蔣 瑞,劉必林,2,3,4,張 健,2,3,4,陳新軍,2,3,4,倪震宇,林靜遠(yuǎn)
·綜述·
甲殼類年齡鑒定方法研究進(jìn)展
蔣 瑞1,劉必林1,2,3,4,張 健1,2,3,4,陳新軍1,2,3,4,倪震宇1,林靜遠(yuǎn)1
(1.上海海洋大學(xué)海洋科學(xué)學(xué)院,上海 201306;2.國(guó)家遠(yuǎn)洋漁業(yè)工程技術(shù)研究中心,上海 201306;3.大洋漁業(yè)資源可持續(xù)開發(fā)省部共建教育部重點(diǎn)實(shí)驗(yàn)室,上海 201306;4.遠(yuǎn)洋漁業(yè)協(xié)同創(chuàng)新中心,上海 201306)
甲殼類特有的蛻殼現(xiàn)象,使其能夠記錄年齡信息的外骨骼周期性消失,因此甲殼類的年齡鑒定一直未得到較好的解決。年齡鑒定是評(píng)估甲殼類漁業(yè)資源的基礎(chǔ),鑒定甲殼類年齡的方法主要有飼養(yǎng)法、標(biāo)記重捕法、體長(zhǎng)頻度法、脂褐素分析法、放射性同位素分析法和硬組織生長(zhǎng)紋分析法。飼養(yǎng)法、標(biāo)記重捕法和放射性同位素分析法較準(zhǔn)確,然而由飼養(yǎng)法得到的數(shù)據(jù)不適用于實(shí)際野生環(huán)境,放射性同位素分析法花費(fèi)較高,因此,這兩種方法都存在較大的局限性。應(yīng)用最廣泛的標(biāo)記重捕法和體長(zhǎng)頻度法也存在不足之處。相對(duì)于體長(zhǎng)頻度鑒齡技術(shù)而言,脂褐素分析法優(yōu)勢(shì)明顯,但是對(duì)勞動(dòng)強(qiáng)度和技術(shù)要求高。硬組織生長(zhǎng)紋分析法是最近幾年出現(xiàn)的鑒齡技術(shù),也存在人為主觀性較強(qiáng)等不足。本文對(duì)甲殼類年齡鑒定的方法進(jìn)行了總結(jié)回顧,將不同鑒定方法進(jìn)行比較,分析優(yōu)缺點(diǎn),以期為開展甲殼類資源評(píng)估與管理提供基礎(chǔ)。
甲殼類;年齡與生長(zhǎng);年齡鑒定方法
甲殼類動(dòng)物種類多、數(shù)量大,是漁業(yè)資源的重要組成部分[1],廣泛分布于世界各大洋和南、北極等海域。年齡是研究水生動(dòng)物生活史的必要組成部分[2],也是漁業(yè)種群動(dòng)態(tài)模型及漁業(yè)資源評(píng)估中非常重要的參數(shù)之一。大多數(shù)水生動(dòng)物能夠通過計(jì)數(shù)硬組織中的生長(zhǎng)紋來鑒定年齡,例如魚類耳石[3-5]、鰭條[6-8]和脊椎骨[9-10],頭足類耳石[11-12]、角質(zhì)顎[13-14]和內(nèi)殼[15-16]等。然而,甲殼類動(dòng)物是脫殼式生長(zhǎng),每次脫殼時(shí)原先的硬殼被新殼替代,使其鈣化結(jié)構(gòu)周期性消失。因此,甲殼類的年齡鑒定一直未得到較好的解決[17],直到2012年KILADA等[18]首次發(fā)現(xiàn)甲殼類動(dòng)物體內(nèi)存在能夠用來鑒定年齡的硬組織。本文歸納了現(xiàn)有甲殼類年齡鑒定的方法,并且對(duì)各方法進(jìn)行了比較,以期為開展甲殼類年齡與生長(zhǎng)的研究提供基礎(chǔ)。
實(shí)驗(yàn)室飼養(yǎng)法是甲殼類年齡鑒定最精確可靠的方法。WICKINS等[19]采用此方法對(duì)甲殼類的年齡進(jìn)行了研究,并將結(jié)果記錄于書中。LUKHAUP等[20]和NEW等[21]也運(yùn)用此方法分別對(duì)養(yǎng)殖的克氏原螯蝦(Procambarus clarkii)和淡水蝦類的年齡進(jìn)行了鑒定(表1)。
標(biāo)記重捕法是甲殼類另一個(gè)直接有效的鑒齡方法,作為研究動(dòng)物生活史(如棲息地、死亡率、生長(zhǎng)率、年齡等)和評(píng)價(jià)漁業(yè)資源并對(duì)其進(jìn)行管理的重要工作內(nèi)容,已經(jīng)被廣泛地應(yīng)用在漁業(yè)資源研究中。采用標(biāo)記重捕法,可以通過對(duì)標(biāo)記生物個(gè)體或種群放流和重捕的時(shí)間、空間來分析和推測(cè)該生物移動(dòng)的方向、速度、路線以及范圍,并可以依據(jù)標(biāo)記生物體長(zhǎng)、重量和年齡的變化推測(cè)其在放流場(chǎng)所的生長(zhǎng)率,進(jìn)而為評(píng)估漁業(yè)資源現(xiàn)狀提供資料和依據(jù)。為了確保標(biāo)記的保留時(shí)間,標(biāo)記通常被放置在甲殼類甲殼之下。常用的標(biāo)記有被動(dòng)整合雷達(dá)標(biāo)記(passive integraded transpoder,PIT)、微編碼線標(biāo)記(code wire tag,CWT)、可視植入字母數(shù)字標(biāo)記和可視植入彈性體等。
可視植入字母數(shù)字標(biāo)記和可視植入彈性體要求從外部可以直接讀取信息,所以通常需要放置在透明的甲殼類甲殼之下。然而,當(dāng)甲殼類的外殼鈣化加厚之后,可讀性通常會(huì)變差[22],所以,相比之下,CWT和PIT更適合于標(biāo)記重捕法的甲殼類年齡鑒定中。
WEINGARTNER[23]于1981年第一次將標(biāo)記重捕法運(yùn)用于克氏原螯蝦的年齡鑒定中,隨后BUBB等[24]、GHERARDI等[25]、HURYN等[26]在研究克氏原螯蝦時(shí)同樣用了該方法。眾多實(shí)驗(yàn)中表明,標(biāo)記重捕法同樣適用于利莫斯螯蝦(Orconectes limosus)[27]、挪威海螯蝦(Nephrops norvegicus)[28]、紅斑青蟹(Callinectes sapidus)[22]、蜘蛛蟹類(Majidae)[29]、歐洲鰲龍蝦(Homarus gammarus)[30-31]、遠(yuǎn)海梭子蟹(Portunus pelagicus)[32]、白圓鉗螯蝦(Austropotamobius pallipes)[33]、眼斑龍蝦(Panulirus argus)[34]、巴爾曼螯蝦(Ibacus peronii)[35]和紅色原螯蝦(Procambarus erythrops)[36]。
體長(zhǎng)頻度法是早期學(xué)者鑒定甲殼類年齡的最常采用方法[37-41]。對(duì)于那些不能通過硬組織生長(zhǎng)紋鑒定年齡的水生生物,該方法是另外一個(gè)最佳選擇[42-43]。體長(zhǎng)頻度法首先將體長(zhǎng)數(shù)據(jù)分成不同的體長(zhǎng)組,然后用Von Bertalanffy生長(zhǎng)方程或其他模型將其轉(zhuǎn)換成年齡組[43]。ANDRADE等[44]已經(jīng)開發(fā)了一些軟件包(ELEPHANT、MULTIFAN),用于從長(zhǎng)度頻率數(shù)據(jù)估算生長(zhǎng)參數(shù)和年齡組成。
早前,MALIK等[45]于1995使用體長(zhǎng)頻度法對(duì)伊拉克巴士拉河流中伊拉克薄板蟹(Elamenopsis kempi)的種群動(dòng)力學(xué)進(jìn)行研究,隨后,RELINI等[37]發(fā)現(xiàn)成年雌性觸須蝦(Aristeus antennatus)的年齡能達(dá)到17歲。1999年,OH等[38]同樣使用體長(zhǎng)頻度法研究褐蝦(Crangon crangon)的種群動(dòng)力,SHEEHY等[46]認(rèn)為在鑒定歐洲鰲龍蝦壽命和生長(zhǎng)時(shí)使用體長(zhǎng)頻度法是一種新的趨勢(shì)。體長(zhǎng)頻度法在研究加萊螯蝦(Aegla jarai)[47]、小長(zhǎng)臂蝦(Palaemonetes pugio)[40]、突尼斯境內(nèi)的淡水蝦類[41]和土耳其螯蝦(Astacus leptodactylus)[39]時(shí)都取得了較好的結(jié)果。
脂褐素是細(xì)胞內(nèi)與衰老相關(guān)的色素顆粒,最初由HANNOVER[48]于1842年發(fā)現(xiàn)并報(bào)道,如今已被認(rèn)為是細(xì)胞中最明顯的年齡標(biāo)記[49]?,F(xiàn)在已有的研究證明,部分甲殼類生物其脂褐素濃度會(huì)隨著年齡的增長(zhǎng)而增加(表1),如日本囊對(duì)蝦(Marsupenaeus japonicus)[50]、南極背褐蝦(Notocrangon antarcticus)[51]、淡水螯蝦(Pacifastacus leniusculus)[52]、歐洲鰲龍蝦[46]、紅斑青蟹[53]、眼斑龍蝦[54]。在無法建立形態(tài)特征與年齡之間的關(guān)系時(shí),脂褐素分析法可以作為許多無脊椎動(dòng)物鑒齡研究中的年齡生長(zhǎng)標(biāo)記[51,54-57]。相對(duì)于體長(zhǎng)或體重法鑒齡技術(shù)而言,該方法優(yōu)勢(shì)明顯[52,58]。
放射性同位素分析法適用于確定甲殼類外殼年齡,進(jìn)而反映自上一次蛻殼后經(jīng)過的時(shí)間。在蛻殼后,同位素228Ra進(jìn)入外殼,經(jīng)過一定的時(shí)間衰變成為228Th。每個(gè)元素的半衰期是已知的,因此可以通過這兩種元素的比率來確定所經(jīng)歷的時(shí)間[59-60]。
硬組織生長(zhǎng)紋分析法是近幾年興起、用于甲殼類鑒定年齡的新方法,之前最常用于魚類(鱗片[61-62]、鰭條[6-8]、脊椎骨[9-10]和耳石[3-5])和頭足類(角質(zhì)顎[13-14]、內(nèi)殼[15-16]和耳石[11-12])。2012年,KILADA等[18]首次對(duì)美國(guó)螯龍蝦(Homarus americanus),雪蟹(Chionoecetes opilio),粗糙硬褐蝦(Sclerocrangon boreas)和北極蝦(Pandalus borealis)眼柄或胃磨中的生長(zhǎng)紋進(jìn)行研究,研究首先將眼柄或胃磨制成切片,然后在顯微鏡計(jì)數(shù)生長(zhǎng)紋的數(shù)目,并與實(shí)際年齡做比較,結(jié)果發(fā)現(xiàn)生長(zhǎng)紋個(gè)數(shù)與樣品實(shí)際壽命基本相符,因此該方法為甲殼類提供了一種直接準(zhǔn)確的年齡鑒定方法。隨后,2015年KILADA等[63]使用胃磨對(duì)智利的蹲龍蝦(Pleuroncodesmonodon)、東方黃扁蝦(Cervimunida johni)和里德異腕蝦(Heterocarpus reedi)三種重要商業(yè)價(jià)值的甲殼類進(jìn)行鑒齡。目前,我們?cè)诖嘶A(chǔ)上對(duì)中華絨螯蟹(Eriocheir sinensis)、三疣梭子蟹(Portunus trituberculatus)和中國(guó)明對(duì)蝦(Penaeus orientalis)眼柄的生長(zhǎng)紋進(jìn)行了觀察與分析(圖1)。從圖1中,可以清楚地看到眼柄中的生長(zhǎng)紋。
與野外環(huán)境不同,實(shí)驗(yàn)室飼養(yǎng)法只是在適宜物種生存的環(huán)境中得到數(shù)據(jù),因此,飼養(yǎng)法得到的數(shù)據(jù)只能用于水產(chǎn)養(yǎng)殖或者構(gòu)建實(shí)驗(yàn)室模型中,不能用于野生環(huán)境中生存生長(zhǎng)物種的年齡鑒定。相比于飼養(yǎng)法,標(biāo)記重捕法將樣品標(biāo)記后放流,更貼合實(shí)際情況,但是該方法實(shí)驗(yàn)周期長(zhǎng),耗費(fèi)的時(shí)間、精力和金錢較多,且對(duì)于定期蛻殼的甲殼類物種來說,標(biāo)記容易破損、丟失,且個(gè)體重捕率低。所以,飼養(yǎng)法和標(biāo)記重捕法雖然得到的結(jié)果比較直接,但在甲殼類鑒齡中不常用。
體長(zhǎng)頻度法是甲殼類年齡鑒定中最常見的方法,其數(shù)據(jù)收集起來較簡(jiǎn)單迅速。然而,當(dāng)研究的物種年齡越大時(shí),體長(zhǎng)頻度法得到的結(jié)果偏差越大,年齡逐漸增大,體長(zhǎng)增長(zhǎng)率變小,年齡大的、生長(zhǎng)緩慢的樣品可能會(huì)與年齡小的、生長(zhǎng)迅速的樣品分為一組,導(dǎo)致最后得到的結(jié)果不準(zhǔn)確。因此,體長(zhǎng)頻度法不適宜于壽命長(zhǎng)的甲殼類[46,64]。此外,基于長(zhǎng)度-頻度模型要求附加的數(shù)據(jù)或假設(shè)的輸入,因此,可能會(huì)出現(xiàn)不同的輸出結(jié)果[64]。體長(zhǎng)頻度法依賴于確定樣本的體長(zhǎng)模態(tài),理想情況下,模態(tài)可以清楚地予以定義,體長(zhǎng)頻度分布也呈正態(tài)分布,分析相對(duì)簡(jiǎn)單直接。然而,實(shí)際情況并非如此,體長(zhǎng)分布數(shù)據(jù)的解釋通常易受人為錯(cuò)誤干擾[64]。
圖1 (a)三疣梭子蟹眼柄中的生長(zhǎng)紋;(b)中華絨螯蟹眼柄中的生長(zhǎng)紋;(c)中國(guó)明對(duì)蝦眼柄中的生長(zhǎng)紋Fig.1 The grow th bands of eyestalk of(a)Portunus trituberculatus,(b)Eriocheir sinensis and(c)Penaeus orientalis
表1 甲殼類年齡鑒定方法Tab.1 M ethods for the crustaceans age identification
脂褐素分析法不易受到人為因素的影響,但是脂褐素每年的平均累積速率不同,這取決于該物種的代謝速率。例如,紅螯螯蝦(Cherax quadricarinatus)、淡水螯蝦、歐洲鰲龍蝦和南極背褐蝦的每年的脂褐素含量百分比分別為2.0%、0.20%、0.07%和0.02%[51,65]。脂褐素含量是物種生理年齡的標(biāo)記而不是實(shí)際年齡的標(biāo)記,這需要利用已知年齡的樣品對(duì)物種和環(huán)境進(jìn)行校準(zhǔn)[54,58]。脂褐素分析法的缺點(diǎn)是對(duì)勞動(dòng)強(qiáng)度和技術(shù)要求高,在應(yīng)用于野生種群之前需要構(gòu)建物種特異性數(shù)據(jù)庫。脂褐素鑒齡研究因量化和校準(zhǔn)技術(shù)存在的困難和不確定性而發(fā)展緩慢[18]。因此,這種方法不適合在漁業(yè)管理中使用。
放射性同位素分析法得到的結(jié)果也比較準(zhǔn)確,由于元素的半衰期一般較長(zhǎng),所以該方法一般適用于壽命較長(zhǎng)的物種,花費(fèi)較高,測(cè)量元素半衰期時(shí)要求特殊的實(shí)驗(yàn)設(shè)備。所以,該方法在甲殼類年齡鑒定的中的應(yīng)用相對(duì)較少。
硬組織生長(zhǎng)紋分析法利用甲殼類眼柄或胃磨等硬組織在生長(zhǎng)過程中產(chǎn)生的生長(zhǎng)紋來鑒定年齡,利用生長(zhǎng)紋鑒定甲殼類年齡是最為精確的方法,硬組織也易于提取。硬組織生長(zhǎng)紋分析法對(duì)于甲殼類鑒齡研究來說,為直接鑒定甲殼類年齡提供了一個(gè)新方法,應(yīng)用前景廣泛。
到目前為止還沒有確定哪一種方法是最有效的獨(dú)立鑒定甲殼類年齡的方法,對(duì)于不同種類的甲殼類或者同一種類的不同年齡階段,最佳鑒齡方法也可能不一致,要對(duì)比多種鑒齡方法予以確定。對(duì)同一種甲殼類進(jìn)行年齡鑒定的時(shí)候,可以采取多種年齡鑒定方法相結(jié)合,相互交叉比較,既可以比較得出此類甲殼類各年齡最適合的年齡鑒定方法,也能相互驗(yàn)證不同方法,進(jìn)而比較得出各年齡段最適宜的年齡鑒定方法,最終精確鑒定出年齡。
在實(shí)際的生產(chǎn)實(shí)踐中,飼養(yǎng)法得到的數(shù)據(jù)適用于水產(chǎn)養(yǎng)殖或者構(gòu)建實(shí)驗(yàn)室模型中,標(biāo)記重捕法適合對(duì)洄游區(qū)域小的甲殼類鑒齡,體長(zhǎng)頻度法在分析生長(zhǎng)迅速的甲殼類時(shí)比較理想,在有校準(zhǔn)技術(shù)保證的前提下比較適合使用脂褐素分析法對(duì)甲殼類進(jìn)行鑒齡,對(duì)壽命長(zhǎng)的甲殼類鑒齡時(shí),放射性同位素分析法比較適宜。
硬組織生長(zhǎng)紋分析法通過直接讀取甲殼類硬組織中的生長(zhǎng)紋數(shù)目來鑒定其年齡,該方法的出現(xiàn)很好地解決了缺乏直接有效甲殼類鑒齡方法的問題,進(jìn)而為甲殼類漁業(yè)資源評(píng)估與管理提供理論基礎(chǔ)。在今后對(duì)甲殼類年齡生長(zhǎng)的研究中,硬組織生長(zhǎng)紋分析法的精確性和廣泛的應(yīng)用前景使該方法成為主流的甲殼類鑒齡方法。應(yīng)當(dāng)注意的是,在使用時(shí)需要改進(jìn)以下幾點(diǎn):(1)選取合適的實(shí)驗(yàn)材料(眼柄或者胃磨)、正確的截面,以及掌握熟練的切面研磨技術(shù);(2)多次多人對(duì)生長(zhǎng)紋進(jìn)行讀取,各研究者之間加強(qiáng)相互交流;(3)利用微結(jié)構(gòu)對(duì)年齡進(jìn)行進(jìn)一步研究;(4)使用其他方法進(jìn)行交叉驗(yàn)證;(5)建立以甲殼類年齡與生長(zhǎng)為基礎(chǔ)的數(shù)據(jù)庫,包括甲長(zhǎng)、甲寬、體重的范圍、性別和性腺等級(jí)的數(shù)據(jù)參考標(biāo)準(zhǔn),利用數(shù)據(jù)庫為甲殼類年齡鑒定提供參考。硬組織生長(zhǎng)紋分析法雖然是最近幾年才出現(xiàn)的新方法,但相比其他方法來說相對(duì)精確,如果能夠避免該方法的缺點(diǎn),該方法的發(fā)展?jié)摿Ρ容^大,能更好地對(duì)甲殼類年齡生長(zhǎng)進(jìn)行研究。
[1] 劉瑞玉.南海對(duì)蝦類[M].北京:農(nóng)業(yè)出版社,1988.LIU R Y.Economic shrimp and crab in North of China[M].Beijing:Science Press,1988.
[2] CASSIDY K M.Use of extractable lipofuscin as an age biomarker to determine age structure of ghost shrimp(Neotrypaea californiensis)populations in west coast estuaries[J].Explorer Site-North Coast Explorer,2008.
[3] 張治國(guó),王衛(wèi)民.魚類耳石研究綜述[J].湛江海洋大學(xué)學(xué)報(bào),2001,21(4):77-83.DOI:10:13140/RG.2.1.3453.7681.
ZHANG Z G,WANG W M.A Review of Fish Otolith Research[J].Journal of Zhanjiang Ocean University,2001,21(4):77-83.DOI:10:13140/RG.2.1.3453.7681.
[4] 裘海雅,徐東坡,施煒綱.魚類耳石與年齡關(guān)系的研究進(jìn)展[J].浙江海洋學(xué)院學(xué)報(bào)(自然科學(xué)版),2009,28(3):331-337.
QIU H Y,XU D P,SHIW G.A review of the relationship between fish otolish and age[J].Journal of Zhejiang Ocean University(Natural Science),2009,28(3):331-337.
[5] KALISH JM.Otolith microchemistry:Validation of the effects of physiology,age and environment on otolith composition[J].Journal of Experimental Marine Biology&Ecology,1989,132(3):151-178.
[6] 熊 飛,陳大慶,劉紹平,等.青海湖裸鯉不同年齡鑒定材料的年輪特征[J].水生生物學(xué)報(bào),2006,30(2):185-191.
XIONG F,CHEN D Q,LIU S P,et al.Annuli characteristics of the different ageingmaterials of Gymnocypris przewalskii przewalskii(kessler)[J].Acta Hydrobiologica Sinica,2006,30(2):185-191.
[7] 陳焜慈,鄔國(guó)民,李恒頌.珠江斑鳠年齡和生長(zhǎng)的研究[J].中國(guó)水產(chǎn)科學(xué),1999,6(4):63-67.
CHEN K C,WU G M,LIH S.Studies on the age and growth of Mystusguttatus[J].Journal of Fishery Sciences of China,1999,6(4):63-67.
[8] KOCH JD,QUISTM C.A technique for preparingfin rays and spines for age and growth analysis[J].North American Journal of Fisheries Management,2007,27(3):782-784.
[9] 謝小軍.嘉陵江南方大口鯰的年齡和生長(zhǎng)的初步研究[J].生態(tài)學(xué)報(bào),1987,7(4):73-81.
XIE X J.A study on the age and growth of silurus soldatovimeridionalis in the jialing river[J].Acta Ecologica Sinica,1987,7(4):73-81.
[10] 江建軍,許柳雄,朱國(guó)平,等.北太平洋長(zhǎng)鰭金槍魚年齡與生長(zhǎng)初步研究[J].海洋漁業(yè),2016,38(1):1-8.
JIANG JJ,XU L X,ZHU G P,et al.Preliminary study on age and growth of north Pacific albacore Thunnus alalunga[J].Marine Fisheries,2016,38(1):1-8.
[11] 馬 金,劉必林,陳新軍,等.利用耳石鑒定頭足類年齡與生長(zhǎng)研究進(jìn)展[J].海洋漁業(yè),2009,31(3):316-324.
MA J,LIU B L,CHEN X J,et al.Advances on using sta tolith to study age and growth of cephalopod[J].Marine Fisheries,2009,31(3):316-324.
[12] 劉必林.利用耳石微結(jié)構(gòu)研究印度洋西北海域鳶烏賊的年齡和生長(zhǎng)[D].上海:上海水產(chǎn)大學(xué),2006.
LIU B L.Studying age and growth of purple back flying squid(Sthenoeuthis oualaniensis)in northwest India Ocean based on statolith microstructure[D].Shanghai Ocean University,2006.
[13] 劉必林,陳新軍,方 舟,等.利用角質(zhì)顎研究頭足類的年齡與生長(zhǎng)[J].上海海洋大學(xué)學(xué)報(bào),2014,23(6):930-936.
LIU B L,CHEN X J,F(xiàn)ANG Z,et al.Study of age and growth of cephalopod using their beaks[J].Journal of Shanghai Ocean University,2014,23(6):930-936.
[14] 胡貫宇,陳新軍,劉必林,等.莖柔魚耳石和角質(zhì)顎微結(jié)構(gòu)及輪紋判讀[J].水產(chǎn)學(xué)報(bào),2015,39(3):361-370.
HU G Y,CHEN X J,LIU B L,et al.Microstructure of statolith and beak for Dosidicus gigas and its determination of growth increments[J].Journal of Fisheries of China,2015,39(3):361-370.
[15] 劉必林,陳新軍,李建華.內(nèi)殼在頭足類年齡與生長(zhǎng)研究中的應(yīng)用進(jìn)展[J].海洋漁業(yè),2015,37(1):68-76.
LIU B L,CHEN X J,LIJH.Advances on age and growth of cephalopods by using gladius,stylets and cuttlebone[J].Marine Fisheries,2015,37(1):68-76.
[16] 劉必林,陳新軍.頭足類貝殼研究進(jìn)展[J].海洋漁業(yè),2010,32(3):332-339.
LIU B L,CHEN X J.Research progress on shells in Cephalopods[J].Marine Fisheries,2010,32(3):332-339.
[17] 朱國(guó)平,宋 旗.運(yùn)用脂褐素鑒定甲殼類年齡的研究進(jìn)展[J].生態(tài)學(xué)雜志,2016,35(8):2225-2233.
ZHU G P,SONG Q.Aging crustacean based on the lipofuscin analysis:A review[J].Chinese Journal of Ecology,2016,35(8):2225-2233.
[18] KILADA R,SAINTE-MARIE B,ROCHETTE R,et al.Direct determination of age in shrimps,crabs,and lobsters[J].Canadian Journal of Fisheries&Aquatic Sciences,2012,69(11):1728-1733.
[19] WICKINS J F,LEE D O.Crustacean farming:Ranching and culture,second edition[M].2007.
[20] LUKHAUP C,LUKHAUP C.Süβwasserkrebse aus aller welt[M].Daehne Verlag,2008.
[21] NEW M B,VALENTIW C,TIDWELL JH,et al.Freshwater Prawns:Biology and Farming[M].2009.
[22] DAVIS J L D,YOUNG-WILLIAMS A C,HINES A H,et al.Comparing two types of internal tags in juvenile blue crabs[J].Fisheries Research,2004,67(3):265-274.
[23] WEINGARTNER D L.A field-tested internal tag for crayfish(decapoda,astacidea)[J].Crustaceana,1981,43(2):181-188.
[24] BUBB D H,LUCASM C,THOM T J,et al.The potential use of pit telemetry for identifying and tracking crayfish in their natural environment[J].Hydrobiologia,2002,483(1):225-230.
[25] GHERARDI F,BARBARESIS,SALVIG.Spatial and temporal patterns in the movement of Procambarus clarkii,an invasive crayfish[J].Aquatic Sciences,2000,62(2):179-193.
[26] HURYN A D,VENARSKY M P,KUHJADA B J,et al.Assessment of population size,age structure and growth rates for cave inhabiting crayfish in alabama[R].Montgomery,Departmentof Conservation and Natural Resources,2008.
[27] BU RˇICˇM,KOZáK P,VíCH P.Evaluation of different marking methods for spiny-cheek crayfish(Orconectes limosus)[J].Knowledge&Management of Aquatic Ecosystems,2008,389(389):198-201.
[28] CHAPMAN C J,SHELTON P M J,SHANKSA M,et al.Survival and growth of the norway lobster nephrops norvegicus in relation to light-induced eye damage[J].Marine Biology,2000,136(2):233-241.
[29] FREIRE J,GONZáLEZ-GURRIARáN E.New approaches to the behavioural ecology of decapod crustaceans using telemetry and electronic tags[J].Hydrobiologia,1998(371-372):123-132.
[30] LINNANE A,MERCER JP.A comparison ofmethods for tagging juvenile lobsters(Homarus gammarus L.)reared for stock enhancement[J].Aquaculture,1998,163(3-4):195-202.
[31] SCHMALENBACH I,MEHRTENSF,JANKEM,et al.A mark-recapture study of hatchery-reared juvenile european lobsters,Homarus gammarus,released at the rocky island of helgoland(german bight,north sea)from 2000 to 2009[J].Fisheries Research,2011,108(1):22-30.
[32] MCPHERSON R.Assessmentof t bar anchor tags for marking the blue swimmer crab portunus pelagicus(L.)[J].Fisheries Research,2002,54(54):209-216.
[33] ROBINSON CA,THOM T J,LUCASM C.Ranging behaviour of a large freshwater invertebrate,the white-clawed crayfish austropotamobius pallipes[J].Freshwater Biology,2000,44(3):509-521.
[34] SHARPW C,LELLISW A,BUTLER M J,et al.The use of coded microwire tags in mark-recapture studies of juvenile caribbean spiny lobster,Panulirus argus[J].Journal of Crustacean Biology,2000,20(3):510-521.
[35] STEWART J.Long-term recaptures of tagged scyllarid lobsters(Ibacus peronii)from the east coast of australia[J].Fisheries Research,2003,63(2):261-264.
[36] STREEVER W J.Energy economy hypothesis and the troglobitic crayfish[J].American Midland Naturalist,1996,135(2):357-366.
[37] RELINI L O,RELINIG.Seventeen instars of adult life in female Aristeus antennatus(crustacea:Decapoda:Aristeidae).A new interpretation of life span and growth[J].Journal of Natural History,1998,32(10-11):1719-1734.
[38] OH C W,HARTNOLL R G,NASH R D M.Population dynamics of the common shrimp, Crangon crangon(L.),in port erin bay,isle of man,irish sea[J].ICESJournal ofMarine Science,1999,56(5):718-733.
[39] DEVALM C,TOSUNOGˇLU Z.Length-based estimates of growth parameters,mortality rates,and recruitment of Astacus leptodactylus(eschscholtz,1823)(decapoda,astacidae)in unexploited inland waters of the northern marmara region,european turkey[J].Crustaceana,2007,80(6):655-665.
[40] CHáZAROOLVERA S.Growth,mortality,and fecundity of palaemonetes pugio from a lagoon system inlet in the southwestern gulf of Mexico[J].Journal of Crustacean Biology,2009,29(2):201-207.
[41] DHAOUADI-HASSEN S,BOUMA?ZA M.Reproduction and population dynamics of Atyaephyra desmarestii(decapoda,caridea)from the sidi salem dam lake(northern tunisia)[J].Crustaceana,2009,82(2):129-139.
[42] PAULY D,MORGAN G R.Length-based methods in fisheries research[J].ICLARM Conference Proceedings,1987(13):468.
[43] JENNINGS S,KAISER M J,REYNOLDS J D.Marine Fisheries Ecology[M].Blackwell Publishing,2001.
[44] ANDRADE H A,KINASPG.Estimation of birthdates and catch-at-age using length frequency analysis(lfa),with application for skipjack tuna(Katsuwonus pelamis)caught in the southwest atlantic[J].ICESJournal ofMarine Science,2004,61(5):798-811.
[45] MALIK H A,SALMAN M D,AL-ADHUB A Y.Population dynamics of the hymenosomatid crab elamnopsis kempi in a brackish subtidal region of Basrah,Iraq[J].Scientia Marina,1995(59):1-13.
[46] SHEEHY M,BANNISTER R,WICKINS JF,et al.New perspectives on the growth and longevity of the european lobster[J].Canadian Journal of Fisheries&Aquatic Sciences,1999,56(56):1904-1915.
[47] BOOS JH,SILVA-CASTIGLIONID,SCHACHT K,et al.Crescimento de aegla jarai bond-buckup&buckup(crustacea,anomura,aeglidae)[J].Revista Brasileira De Zoologia,2006,23(2):490-496.
[48] HANNOVER A.Mikroskopiske unders?gelser af neresysteme[J].Kgl Danbske Videsk Kabernes Selkobs naturv Math Aft Copenhagen,1842(10):1-112.
[49] HALLIWELL B,GUTTERIDGE JM.Oxygen toxicity,oxygen radicals,transition metals and disease[J].Biochemical Journal,1984,219(1):1-14.
[50] MEDINA A,VILA Y,MEGINA C,et al.A histological study of the age-pigment,lipofuscin,in dendrobranchiate shrimp brains[J].Journal of Crustacean Biology,2000,20(3):423-430.
[51] BLUHM B A,BREY T.Age determination in the antarctic shrimp notocrangon antarcticus(crustacea:Decapoda),using the autofluorescent pigment lipofuscin[J].Marine Biology,2001,138(2):247-257.
[52] BELCHIER M,EDSMAN L,SHEEHY M R J,et al.Estimating age and growth in long-lived temperate freshwater crayfish using lipofuscin[J].Freshwater Biology,1998,39(3):439-446.
[53] PEREIRA C R,D’INCAO F,F(xiàn)ONSECA D B.Bilateral comparison of in situ neurolipofuscin accumulation in Callinectes sapidus caught in thewild[J].Journal of the Marine Biological Association of the United Kingdom,2010,90(3):563-567.
[54] MAXWELL K E,MATTHEWS T R,SHEEHY M R,et al.Neurolipofuscin is a measure of age in Panulirus argus,the caribbean spiny lobster,in florida[J].Biological Bulletin,2007,213(1):55-66.
[55] ETTERSHANK G,MACDONNELL I,CROFT R.The accumulation of age pigment by the fleshfly,sarcophaga bullata parker(diptera:Sarcophagidae)[J].Australian Journal of Zoology,1983,31(2):131-138.
[56] SHEEHY M,CAPUTIN,CHUBB C,et al.Use of lipofuscin for resolving cohorts ofwestern rock lobster panul[J].Canadian Journal of Fisheries&Aquatic Sciences,2011,55(4):925-936.
[57] KODAMA K,SHIRAISHIH,MORITA M,et al.Verification of lipofuscin-based crustacean ageing:Seasonality of lipofuscin accumulation in the stomatopod Oratosquilla oratoria in relation to water temperature[J].Marine Biology,2006,150(1):131-140.
[58] SHEEHY M R J,GREENWOOD JG,F(xiàn)IELDER D R.More accurate chronological age determination of crustaceans from field situations using the physiological age marker,lipofuscin[J].Marine Biology,1994,121(2):237-245.
[59] GARDNERC,JENKINSONA,HEIJNISH.Estimating intermoult duration in giant crabs Pseudocarcinus gigas[J].Agricultural&Veterinary Sciences,2002:17-28.
[60] ERNST B,ORENSANZ JM,ARMSTRONG D A.Spatial dynamics of female snow crab(Chionoecetes opilio)in the eastern bering sea[J].Canadian Journal of Fisheries&Aquatic Sciences,2005,62(62):250-268.
[61] 吳萬榮.布氏哲羅鮭年齡與生長(zhǎng)的初步研究[J].水產(chǎn)學(xué)報(bào),1987,11(1):37-44.
WUW R.On the age and growth of Hucho bleekeri kimura[J].Journal of Fisheries of China,1987,11(1):37-44.
[62] 王繼隆,唐富江,劉 偉.大麻哈魚的年齡與生長(zhǎng)[J].水生生物學(xué)報(bào),2012,36(6):1149-1155.
WANG JL,TANG F J,LIUW.Age and growth of chum salmon[J].Acta Hydrobiologica Sinica,2012,36(6):1149-1155.
[63] KILADA R,ACU?A E.Direct age determination by growth band counts of three commercially important crustacean species in chile[J].Fisheries Research,2015(170):134-143.
[64] HARTNOLL R G.Growth in crustacea—twenty years on[M].Netherlands:Springer,2001.
[65] SHEEHY M R.Role of environmental temperature in aging and longevity:Insights from neurolipofuscin[J].Archives of Gerontology&Geriatrics,2002,34(3):287-310.
Advance on methods for the age identification of crustaceans
JIANG Rui1,LIU Bi-lin1,2,3,4,ZHANG Jian1,2,3,4,CHEN Xin-jun1,2,3,4,NIZhen-Yu1,LIN Jing-yuan1
(1.College of Marine Sciences,Shanghai Ocean University,Shanghai201306,China;2.National Distant-water Fisheries Engineering Research Center,ShanghaiOcean University,Shanghai 201306,China;3.The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources,Ministry of Education,ShanghaiOcean University,Shanghai 201306,China;4.Collaborative Innovation Center for Distant-water Fisheries,Shanghai 201306)
Crustaceans are widely distributed in the oceans worldwide including the polar region.Their high species diversity and large quantity make them become an important part of fishery resources.Age is the essential part of the aquatic animal life history study,as well as one of themost important parameters in the fish population dynamicsmodels and fishery resources evaluation.Mostaquatic animals’age can be identified by counting the growth bands in the hard tissue.However,crustaceans grow up through molt,leading to the original shells replaced by the new ones,which causes the periodic record of their calcified structures disappearing.Therefore,the age identification of crustaceans has never been perfectly accomplished.Main existingmethods for the crustaceans’age identification are rearing in captivity,tagging and recapture,sizefrequency analysis,lipofuscin-based ageing,radioisotope analysis and calcified structures analysis.Rearing in captivity is the most accurate and reliable method for the crustaceans’age identification.Tagging and recapturemethod ismore directand effective.Size-frequency analysismethod ismost commonly used by early scholars.In thismethod,crustaceans’body length data are firstly classified into different body length groups,and then converted into age groups by Von Bertalanffy growth equation or other equation models.For the relationship between the morphological characteristics of crustaceans and their ages can not be established,lipofuscin-based ageingmethod is applied for the age identification ofmany invertebrates.Lipofuscin is related with cells aging,which is one of themost obvious age tags in cells.Radiometric ageingmethod is applicable to determine the crustaceans’shell age and the results are also comparatively accurate.This method is generally used for long-lived species based on the long elementhalf-life,but the elementhalf-lifemeasuremeat requires special equipment so the cost for thismethod is very high.So it is less used.Calcified structures analysis is a kind ofmethod to count the growth bands that generate in the crustaceans’eye stalk or gastric when they grow.Calcified structures analysis is themost accuratemethod,and the needed hard tissue is easy to extract.The calcified structure analysis method provides a new way for the direct age identification of crustaceans,and its application prospect is extensive.Rearing in captivity method,tagging and recapture method and radiometric ageing method all are comparatively accurate.However,the data obtained from the rearing in captivity method is not applicable in the natural environment,and the radiometric ageingmethod is very expensive.So both methods have limitations in practice.The tagging and recapture method and sizefrequency analysis method which are most widely used also have their disadvantages.Compared to sizefrequency analysismethod,lipofuscin-based ageing method has obvious advantages,but the labor intensity and technical requirements are high.Calcified structures analysismethod is the age identification technology that has appeared in recent years,and the age is identified by directly counting the number of growth bands in crustaceans’hard tissue.Thismethod is a good solution to the lack of direct and effective crustaceans’age identification,and provides the theoretical basis for the assessment and management of crustacean fishery resources,but there are also some disadvantages like strong man-made subjectivity.In this paper,themethods of crustaceans’age identification are reviewed and summarized,the differentmethods are compared and analyzed to get the advantages and disadvantages,so as to provide the basis for the assessment and management of crustacean fishery resources.
crustaceans;age and growth;age determination methods
S 931
A
1004-2490(2017)04-0471-10
2016-12-21
國(guó)家自然科學(xué)基金(NFSC41306127,NSFC41276156);上海市自然科學(xué)基金(13ZR1419700);教育部博士點(diǎn)基金(20133104120001)
蔣 瑞(1994-),女,碩士研究生,主要從事漁業(yè)資源學(xué)研究。
劉必林,副教授。E-mail:bl-liu@shou.edu.cn