李 月,張海浜,張晶晶,趙 昕,林 海
Eu(DBM)3Phen摻雜聚甲基丙烯酸甲酯靜電紡絲熒光纖維
李 月,張海浜,張晶晶,趙 昕,林 海*
(大連工業(yè)大學(xué) 紡織與材料工程學(xué)院,遼寧 大連 116034)
通過靜電紡絲技術(shù)獲得直徑約為700 nm,均勻且隨機取向的亞微米級Eu(DBM)3Phen/PMMA纖維。在紫外光輻射下,亞微米級熒光纖維發(fā)出明亮的紅色熒光。其激發(fā)光譜表明,熒光纖維有效激發(fā)波長范圍為200~400 nm。利用積分球配以CCD 探測器,在367 nm長波紫外LED激發(fā)下對熒光纖維開展絕對光譜功率測試。當(dāng)LED泵浦功率為535.76W時,厚度80m的Eu(DBM)3Phen/PMMA纖維薄層對紫外輻射的吸收率高達89%,350~850 nm范圍內(nèi)發(fā)射的總絕對光譜功率、總光子數(shù)和總熒光量子產(chǎn)率分別為36.56W、11.46×1013cps和12.94%。亞微米級Eu(DBM)3Phen/PMMA纖維薄層中,Eu3+較高的躍遷發(fā)射幾率及較大的發(fā)射截面使得纖維可以高效吸收紫外輻射并轉(zhuǎn)變?yōu)榭梢姽?,在提高太陽能電池光電轉(zhuǎn)換效率方面具有潛在應(yīng)用價值。
Eu(DBM)3Phen/PMMA纖維; 靜電紡絲; 絕對光譜參數(shù); 熒光量子產(chǎn)率
隨著不可再生資源的大量消耗,可再生資源的研究和利用受到了人們廣泛的關(guān)注,太陽能因其清潔性和可再生性日益成為人們研究的熱點之一。太陽能電池由于光譜敏感區(qū)域狹窄,無法對大部分紫外輻射實現(xiàn)高效的光電轉(zhuǎn)換,尤其對于染料敏化型太陽能電池而言,紫外輻射使染料產(chǎn)生光氧化效應(yīng),進一步削弱了對紫外輻射的吸收?;诖?,利用光致熒光材料提高太陽能電池光電轉(zhuǎn)換效率的方法激起了人們極大的研究興趣[1-3]。其中,稀土有機配合物具有高的熒光量子效率,其有機配體在紫外區(qū)有較強的吸收,可以作為光轉(zhuǎn)換材料引入到太陽能電池中[4-7]。通過稀土有機配合物與高分子聚合物復(fù)合,制備出具有直徑小、比表面積大、孔隙率高、直徑均勻的微納米熒光纖維材料[8-19],可為增強太陽能電池轉(zhuǎn)化效率提供新思路。
在本工作中,我們將Eu(DBM)3Phen配合物混合光透明性好、耐候性強和機械強度高的聚甲基丙烯酸甲酯(PMMA)在四氫呋喃(THF)和二甲基甲酰胺(DMF)中進行磁力攪拌獲得均一透明溶液,通過靜電紡絲技術(shù)制備成Eu-(DBM)3Phen/PMMA纖維。在掃描電鏡下,觀測到纖維直徑均勻且隨機取向。同時對纖維在不同條件下的光致發(fā)光特性進行研究,熒光光譜表明Eu(DBM)3Phen/PMMA纖維可將紫外輻射轉(zhuǎn)換為更適合太陽能電池吸收利用的紅光。利用積分球測試系統(tǒng)對纖維的發(fā)光性能進行表征,獲得纖維的絕對光譜功率分布及光子數(shù)分布,并利用熒光量子產(chǎn)率以說明纖維中Eu3+的發(fā)光效率。實驗結(jié)果表明,Eu(DBM)3Phen/PMMA熒光纖維可以有效吸收紫外輻射并將其轉(zhuǎn)換成可見光,對進一步提高太陽能電池光電轉(zhuǎn)換效率有重要的研究意義。
2.1 Eu( DBM)3Phen /PMMA纖維的制備
根據(jù)文獻[20-21]制備Eu(DBM)3Phen,其為黃色粉末。稱取質(zhì)量比為50:1的聚甲基丙烯酸甲酯(PMMA)和Eu(DBM)3Phen,將其溶于體積比為1:1的四氫呋喃(THF)和二甲基甲酰胺(DMF)的混合溶液中。將混合物放入55 ℃恒溫水浴鍋至溶解后進行磁力攪拌,得到的均一透明的溶液即為紡絲溶液。靜電紡絲裝置示于圖1。將紡絲溶液注入到噴絲頭中,隨著15.48 kV高壓電源的運行以及噴絲頭與接收裝置的距離為12 cm,電場達到臨界值,紡絲的PMMA溶液克服表面張力并由接收裝置接收,形成Eu(DBM)3Phen/ PMMA纖維。
圖1 靜電紡絲裝置圖Fig .1 Schematic illustration of the basic setup for electrospinning
2.2 樣品表征
采用F-7000熒光分光光度計(Hitachi),激發(fā)光源為150 W連續(xù)氙燈,測定樣品的激發(fā)和發(fā)射光譜。采用日本電子JSM-7800F型掃描電子顯微鏡觀測樣品的微觀形貌。利用內(nèi)徑為25 cm的積分球(Labsphere LMS-025)配以內(nèi)芯直徑為600 μm的功率光纖連接的CCD 探測器(Ocean Optics,USB4000和QE65000)測量Eu( DBM)3Phen/PMMA纖維的絕對光譜功率分布,系統(tǒng)采用工作電流20 mA、激發(fā)波長367 nm的長波紫外發(fā)光二極管,并用標準鹵素?zé)?Labsphere,SCL-050)定標。纖維樣品的發(fā)光照片由Sony DSC-T5照相機拍攝。
3.1 Eu( DBM)3Phen /PMMA纖維形態(tài)特征
紡絲溶液濃度是影響其粘度的關(guān)鍵因素,在電紡絲過程中起重要作用。對于Eu(DBM)3-Phen/PMMA復(fù)合材料來說,當(dāng)PMMA的濃度低時(<80 mg/mL),可能形成一些珠粒;當(dāng)PMMA的濃度太高時,則很少獲得靜電紡絲產(chǎn)物[22]??紤]以上因素,本工作中,PMMA在Eu(DBM)3-Phen/PMMA中的濃度為100 mg/mL,獲得了Eu(DBM)3Phen/PMMA纖維。在自然光下,纖維呈白色絮狀,如圖2(a)所示,圖2(b)為Eu-(DBM)3Phen/PMMA纖維的微觀SEM照片。由圖2(b)可以看出,復(fù)合材料樣品形成了直徑均勻的纖維且隨機取向排列,這是由收集器靜止且紡絲射流相關(guān)的彎曲不穩(wěn)定性引起的。對形貌進一步分析,可以得出纖維的直徑約為700 nm,歸屬于亞微米級。
圖2 (a)自然光下靜電紡纖維宏觀形貌;(b)靜電紡纖維的微觀SEM照片。Fig.2 (a) Macro morphology of electrospinning fiber under natural light.(b) Microscopic SEM photograph of electrospun fibers.
3.2 激發(fā)和發(fā)射光譜
在274 nm和358 nm紫外激發(fā)下,纖維樣品的可見熒光發(fā)射光譜如圖3(a)和3(b)所示,圖片反映了在紫外光激發(fā)下纖維能發(fā)出明亮的紅色熒光。光譜中峰值位于578,590,611,651,704 nm的發(fā)射帶分別歸屬于Eu3+從5D0到7FJ(J=0~4)的f-f 躍遷,其中在611 nm處的5D07F2電偶極躍遷發(fā)射最強[23-27]。圖4為監(jiān)測Eu3+離子611 nm處的激發(fā)光譜。發(fā)射譜帶由2個激發(fā)峰組成,范圍為200~400 nm,其峰值分別位于274 nm和358 nm,表明熒光纖維紅光發(fā)射的有效激發(fā)波長幾乎覆蓋了整個紫外區(qū)且在274 nm和358 nm處激發(fā)最有效。
圖3 Eu(DBM)3Phen/PMMA靜電紡纖維的發(fā)射光譜。(a) λex=274 nm;(b) λex=358 nm。Fig.3 Emission spectra of Eu(DBM)3Phen/PMMA electrospun fibers.(a) λex=274 nm.(b) λex=358 nm.
圖4 Eu(DBM)3Phen/PMMA纖維的激發(fā)光譜Fig.4 Excitation spectrum of Eu(DBM)3Phen/PMMA fibers
3.3 纖維的絕對光譜參數(shù)表征
光譜功率分布( Spectral power distribution)P(λ)的測量是發(fā)光材料參數(shù)計算和發(fā)光性能評估的基礎(chǔ)。2.0%Eu(DBM)3Phen/PMMA纖維的光譜功率分布利用積分球測試系統(tǒng)測量。將夾在石英片之間的樣品和空的石英片放于積分球中的LED泵浦源上,在367 nm 長波紫外LED激發(fā)下,記錄Psam(樣品功率)和Pemp(空白功率)。通過兩者相減,獲得如圖5(a)所示的凈光譜功率分布。當(dāng)LED泵浦源的功率為535.76W時,積分獲得樣品的吸收和發(fā)射功率分別為476.51W和36.56W。
光量子分布N(ν)與凈光譜功率分布P(λ)有如下關(guān)系:
(1)
式(1)中λ和ν分別為波長及波數(shù),h為普朗克常數(shù),c為真空中的光速,P(λ)是光譜功率分布。2.0%(質(zhì)量分數(shù))Eu(DBM)3Phen/PMMA纖維的凈吸收和凈發(fā)射光子分布曲線由公式(1)導(dǎo)出,其中凈光量子數(shù)分布如圖5(b)所示。
作為評估發(fā)光材料一個關(guān)鍵參數(shù),量子產(chǎn)率(Quantum yield)的準確測量有助于深入理解材料的熒光特性。熒光量子產(chǎn)率(η)可表示為
(2)
在367 nm長波紫外LED的激發(fā)下,2.0%Eu(DBM)3Phen/PMMA纖維的熒光量子產(chǎn)率列于表1中,Eu(DBM)3Phen/PMMA纖維樣品的總發(fā)射光子數(shù)為11.46×1013cps,總熒光量子產(chǎn)率為12.94%。其中Eu3+的5D07F2躍遷發(fā)射的光子數(shù)高達9.46×1013cps,量子產(chǎn)率為10.68%。
圖5 在367nm 長波紫外LED激發(fā)下,Eu(DBM)3Phen/PMMA纖維的凈光譜功率分布(a)和凈光量子分布(b)。Fig.5 Net spectral power distribution(a) and net photon distributions (b) of Eu(DBM)3Phen/PMMA fibers under 367 nm UVA-LED excitation
表1 367 nm 長波紫外LED激發(fā)下Eu(DBM)3Phen/PMMA纖維的吸收和發(fā)射光子數(shù)和量子產(chǎn)率Tab.1 Absorption and emission photon number and quantum yield in Eu(DBM)3Phen/PMMA fibers under 367 nm UVA-LED excitation
Judd-Ofelt(J-O)強度參數(shù)Ωt(t=2,4,6)是評估稀土離子與基質(zhì)相互作用的重要參數(shù),在一定程度上反映了材料的結(jié)構(gòu)性質(zhì)[28-30]。由于Eu3+的特殊能級結(jié)構(gòu),可以通過發(fā)射光譜來計算纖維中Eu3+的J-O強場參數(shù)[31]。采用Metricon 2010棱鏡耦合儀測定出體材料在635.96 nm和1 546.9 nm處的折射率分別為1.489 7 和1.478 4,根據(jù)公式n=A+B/λ2可進一步導(dǎo)出Eu-(DBM)3Phen/PMMA在其他波長處的折射率,式中A=1.475 0,B=5 743 nm2。 Eu(DBM)3Phen/PMMA纖維中Eu3+的強度參數(shù)Ωt(t=2,4,6)值分別為36.367×10-20,7.059×10-20,34.482×10-20cm2,其Ω2值明顯強于Eu3+摻雜的 Na2O-ZnO-PbO-GeO2-TeO2玻璃 (Ω2=6.25×10-20)[29],反映出Eu3+離子周圍環(huán)境具有較高的反演非對稱性和較強的共價性。利用J-O強度參數(shù)計算出自發(fā)輻射幾率Aij、熒光分支比βij和輻射壽命τrad并列于表2。Eu(DBM)3Phen/PMMA纖維中對應(yīng)于5D07F2躍遷的熒光分支比β高達85.6%,表明Eu3+的5D07F2為主導(dǎo)發(fā)射。
受激發(fā)射截面σem是評估稀土摻雜光學(xué)材料能量提取效率的重要參數(shù),可以通過Fuchtbauer-Ladenburg(FL)公式得出:
(3)
其中n、Arad和N(λ)分別表示折射率、自發(fā)躍遷幾率和發(fā)射光子分布。在367 nm長波紫外LED的激發(fā)下,Eu3 +在Eu(DBM)3Phen/PMMA纖維中的受激發(fā)射截面σem示于圖6。在纖維薄層中對應(yīng)Eu3+的5D07F2躍遷的最大受激發(fā)射截面為13.12×10-21cm2,是Eu3+摻雜Na2O-ZnO-PbO-GeO2-TeO2玻璃(2.05×10-21)的6倍多[32],表明Eu3+在Eu(DBM)3Phen/PMMA纖維中具有優(yōu)異的發(fā)射能力。
表2 Eu(DBM)3Phen/PMMA纖維中Eu3+的5D0自發(fā)輻射躍遷概率Aij、分支比βij和輻射壽命τradTab.2 Spontaneous transition probabilities Aij,branching ratio βij and calculated radiative lifetime τrad of 5D0 in Eu(DBM)3Phen/PMMA fibers
圖6 Eu3 +在Eu(DBM)3Phen/PMMA纖維中的受激發(fā)射截面Fig.6 Emission cross-section of Eu3+ in Eu(DBM)3Phen/PMMA fibers
通過靜電紡絲技術(shù),利用THF和DMF混合溶劑,制備了直徑約為700 nm,均勻且隨機取向的亞微米級Eu(DBM)3Phen/PMMA熒光纖維。研究了不同條件下纖維的光致熒光特性。在紫外輻射下,亞微米纖維發(fā)出明亮的紅色熒光,其有效激發(fā)波長范圍為200~400 nm。采用積分球測試系統(tǒng),在367長波紫外LED的激發(fā)下,對Eu(DBM)3Phen/PMMA纖維的發(fā)光性能進行表征,解析出纖維樣品的絕對熒光特征參量。當(dāng)LED泵浦源的功率為535.76W時,80m的Eu(DBM)3Phen/PMMA纖維薄層對紫外輻射的吸收率高達89%,350~850 nm范圍內(nèi)發(fā)射總光子數(shù)和總熒光量子產(chǎn)率分別為11.46×1013cps和12.94%,表明纖維可以發(fā)出效率較高的紅色熒光。亞微米Eu(DBM)3Phen/PMMA纖維可有效吸收紫外輻射并轉(zhuǎn)變?yōu)榭梢姛晒?,在提高太陽能電池光電轉(zhuǎn)換效率方面有很大的應(yīng)用潛力。
[1] HUANG X Y,HAN S Y,HUANG W,etal..Enhancing solar cell efficiency: the search for luminescent materials as spectral converters [J].Chem.Soc.Rev.,2013,42(1):173-201.
[2] XIN F X,ZHAO S L,HUANG L H,etal..Up-conversion luminescence of Er3+-doped glass ceramics containing β-NaGdF4nanocrystals for silicon solar cells [J].Mater.Lett.,2012,78:75-77.
[3] HO W J,YANG G C,SHEN Y T,etal..Improving efficiency of silicon solar cells using europium-doped silicate-phosphor layer by spin-on film coating [J].Appl.Surf.Sci.,2016,365:120-124.
[4] 程果,魏長平,任曉明,等.新型β-二酮配體及其Eu(Ⅲ)三元配合物的合成、表征及發(fā)光性能的研究 [J].光譜學(xué)與光譜分析,2011,31(9):2346-2349.CHENG G,WEI C P,REN X M,etal..Synthesis,characterization and luminescence properties of novel β-diketone and Eu(Ⅲ) ternary complex [J].Spectrosc.Spect.Anal.,2011,31(9):2346-2349.(in Chinese)
[5] YUE J Y,XIAO Y M,LI Y P,etal..Enhanced photovoltaic performances of the dye-sensitized solar cell by utilizing rare-earth modified tin oxide compact layer [J].Org.Electron.,2017,43:121-129.
[6] WU J H,WANG J L,LIN J M,etal..Dual functions of YF3:Eu3+for improving photovoltaic performance of dye-sensitized solar cells [J].Sci.Rep.,2013,3:2058-1-5.
[7] GAO B J,ZHANG D D,DONG T T.Preparation and photoluminescence properties of polymer-rare-earth complexes composed of bidentate Schiff-base-ligand-functionalized polysulfone and Eu(Ⅲ) ion [J].J.Phys.Chem.C,2015,119(29):16403-16413.
[8] HUANG C B,CHEN S L,LAI C L,etal..Electrospun polymer nanofibres with small diameters [J].Nanotechnology,2006,17(6):1558-1563.
[9] CUI X,ZHANG H M,WU T F.Electrospinning preparation and photoluminescence properties of erbium complex doped composite fibers [J].Spectrochim.Acta.A,2011,79(5):1998-2002.
[10] YIN H X,LONG Y Z,YU F,etal..Electrospun europium complex/polymer composite microfibers and its modified photoluminescence properties [J].Mat.Sci.Forum,2011,688:74-79.
[11] 吳勝男,陳永杰,邢貞方,等.稀土銪-芳香羧酸-鄰菲羅啉三元有機配合物的合成、表征及發(fā)光性能 [J].光學(xué)學(xué)報,2015,35(1):305-312.WU S N,CHEN Y J,XING Z F,etal..Synthesis,characterization,and luminescence properties of rare-earth europium aromatic carboxylate organic complexes with 1,10-phenanthroline [J].ActaOpt.Sinica,2015,35(1):305-312.(in Chinese)
[12] GU H Q,HOU Y J,XU F,etal..Electrospinning preparation,thermal,and luminescence properties of Eu2(BTP)3(Phen)2complex doped in PMMA [J].ColloidPolym.Sci.,2015,293(8):2201-2208.
[13] HUANG Z M,ZHANG Y Z,KOTAKI M,etal..A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J].Compos.Sci.Technol.,2003,63(15):2223-2253.
[14] ZHAO F L,XI P,XIA H Y,etal..Luminescent polymethacrylate composite nanofibers containing a benzoic acid rare earth complex: morphology and luminescence properties [J].J.AlloysCompd.,2015,641:132-138.
[15] YU H Q,WANG H D,LI Y,etal..Electrospinning preparation and luminescence properties of terbium complex/polymer composite fibers [J].J.Nanosci.Nanotechnol.,2014,14(5):3914-3918.
[16] ZHOU X J,MA Q L,DONG X T,etal..Dy3+and Eu3+complexes co-doped flexible composite nanofibers to achieve tunable fluorescent color [J].J.Mater.Sci.:Mater.Electron.,2015,26(5):3112-3118.
[17] ZHANG X P,WEN S P,HU S,etal..Electrospinning preparation and luminescence properties of Eu(TTA)3phen/polystyrene composite nanofibers [J].J.RareEarth,2010,28(3):333-339.
[18] JIA Y T,HUANG G,DONG F C,etal..Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles [J].Polym.Compos.,2016,37(9):2847-2854.
[19] SHI Q S,LIU Z R,JIN X Y,etal..Electrospun fibers based on polyvinyl pyrrolidone/Eu-polyethylene glycol as phase change luminescence materials [J].Mater.Lett.,2015,147:113-115.
[20] LUO Y H,YU X W,SU W,etal..Energy transfer in a ternary system composed of Tb(DBM)3Phen,Eu(DBM)3Phen,and poly(N-vinylcarbazole) [J].J.Mater.Res.,2009,24(10):3023-3031.
[21] 葉釗,段佩華,張繼森,等.稀土配合物Eu(DBM)3phen/聚丙烯復(fù)合薄膜的光學(xué)性質(zhì) [J].發(fā)光學(xué)報,2010,31(4):585-589.YE Z,DUAN P H,ZHANG J S,etal..Optical spectra of thin composite Eu(DBM)3phen/polypropylene film [J].Chin.J.Lumin.,2010,31(4):585-589.(in Chinese)
[22] YU H Q,LI Y,LI C,etal..Fabrication of aligned Eu(TTA)3phen/PS fiber bundles from high molecular weight polymer solution by electrospinning [J].Russ.J.Phys.Chem.A,2015,89(13):2455-2460.
[23] LI J,CHEN L,ZHANG J H,etal..Photoluminescence properties of a novel red-emitting phosphor Eu3+activated scandium molybdate for white light emitting diodes [J].Mater.Res.Bull.,2016,83:290-293.
[24] LI X,PAN H,TANG A W,etal..Hydrothermal synthesis and luminescent properties of Eu3+doped Sr3Al2O6phosphor for white LED [J].J.Nanosci.Nanotechnol.,2016,16(4):3474-3479.
[25] FEI Y,ZHAO S L,SUN X,etal..Preparation and optical properties of Eu3+doped and Er3+/Yb3+codoped oxyfluoride glass ceramics containing Ba1-xLuxF2+xnanocrystals [J].J.Non-Cryst.Solids,2015,428:20-25.
[26] LI P L,WANG Z J,YANG Z P,etal..Ba2B2O5:Eu3+: a novel red emitting phosphor for white LEDs [J].Opt.Mater.,2014,39:269-272.
[27] ZHANG J,SONG F,LIN S X,etal..Tunable fluorescence lifetime of Eu-PMMA films with plasmonic nanostructures for multiplexing [J].Opt.Express,2016,24(8):8228-8236.
[28] 牛春暉,任宣瑋,李曉英,等.YNbO4粉末材料中Er3+發(fā)光研究及其光譜性質(zhì)J-O計算 [J].發(fā)光學(xué)報,2016,37(5):519-525.NIU C H,REN X W,LI X Y,etal..Luminescence characteristics of Er3+in YNbO4powder materials and J-O calculation of its spectrum [J].Chin.J.Lumin.,2016,37(5):519-525.(in Chinese)
[29] 王芙香,裴松皓,彭慰先,等.透明光學(xué)樹脂中Eu3+輻射參數(shù)的理論和實驗研究 [J].光譜學(xué)與光譜分析,2006,26(2):248-250.WANG F X,PEI S H,PENG W X,etal..Study on the theory and experiments of radiative parameters of the Eu3+ion in transparent optical resin [J].Spectrosc.Spect.Anal.,2006,26(2):248-250.(in Chinese)
[30] 王欣,李科峰,凡思軍,等.Tm3+摻雜Bi2O3-SiO2-PbO玻璃的~2 μm發(fā)光光譜性質(zhì) [J].無機材料學(xué)報,2013,28(2):165-170.WANG X,LI K F,FAN S J,etal..Spectral properties of ~2 μm emission of Tm3+doped Bi2O3-SiO2-PbO glass [J].J.Inorg.Mater.,2013,28(2):165-170.(in Chinese)
[31] CHANG M Q,SHENG Y,SONG Y H,etal..Luminescence properties and Judd-Ofelt analysis of TiO2:Eu3+nanofibersviapolymer-based electrospinning method [J].RSCAdv.,2016,57(6):52113-52121.
[32] WANG F,SHEN L F,CHEN B J,etal..Broadband fluorescence emission of Eu3+doped germanotellurite glasses for fiber-based irradiation light sources [J].Opt.Mater.Express,2013,3(11):1931-1943.
李月(1992-),女,河北衡水人,碩士研究生,2016年于華北水利水電大學(xué)獲得學(xué)士學(xué)位,主要從事稀土摻雜發(fā)光材料的研究。
E-mail:18703662774@163.com
林海(1968-),男,吉林長春人,博士,教授,1999年于中國科學(xué)院長春物理研究所獲得博士學(xué)位,主要從事光電子材料與器件的研究。
E-mail:lhai@dlpu.edu.cn
Eu(DBM)3Phen Doped Poly Methyl Methacrylate Electrospun Fluorescence Fibers
LI Yue,ZHANG Hai-bang,ZHANG Jing-jing,ZHAO Xin,LIN Hai*
(SchoolofTextileandMaterialEngineering,DalianPolytechnicUniversity,Dalian116034,China)
Eu(DBM)3Phen/PMMA fibers with uniform and random orientation were obtained by electrospinning method.The diameter of the fiber is about 700 nm assigned to submicron.Under ultraviolet irradiation,the submicron fluorescent fiber emits bright red fluorescence,and its excitation spectrum shows that the effective excitation wavelength is 200-400 nm.The absolute spectral power was carried out by using an integrating sphere with a CCD detector at 367 nm UVA-LED.When the power of LED pump is 535.76W,Eu(DBM)3Phen/PMMA thin fiber layer with 80 μm is up to 89% in ultraviolet absorbing,and the total absolute spectral power,emission photon number and fluorescence quantum yield in the range of 350-850 nm are 36.56W,11.46×1013cps and 12.94%,respectively.The higher transition probability and emission cross-section of Eu3+allow the fiber to absorb ultraviolet radiation effectively and convert it into visible light,therefore submicron Eu-(DBM)3Phen/PMMA thin fiber layer has great application prospects in the improvement of solar cell conversion efficiency.
Eu(DBM)3Phen/PMMA fibers; electrospinning; absolute spectral parameters; fluorescence quantum yield
1000-7032(2017)09-1136-07
2017-02-22;
2017-04-12
國家自然科學(xué)基金(61275057)資助項目
TQ342.8; O433
A
10.3788/fgxb20173809.1136
*CorrespondingAuthor,E-mail:lhai@dlpu.edu.cn
Supported by National Natural Science Foundation of China (61275057)