制備MnS時(shí)受到限制。由于噴霧干燥和原子沉積法能夠精確控制產(chǎn)品的生長(zhǎng)速度,成分的摻雜和包覆等優(yōu)點(diǎn),是將來(lái)一段時(shí)間內(nèi)具有發(fā)展前景的MnS復(fù)合材料制備方法。
在MnS形貌上看一維的納米棒、納米線、納米帶;二維納米片、納米膜等很少用于儲(chǔ)能裝置的電極材料,常常把MnS制備成球狀,中空球、介孔材料以增加他的比表面積,電子導(dǎo)電性和離子通透性等特性,用于儲(chǔ)能裝置的電極材料。利用碳、石墨烯、以及金屬摻雜是MnS復(fù)合材料未來(lái)發(fā)展的方向。
[1]唐永福, 陳騰. 一種多孔納米硫化錳及其制備方法: 中國(guó), CN 106159239A [P]. 2016-11-23.
[2]石勇, 朱軒, 段建鑫,等.硫化錳生產(chǎn)新工藝: 中國(guó), CN 101863513A [P]. 2010-10-20.
[3]楊少東.還原法制備納米金屬硫化物[D].合肥:合肥工業(yè)大學(xué), 2012.
[4]鄭小雙.鋰硫電池正極復(fù)合材料介孔碳/過(guò)渡金屬硫化物(MnS)的制備及性能研究[D].福州:福州大學(xué),2014.
[5]DZ Chen, HY Quan, GS Wang, et al. Hollow α-MnS Spheres and Their Hybrids with Reduced Graphene Oxide: Synthesis, Microwave Absorption, and Lithium Storage Properties[J]. ChemPlus Chem, 2013, 78:843-851.
[6]Yong Hao, Chunhui Chen, Xinyi Yang, et al. Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries[J]. Journal of Power Sources,2017,338: 9-16.
[7]iaguo Yu, Hua Tang. Solvothermal synthesis of novel flower-like manganese sulfide particles[J]. Journal of Physics and Chemistry of Solids, 2008,69:1342-1345.
[8] Subhajit Biswas, Soumitra Kar, Subhadra Chaudhuri. Growth of different morphological features of micro and nanocrystalline manganese sulfide via solvothermal process[J].Journal of Crystal Growth, 2007,299 :94-102.
[9]祁元春,趙彥保,許紅濤.形貌可控 γ-MnS納米晶的制備及表征[J].化學(xué)研究,2006,4 (17):60-62.
[10]Meitang Liu, Yu Fu, Hongwen Ma, etal. Flower-like manganese-cobalt oxysulfide supported on Ni foam as a novel faradaic electrode with commendable performance[J].Electrochimica Acta,2016,191:916-922.
[11]Dezhi Chen, Hongying Quan, Guangsheng Wang, et al. Hollow a-MnS Spheres and Their Hybrids with Reduced Graphene Oxide: Synthesis, Microwave Absorption, and Lithium Storage Properties[J]. ChemPlusChem ,2013, 78:843-851.
[12]Feng Tao, Zhijun Wang, Lianzeng Yao, et al. Hydrothermal synthesis of 3D α-MnS flowerlike nanoarchitectures[J].Materials Letters,2007,61:4973-4975.
[13]YongCai Zhang, Hao Wang, Bo Wang, et al. Hydrothermal synthesis of metastable α-manganese sulfide crystallites[J] .Optical Materials,2003, 23:433-437.
[14]J D. Liu,X S. Zheng,Z F. Shi.et al. Sulfur/mesoporous carbon composites combined with γ-MnS as cathode materials for lithium/sulfur batteries [J].Ionics ,2014,20:659-664.
[15]Lei Zhang,Liang Zhou, Hao Bin Wu, et al. Unusual Formation of Single-Crystal Manganese Sulfide Microboxes Co-mediated by the Cubic Crystal Structure and Shape [J]. Angew. Chem. Int. Ed. 2012, 51:7267-7270.
[16]王宇菲,卓海宇.沉淀法制備納米粉體及其形貌控制[J].湖南有色金屬,2002,18 (5) :23-25.
[17]張光全,李金山.納米復(fù)合含能材料的幾種液相制備方法[J].中國(guó)學(xué)術(shù)期刊文摘, 2006 ,10 :1-2.
[18]安亭,趙鳳起,張平.飛納米含能材料制備研究的最新進(jìn)展[J].納米科技,2009, 6 (6) :60-67.
[19]羅明鳳,李麗霞,楊毅.納米CuO制備與應(yīng)用技術(shù)進(jìn)展[J].微納電子技術(shù), 2010,47 (5) :297-303.
[20]劉欣.納米硫化錳的生物制備、性能表征及其形貌調(diào)控[D].北京:北京理工大學(xué), 2015.
[21]Dae Soo Jung, Tae Hoon Hwang, Seung Bin Park, et al. Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries[J].Nano Lett,2013,13:2092-2097.
[22] Samaneh Keshania, Wan Ramli Wan Daud, M.M. Nourouzi, etal. Spray drying: An overview on wall deposition, process and modeling[J]. Journal of Food Engineering ,2015,146 :152-162.
[23]Reinhard Vehring, Willard R. Foss, David Lechuga-Ballesteros. Particle formation in spray drying[J]. Aerosol Science,2007,38: 728-746.
[24]Kyung Min Jeon, Jung Sang Cho, Yun Chan Kang. Electrochemical properties of MnS-C and MnO-C composite powders prepared via spray drying process[J]. Journal of Power Sources ,2015,295: 9-15.
[25]A.W. Ott, K.C. McCarley, J.W. Klaus,et al. Atomic layer controlled deposition of A12O3films using binary reaction sequence chemistry[J]. Applied Surface Science,1996,107 :128-136.
[26] Richard W. Johnson, Adam Hultqvist, Stacey F. Bent. A brief review of atomic layer deposition: from fundamentals to applications[J]. Materialstoday,2014, 17, 5:236-246.
[27]Jin Joo, Hyon Bin Na, Taekyung Yu, et al. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals[J].J. AM. CHEM. SOC,2003, 125:11100-11105.
[28]Juan Beltran-Huarac, Oscar Resto, Jennifer Carpena-Nun?ez, et al. Single-Crystal γ-MnS Nanowires Conformally Coated with Carbon[J].ACS Appl. Mater. Interfaces,2014, 6:1180-1186.
[29]Younan Xia, PeiDong Yang, Yugang Sun, et al. One-Dimensional Nanastructures: Synthesis, Characterization and Applications[J]. Adv. Mater,2003, 15:353-389.
[30]Juan Beltran-Huarac, Javier Palomino, Oscar Resto, et al. Highly-crystalline γ-MnS nanosaws[J]. RSC Adv, 2014, 4:38103-38110.
[31]Yang Liu, Yun Qiao, Wu-Xing Zhang, et al. Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries[J]. J. Mater. Chem, 2012, 22: 24026-24033.
[32] 侯向陽(yáng),劉景東.以竹炭負(fù)載 MnS、S 復(fù)合材料為正極的鋰硫電池[J].電池,2016,46,5:243-246.
[33]Kyung Min Jeon, Jung Sang Cho, Yun Chan Kang. Electrochemical properties of MnS-C and MnO-C composite powders prepared via spray drying process[J]. Journal of Power Sources,2015,295: 9-15.
[34]Dezhi Chen, Hongying Quan, Xubiao Luo, et al .3-D graphene cross-linked with mesoporous MnS clusters with high lithium storage capability[J]. Scripta Materialia, 2014,76 :1-4.
[35]黃家銳,劉東旭,谷翠萍,等.一種硫化錳石墨烯納米復(fù)合材料的制備方法、鋰離子電池負(fù)極、鋰離子電池:中國(guó), CN106159239A[P]. 2016-11-23.
[36]J. D. Liu, X. S. Zheng, Z. F. Shi, et al. sulfur/mesoporous carbon composites combined with γ-MnS as cathode materials for lithium/sulfur batteries[J]. Ionics,2014, 20:659-664.
[37]Ning Zhang, Ran Yi, Zhong Wang, et al. Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries[J]. Materials Chemistry and Physics,2008, 111: 13-16.
[38]Yong Hao, Chunhui Chen, Xinyi Yang, et al. Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017,338 : 9-16.
[39]Yongfu Tang, Teng Chen, Shengxue Yu, et al. Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors[J]. J. Mater. Chem. A, 2015, 3:12913-12919.
[40]Teng Chen, Yongfu Tang, Yuqing Qiao, et al. All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials [J]. Scientific Reports,2016, 6:23289(1-9).
[41]Guanggao Zhang, Menglai Kong, Yadong Yao, et al. One-pot synthesis of γ-MnS/reduced graphene oxide with enhanced performance for aqueous asymmetric supercapacitors[J].Nanotechnology,2017,28: 065402.
[42]Xianfu Li, Jianfeng Shen, Na Li, et al. Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications [J].Journal of Power Sources ,2015,282: 194-201.
[43]Hongying Quan, Baochang Cheng, Dezhi Chen, et al. One-pot synthesis of α-MnS/nitrogen-doped reduced graphene oxide hybrid for high-performance asymmetric supercapacitors[J]. Electrochimica Acta ,2016,210: 557-566.
[44]Surjit Sahoo, Chandra Sekhar Rout. Facile Electrochemical Synthesis of Porous Manganese-Cobalt-Sulfide Based Ternary Transition Metal Sulfide Nanosheets Architectures for High Performance Energy Storage Applications[J]. Electrochimica Acta, 2016,220: 57-66.
[45]Yongfu Tang, Teng Chen, Shengxue Yu. Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances[J].Chem. Commun, 2015, 51: 9018-9021.
[46]Muhammad Sufyan Javed, Xiangyu Han, Chenguo Hu, et al. Tracking Pseudocapacitive Contribution to Superior Energy Storage of MnS Nanoparticles Grown on Carbon Textile [J].ACS Appl. Mater. Interfaces, 2016, 8:24621-24628.
[47]R.B. Pujari, A.C. Lokhande, A.A. Yadav , et al. Synthesis of MnS microfibers for high performance flexible supercapacitors[J]. Materials and Design,2016,108: 510-51.
Application of MnS Nanoparticles in Storage device
1.2,2
(1. Dezhou Vocational and Technical College,Shandong Dezhou 253000, China; 2. Shandong University, Shandong Jinan 250100,China)
Electronic structure, appearance, crystalline feature and preparation methods of manganese sulfide were discussed. The properties of manganese sulfide were controlled by adjusting the temperature and concentration of the sulfide and manganese compound in the reaction. The charge and discharge performances of the first cycle, the number of cycles,the stabilities of charge and discharge,specific capacitances,energy densities and power densities of MnS and its compound were compared, so the materials for storage device with better performance were obtained.
Reduced graphene oxide(RGO);Atomic layer deposition;Solid electrolyte interface (SEI) film; Hydro-thermal method
TQ 125.1
A
1671-0460(2017)08-1629-04
2017-06-15
王相文(1978-),男,山東省德州市人,講師,碩士,2007年畢業(yè)于中國(guó)科學(xué)院青海鹽湖研究所無(wú)機(jī)化學(xué)專業(yè),鹽湖鹵水凈化向:現(xiàn)從事化學(xué)電源材料研究。E-mail:wxw_wyy@126.com。