亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        漸近非擴(kuò)張型映象具有誤差的迭代收斂性

        2017-09-07 10:06:55林媛張樹義叢培根
        關(guān)鍵詞:收斂性不動(dòng)點(diǎn)范數(shù)

        林媛,張樹義*,叢培根

        (渤海大學(xué)數(shù)理學(xué)院,遼寧 錦州 121013)

        漸近非擴(kuò)張型映象具有誤差的迭代收斂性

        林媛,張樹義*,叢培根

        (渤海大學(xué)數(shù)理學(xué)院,遼寧 錦州 121013)

        本文研究目的是在范數(shù)是一致Gateaux可微的Banach空間框架下,研究漸近非擴(kuò)張型映象具有誤差的迭代序列的收斂性,在沒有任何有界條件下,使用新的分析技巧建立了具有誤差的迭代序列的強(qiáng)收斂定理,最終從多方面推廣和改進(jìn)了有關(guān)文獻(xiàn)中的結(jié)果。

        一致Gateaux可微;漸近非擴(kuò)張型映象;具有誤差的迭代序列;不動(dòng)點(diǎn)

        非線性算子不動(dòng)點(diǎn)理論作為非線泛函分析的重要組成部分,被廣泛應(yīng)用于微分方程、積分方程、優(yōu)化理論、數(shù)學(xué)規(guī)劃問題等許多領(lǐng)域,因此研究Banach空間中非線性算子迭代序列的收斂性無疑具有重要的理論意義。

        Wittmann[1]證明了如果E是 Hilbert空間,T:D→D是一非擴(kuò)張映象,如果滿足條件 0≤αn≤1,則由下式定義}強(qiáng)收斂到T在D中的某一不動(dòng)點(diǎn);Shimizu et al[2]把Wittmann的結(jié)果推廣到范數(shù)是一致可微的Banach空間的情形;Cihdume et al.[3]在具有一致正規(guī)結(jié)構(gòu)且其范數(shù)是一致Gateaux可微的Banach空間中,對(duì)任意給定的x0,u∈D,研究了迭代序列并證明了序列強(qiáng)收斂到漸近非擴(kuò)張映象T:D→D的不動(dòng)點(diǎn);Chang et al[4]在具一致Gateaux可微范數(shù)的Banach空間中,引入和研究了由下式定義的迭代序列在一定條件下,證明了序列{xn}強(qiáng)收斂到漸近非擴(kuò)張映象T的不動(dòng)點(diǎn);徐良才等[5]改進(jìn)和推廣了上述的結(jié)果,在具一致Gateaux可微范數(shù)的Banach空間的框架下,及在序列{yn}有界性的條件下,研究具誤差的迭代序列{xn}強(qiáng)收斂到漸近非擴(kuò)張映象的不動(dòng)點(diǎn)問題。另一方面,許多學(xué)者研究了一些非線性映象不動(dòng)點(diǎn)的迭代收斂問題[6-21]。

        受上述工作啟發(fā),本文的目的是研究漸近非擴(kuò)張型映象的具誤差的迭代序列{xn}強(qiáng)收斂問題。在沒有任何有界條件下,證明了新的強(qiáng)收斂定理,從而改進(jìn)和推廣了有關(guān)文獻(xiàn)中的相應(yīng)結(jié)果。

        1 預(yù)備知識(shí)

        2 主要結(jié)果

        3 結(jié)語

        漸近非擴(kuò)張型映象是一類比較廣泛的非線性映象類,它以非擴(kuò)張映象和漸近非擴(kuò)張映象為特例。隨著非線性映象不動(dòng)點(diǎn)理論的發(fā)展,提出并研究新的非線性映象類以及逼近這類非線性映象不動(dòng)點(diǎn)的迭代算法,借以統(tǒng)一前人的一些結(jié)果,這應(yīng)該是非線性映象迭代逼近理論的研究趨勢(shì)之一。 本文我們研究了這類漸近非擴(kuò)張型映象不動(dòng)點(diǎn)的帶有誤差的迭代序列的收斂性,最終將相關(guān)文獻(xiàn)中的結(jié)果,推廣到了漸近非擴(kuò)張型映象類,擴(kuò)展了相關(guān)定理的適用范圍。

        致謝:作者衷心的感謝審稿專家對(duì)本文提出的修改意見。

        [1]Wittmann R.,Approximation of fixed points of nonexpansive mapping[J].Arch Math,1992,58:486-491.

        [2]Shioji N,Takahashi W.Strong convergence of approximated sequence for nonexpansive mappings[J].Proc Amer Math Soc,1997,125(12):3641-3645.

        [3]Cihdume C E,Li J,Udomene A.Convergence of paths and approximation of fixed points of asymptotically nonexpansive mappings[J].Proc Amer Math Soc,2004,133(2):473-480.

        [4]Chang S S,Le H W,Chan C K.On Reich strong convergence theorems for asymptotically nonexpansive mappings in Banach spaces[J].Nonlinaer Anal,2007,66(1):2364-2374.

        [5]徐良才,張石生.Banach空間中漸近非擴(kuò)張映象具有誤差的迭代序列的收斂性[J].數(shù)學(xué)學(xué)報(bào),2008,51(1):99-108.Xu Liangcai,Zhang Shisheng.Strong convergences theorem for asymptotically nonexpansive mapping with errors in Banach spaces[J].Acta Mathematica Sinica,2008,51(1):99-108.

        [6]倪仁興.一類廣義Lipschitz非線性算子的帶誤差的Ishikawa迭代程序[J].數(shù)學(xué)學(xué)報(bào),2001,44(4):701-712.Ni Renxing.Ishikawa Iteration procedures with errors for certain generalized Lipschitzian nonlinear operators[J].Acta Mathematica Sinica ,2001,44(4):701-712.

        [7]谷峰.兩個(gè)有限族一致Lipschitz映象的平行迭代算法的強(qiáng)收斂定理[J].數(shù)學(xué)學(xué)報(bào),2010,53(6):1209-1216.Gu Feng.Strong convergence theorems of a parallel iterative algorithm for two finite families of uniformly Lipschitzian mapping[J].Acta Mathematica Sinica,2010,53(6):1209-1216.

        [8]張樹義.賦范線性空間中漸近擬偽壓縮型映象不動(dòng)點(diǎn)的修改的廣義Ishikawa迭代逼近[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2011,34(5):886-894.Zhang S Y,Modified generalized Ishikawa iterative approximations of fixed point for asymptotically quasi pseudocontractive type mappings in normed linear spaces[J].Acta Math Appl Sinica,2011,34(5):886-894.

        [9]張樹義.一致Lipschitz漸近型擬偽壓縮映象多步平行迭代算法的收斂性[J].系統(tǒng)科學(xué)與數(shù)學(xué),2013,33(10):1233-1242.Zhang S Y,Convergence of multi-step parallel iterative algorithms for uniformly Lipschitz asymptotically type quasi pseudocontractive mappings[J].J of Systems Science and Math Sciences,2013,33(10):1233-1242.

        [10]張樹義,宋曉光.廣義Lipschitz半壓縮算子的迭代收斂性[J].北華大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,14(5):520-525.Zhang shuyi,Song xiaoguang,Iterative convergence of general Lipschitz hemi-contractive mappings,J.of Beihua Universities(Natural science),Journal of Beihua Universities(Natural science),2013,14(5):520-525.

        [11]張樹義,趙美娜,李丹.漸近半壓縮映象具混合型誤差的迭代收斂性[J].北華大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,16(3):165-169.Zhang shuyi,Zhao Meina,Li Dan,Convergence of iterative sequences for Lipschitzian asymptotically demicontractive mappings with mixed errors.Journal of Beihua Universities(Natural science),2015,16(3):165-169.

        [12]張樹義,宋曉光.非Lipschitz有限族集值廣義漸近半壓縮映象的強(qiáng)收斂定理[J].系統(tǒng)科學(xué)與數(shù)學(xué),2014,34(9):1051-1058.Zhang shuyi,Song xiaoguang.Strong convergence theorems of non-Lipschitz finite family setvalued generalized asymptotically hemicontractive mappings.Journal of Systems Science and Math.Sciences,2014,34(9):1051-1058.

        [13]張樹義,宋曉光.Hilbert空間中強(qiáng)偽壓縮映象的一個(gè)注記[J].浙江師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,36(1):28-30.Zhang shuyi,Song xiaoguang,A note on iterative approximation of fixed points for strongly pseudocontractive mappings in Hilbert space[J].Journal of Zhejiang Normal Universities(Natural science),2014,36(1):28-30.

        [14]趙美娜,張樹義,趙亞莉.有限族廣義一致偽Lipschitz映象公共不動(dòng)點(diǎn)的迭代收斂性[J].煙臺(tái)大學(xué)學(xué)報(bào)(自然科學(xué)與工程版),2017,30(1):7-10.Zhao Meina,Zhang Shuyi,Zhao Yali.Iterative convergence of common fixed points for a finite family of generalized uniformly quasi-Lipschitz mappings[J].Journal of Yantai Universities(Natural science),2017,30(1):7-10.

        [15]張樹義,李丹,叢培根.增生算子零點(diǎn)的迭代逼近[J].北華大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,18(2):1-7 Zhang Shuyi,Li Dan,Cong Peigen,Iterative approximation of zero points for accretive operators[J].Journal of Beihua Universities(Natural science),2017,18(2):1-7

        [16]趙美娜,張樹義,鄭曉迪.一類算子方程迭代序列的穩(wěn)定性[J].輕工學(xué)報(bào),2016,31(6):100-108.Zhao Meina,Zhang Shuyi,Zheng Xiaodi.Stability of iterative sequences for a class of operators equation[J].Journal of Light Industry,2016,31(6):100-108.

        [17]張樹義,劉冬紅,李丹.次增生算子方程的迭代解[J].北華大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,16(5):574-578 Zhang Shuyi,Liu Donghong,Li Dan,Iterative solutions for operators equation with Subaccretive[J].Journal of Beihua Universities(Natural science),2015,16(5):574-578

        [18]Zhang S Y,Song X G.Another note on a paper“Convergence theorem for the common solution for a finite family of strongly accretive operatior equations”[J].Appl Math Comput,2015,258(1):367-371.

        [19]Mogbademu A A.A note on multi-step approximation schemes for the fixed points of finite family of asymptotically pseudocontractive mappings[J].Intern J Anal Appl,2013,1(2):106-112.

        [20]Olisama V O,Mogbademu A A,Olaleru J O.Convergence of a modified multi-step iterative scheme for nearly uniformly Lipschitzian asymptotically pseudo-contractive mappings[J].Intern J Anal Appl,2014,4(2):192-200.

        [21]Yao Y H,Postolache M,Kang S M.Strong convergence of approximated iterations for asymptotically pseudocontractive mappings[J].Fixed Point Theory and Applications,2014,100(1):1-13.

        Iterative convergence with errors for asymptotically nonexpansive type mappings

        Lin Yuan,Zhang Shuyi*,Cong Peigen
        (College of Mathematics and Physics,Bohai University,Jinzhou,Liaonin 121013,China)

        The purpose of this paper is to study convergence of iterative sequences with errors for asymptotically nonexpansive type mapping in Banach space with a uniformly Gateaux differentiable norm and establish strong convergence theorems of iterative sequences with errors for asymptotically nonexpansive type mapping without any bounded assumption by using a new analytical method.The results obtained in this paper extend and improve the corresponding results in some references from many aspects.

        uniformly Gateaux differentiable;asymptotically nonexpansive type mapping;iterative sequences with errors;fixed point

        O177.91

        A

        10.13880/j.cnki.65-1174/n.2017.04.020

        1007-7383(2017)04-0513-05

        2016-07-30

        國(guó)家自然科學(xué)基金項(xiàng)目(11371070)

        林媛(1991-),女,碩士研究生,專業(yè)方向?yàn)榉蔷€性泛函分析。

        *通信作者:張樹義(1960-),男,教授,從事非線性泛函分析研究,e-mail:jzzhangshuyi@126.com。

        猜你喜歡
        收斂性不動(dòng)點(diǎn)范數(shù)
        一類抽象二元非線性算子的不動(dòng)點(diǎn)的存在性與唯一性
        Lp-混合陣列的Lr收斂性
        活用“不動(dòng)點(diǎn)”解決幾類數(shù)學(xué)問題
        END隨機(jī)變量序列Sung型加權(quán)和的矩完全收斂性
        基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
        矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
        行為ND隨機(jī)變量陣列加權(quán)和的完全收斂性
        松弛型二級(jí)多分裂法的上松弛收斂性
        不動(dòng)點(diǎn)集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對(duì)合
        一類具有準(zhǔn)齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
        91精品91| 国产av久久久久精东av| 久久久久亚洲av片无码| 国产精品一区二区三区四区亚洲| 日韩女优av一区二区| 丰满少妇按摩被扣逼高潮| 国产丝袜美女一区二区三区| 亚洲av永久无码精品国产精品| 国产激情在观看| 一本久久a久久精品综合| 女同恋性吃奶舌吻完整版| 成人片黄网站a毛片免费| 亚洲精品乱码久久久久久蜜桃不卡| 久久精品日韩av无码| 国产亚洲av手机在线观看| 日本大片一区二区三区| 无码人妻丰满熟妇区免费| 国产乱码一二三区精品| 麻豆国产巨作AV剧情老师| 有码中文字幕一区二区 | 人妻夜夜爽天天爽三区麻豆av| 亚洲av乱码一区二区三区林ゆな| 国产乱子伦农村叉叉叉| 人妻丰满av无码中文字幕| 99国产精品欲av麻豆在线观看| 国产自拍伦理在线观看| 澳门蜜桃av成人av| 国产成人a在线观看视频免费| 久热在线播放中文字幕| 国产高清黄色在线观看91 | 黄色国产一区二区99| 中文字幕一精品亚洲无线一区| 国产成人久久777777| 亚洲 美腿 欧美 偷拍| 加勒比久久综合久久伊人爱| 久久久亚洲欧洲日产国码aⅴ| 欧美疯狂做受xxxx高潮小说| 久久99精品久久久久久国产人妖| 亚洲精品中文字幕91| 99无码精品二区在线视频| 欧美日韩一卡2卡三卡4卡 乱码欧美孕交 |