潘維,徐茜茹,盧琪,劉越,薛琬蕾,宋必秀,都韶婷
(浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,浙江杭州310018)
不同氮形態(tài)對(duì)鎘脅迫下小白菜生長(zhǎng)及鎘含量的影響
潘維,徐茜茹#,盧琪,劉越,薛琬蕾,宋必秀,都韶婷*
(浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,浙江杭州310018)
【目的】研究施用速效氮肥(全銨、全硝、硝銨復(fù)合和尿素)對(duì)鎘(Cd)污染土壤小白菜生長(zhǎng)和Cd含量的影響,為合理選擇氮肥,緩解Cd對(duì)植物生長(zhǎng)的脅迫并減少Cd在作物體內(nèi)的積累提供依據(jù)?!痉椒ā恳孕“撞藶樵嚥?,采用菜園土進(jìn)行了盆栽試驗(yàn)。以CdCl2溶液模擬土壤Cd脅迫,設(shè)土壤Cd含量0、1、3和5mg/kg 4個(gè)水平,每個(gè)脅迫水平分別供應(yīng)小白菜銨態(tài)氮、硝態(tài)氮、硝銨(1∶1)和尿素4種氮形態(tài),總氮添加量均為N 400mg/kg土。收獲后分析各處理間小白菜的生長(zhǎng)、光合、氧化脅迫及Cd含量的差異?!窘Y(jié)果】1)與無(wú)Cd對(duì)照相比,Cd1mg/kg處理水平下,全銨、全硝、硝銨和尿素處理的小白菜可食部分鮮重分別下降了31%、16%、21%和26%;Cd3mg/kg處理水平下分別下降了58%、28%、35%和39%;Cd5mg/kg處理水平下分別下降了83%、38%、52%和69%。全硝和硝銨處理間小白菜Cd耐受系數(shù)(TICd)差異不顯著,但均高于全銨和尿素處理。2)與無(wú)Cd對(duì)照相比,Cd1mg/kg處理下,全銨、全硝、硝銨和尿素處理小白菜葉片的光合速率分別下降了14%、10%、12%和13%;Cd3mg/kg處理分別下降了33%、22%、25%和40%;Cd5mg/kg處理分別下降了53%、42%、41%和56%。與無(wú)Cd對(duì)照相比,1mg/kg Cd濃度時(shí)全銨、全硝、硝銨和尿素處理小白菜葉片的丙二醛含量分別增加了11%、4%、9%和11%;超氧自由基產(chǎn)生速率分別增加了5%、1%、2%和4%,綜合比較,以全硝處理下小白菜受Cd的光合抑制及氧化脅迫相對(duì)最小。3)3個(gè)Cd處理水平,均以施用全銨和尿素處理的小白菜體內(nèi)Cd含量最高,硝銨處理次之,全硝處理最低?!窘Y(jié)論】在供試菜園土上,小白菜施用銨態(tài)氮和尿素易引起Cd在小白菜體內(nèi)的積累。施用硝態(tài)氮可緩解Cd誘導(dǎo)的光合抑制和氧化脅迫,減輕Cd對(duì)小白菜的生長(zhǎng)脅迫,降低作物體內(nèi)Cd的含量。
鎘;速效氮;小白菜;光合作用;氧化脅迫;鎘含量
自20世紀(jì)初發(fā)現(xiàn)鎘(Cd)以來(lái),Cd被廣泛應(yīng)用于電鍍工業(yè)、化工業(yè)、電子業(yè)和核工業(yè)等領(lǐng)域,相當(dāng)數(shù)量的Cd被排入環(huán)境,引起全球性土壤Cd污染[1]。如,美國(guó)加州南部農(nóng)業(yè)用地土壤Cd含量為0.005~2mg/kg[2];英國(guó)、法國(guó)污染區(qū)土壤Cd含量分別為1.5~5.7mg/kg[3]和3.1~31.4mg/kg[4];澳大利亞、尼日利亞和印度的污染區(qū)土壤Cd含量分別為1.0~9.8 mg/kg[5]、0.41~17.23mg/kg[6]和0.55~8.85mg/kg[7]。我國(guó)土壤Cd污染形勢(shì)也極為嚴(yán)峻。20世紀(jì)末,我國(guó)土壤Cd污染面積已達(dá)13000hm2,涉及11個(gè)省市的25個(gè)地區(qū)[8]。2014年全國(guó)土壤污染調(diào)查公報(bào)顯示,我國(guó)土壤中Cd的點(diǎn)位超標(biāo)率已高達(dá)7.0%,中輕度污染達(dá)1.3%。耕地中Cd的點(diǎn)位超標(biāo)率則更高,為調(diào)查污染物之首[9]。近10年來(lái)的文獻(xiàn)資料也表明我國(guó)耕地Cd污染形勢(shì)嚴(yán)峻[10]。如我國(guó)南部土壤Cd含量為0.121~3.153mg/kg[11];珠江口農(nóng)業(yè)用地土壤Cd含量達(dá)0.099~3.778mg/kg[12];北方30個(gè)污灌區(qū)土壤Cd含量為0.05~2.23mg/kg[13]。我國(guó)作為一個(gè)耕地資源短缺的國(guó)家,大面積的中、輕和輕微Cd污染耕地仍用于農(nóng)業(yè)生產(chǎn)。耕作土壤中的Cd易被農(nóng)作物根系吸收且易在體內(nèi)積累,直接影響作物的生長(zhǎng)和發(fā)育,造成農(nóng)作物減產(chǎn)及Cd的積累[14]。作物中的Cd還將通過(guò)食物鏈進(jìn)入人體,危害人類(lèi)健康。因此,尋找合適的方法以緩解Cd對(duì)作物的生長(zhǎng)脅迫并降低污染土壤中作物體內(nèi)Cd的含量尤為重要。通過(guò)源頭控制,即通過(guò)修復(fù)污染土壤以減輕農(nóng)作物對(duì)重金屬的積累是最常見(jiàn)的方法之一[15]。然而,這些方法雖能減少土壤重金屬污染,但具有較大的局限性。例如,土壤淋洗法不適用于粘質(zhì)土壤,且提取劑選擇不當(dāng)易破壞土壤結(jié)構(gòu),甚至造成土壤的二次污染[16];土壤固化技術(shù)中,常用的固化劑如粘土、水泥、沸石、礦物及磷酸鹽[17–18]因其高成本而不適合大面積土壤的修復(fù)[19];植物修復(fù)技術(shù)存在周期長(zhǎng)、修復(fù)效率較低的問(wèn)題[20]。因此,尋找操作簡(jiǎn)單且高效的方法以減輕Cd對(duì)植物的毒害并降低作物中Cd含量仍然迫切。
氮元素是作物必需的營(yíng)養(yǎng)物質(zhì)之一。氮肥的施用也是非常重要的農(nóng)業(yè)措施[21]。以往研究發(fā)現(xiàn),植物在吸收銨態(tài)氮時(shí)會(huì)導(dǎo)致H+釋放至土壤中,使土壤pH值降低[22],從而增強(qiáng)土壤Cd的生物有效性。相反,施加硝態(tài)氮肥可促進(jìn)植物體內(nèi)OH–的釋放,以維持土壤酸堿度的平衡,從而降低了土壤Cd的有效性。該觀點(diǎn)在Florijn等[23]和Zaccheo等[24]的土培試驗(yàn),以及Eriksson[25]、Willaert和Verloo[26]和Liu等[27]的水培試驗(yàn)中得到證實(shí)。然而,也有一些研究發(fā)現(xiàn)了相反的現(xiàn)象:施用硫酸銨的水稻,其抗Cd脅迫能力高于硝酸鈣[28];硝態(tài)氮處理下超積累植物遏藍(lán)菜地上部Cd含量是銨態(tài)氮處理下的2倍[29];施用硝態(tài)氮的東南景天中的Cd含量也高于銨態(tài)氮處理[30]。這些研究認(rèn)為施加硝態(tài)氮肥可促進(jìn)Cd的協(xié)同運(yùn)輸,從而使植株長(zhǎng)勢(shì)較差且積累較多的Cd[31–32]。雖然上述研究的結(jié)論并不一致,但均表明了氮肥的種類(lèi)對(duì)植物抗Cd脅迫及Cd在植物體內(nèi)積累的能力具有較大的影響。這些研究結(jié)論的不一致可能與土壤特性尤其是土壤緩沖性有關(guān)[33]。隨著土壤酸化的日益嚴(yán)峻,南方酸性土壤的緩沖性弱的問(wèn)題受到了廣泛關(guān)注[34]。研究氮肥形態(tài)不同對(duì)緩沖性較差的Cd污染土壤中植株生長(zhǎng)及Cd積累的影響具有理論實(shí)踐意義。此外,上述已報(bào)道的研究均以谷類(lèi)作物或超積累植物為研究對(duì)象,而關(guān)于這些氮肥對(duì)Cd污染蔬菜的影響研究未見(jiàn)報(bào)道。事實(shí)上,來(lái)源于蔬菜的Cd攝入比重極高,可占Cd攝入量的70%~90%[35]。Shentu等[36]采用土培試驗(yàn)研究了Cd0~7mg/kg對(duì)小白菜、番茄和蘿卜生長(zhǎng)和Cd吸收的影響;Liu等[37]的大白菜土培試驗(yàn)選用了Cd1.0、2.5和5mg/kg處理濃度;Chen等[38]則設(shè)置Cd3、6、9、12和24mg/kg濃度處理,探明不同程度Cd污染土壤對(duì)大白菜和芥菜的生長(zhǎng)的影響;楊蕓等[39]研究了Cd10mg/kg處理濃度下番茄生長(zhǎng)的情況。結(jié)合北方3個(gè)區(qū)域(東北、黃淮海、西北地區(qū))和南方4個(gè)區(qū)域(華中、西南、華東、華南地區(qū))遠(yuǎn)離城郊的未受到工業(yè)“三廢”、汽車(chē)尾氣等污染的共503個(gè)典型農(nóng)村菜田耕層土壤樣品的調(diào)查數(shù)據(jù),即未污染區(qū)土壤Cd含量達(dá)0.03~3.64mg/kg[40],并適當(dāng)考慮菜田Cd污染的普遍性,本研究擬通過(guò)1、3和5mg/kg Cd的土壤盆栽試驗(yàn),分析對(duì)比幾種在中國(guó)施用較為普遍的速效氮肥(銨態(tài)、硝態(tài)、硝銨復(fù)合和酰胺態(tài)氮肥)對(duì)小白菜生長(zhǎng)影響和Cd含量的差異,為重金屬輕微污染土壤的利用及食品安全提供施肥理論依據(jù)。
1.1 供試土壤和作物
盆栽作物為小白菜(Brassica chinensis L.,上海青)。供試土壤取自浙江杭州近郊區(qū)菜園土壤(0—40cm)。供試土壤經(jīng)風(fēng)干,過(guò)4mm尼龍篩充分搖勻。土壤pH、電導(dǎo)率、陽(yáng)離子交換量、有機(jī)質(zhì)、銨態(tài)氮和硝態(tài)氮按鮑士旦[41]的方法測(cè)定。土壤總Cd含量按魯如坤[42]的方法將土壤用4∶1∶2的HNO3/ HClO4/HF的強(qiáng)酸消解后用原子吸收儀測(cè)定。土壤基本理化性質(zhì):pH7.2、電導(dǎo)率0.7mS/cm、銨態(tài)氮2.5 mg/kg、硝態(tài)氮13.4mg/kg、有機(jī)質(zhì)2.5g/kg、陽(yáng)離子交換量7.9cmol/kg、總Cd含量0.23mg/kg。
1.2 盆栽處理
供試土壤為人工模擬Cd污染土壤,設(shè)Cd污染水平1、3和5mg/kg土,將處理需要的Cd量以CdCl2溶液的形式先與少量土壤充分混合均勻,再與剩余土壤混合均勻,放置老化2個(gè)月后用于盆栽試驗(yàn)[36,43]。設(shè)4個(gè)氮肥處理,分別為銨態(tài)氮[(NH4)2SO4]、硝態(tài)氮(NaNO3)、硝銨(1∶1)和尿素,氮肥施用量均為N400mg/kg,每個(gè)處理重復(fù)3次。盆栽試驗(yàn)在自然通風(fēng)條件下進(jìn)行,平均氣溫為9℃,相同大小的小白菜種子經(jīng)0.1%H2O2表面消毒20min后,用蒸餾水徹底沖洗,于無(wú)菌水中浸泡過(guò)夜。隨后,轉(zhuǎn)移至普通土壤中培養(yǎng)至發(fā)芽。當(dāng)幼苗長(zhǎng)至雙葉齡(大約播種后20d)時(shí),挑選長(zhǎng)勢(shì)一致的幼苗移栽至盆栽土壤中,每盆4株。生長(zhǎng)過(guò)程中澆灌去離子水,保持土壤含水量于60%左右。移栽70d后分析葉片光合速率,隨后收獲,稱(chēng)重,并測(cè)定各部位Cd含量。
1.3 測(cè)定指標(biāo)及方法
葉片光合速率測(cè)定:選取同一部位的完全展開(kāi)葉片,用光合作用分析儀(LI-6400型,Li-COR公司,美國(guó))測(cè)定。參數(shù)如下:普通葉室;紅、藍(lán)光源;光子通量密度1200μmol/(m2·s);葉片面積4cm2;葉室相對(duì)濕度70%;CO2濃度424μL/L。
小白菜組織Cd含量測(cè)定:用自來(lái)水沖去小白菜根系表面粘附的泥土,然后將根部浸于20mmol/L Na2-EDTA溶液中保持15min以去除吸附在根表面的Cd[44]。用蒸餾水沖洗根部并迅速用吸水紙吸干后進(jìn)行稱(chēng)重。將植物組織分裝于信封中,置于烘箱內(nèi),于105℃下殺青30min,70℃下烘干至恒重。對(duì)烘干的植物樣品進(jìn)行稱(chēng)重和研磨。研磨后的樣品粉末用HNO3/HCl(3∶1,v/v)消煮至澄清,隨后用原子吸收分光光度計(jì)(ICE3300型,賽默飛世爾科技公司,美國(guó))測(cè)定[31]。
土壤有效態(tài)鎘含量測(cè)定:按GB/T23739-2009進(jìn)行測(cè)定[46],稱(chēng)取5.0g土壤于100mL三角瓶?jī)?nèi),加入0.005mol/L二乙三胺五乙酸(DTPA)–0.1mol/L三乙醇胺(TEA)–0.01mol/L CaCl2浸提液,25℃振蕩2h。用0.45μm的纖維素濾膜過(guò)濾浸提液,稀釋后用原子吸收分光光度計(jì)測(cè)定。
1.4 數(shù)據(jù)統(tǒng)計(jì)與分析
小白菜Cd耐受指數(shù)(TICd)按Gill等[47]的方法計(jì)算:
TICd(%)=1、3或5mg/kg Cd污染土壤中植物組織平均干重/0mg/kg Cd土壤中植物組織平均干重×100。
小白菜Cd轉(zhuǎn)移系數(shù)(TF)按Mattina等[48]的方法計(jì)算:
TF=小白菜目標(biāo)組織Cd含量/小白菜起始組織Cd含量。
有效態(tài)鎘含量測(cè)定重復(fù)5次,其余指標(biāo)測(cè)定重復(fù)3次,所有圖表用Kyplot軟件繪制。圖和表中的值為平均值及標(biāo)準(zhǔn)差,不同字母表示差異達(dá)5%顯著水平。
2.1 不同氮肥對(duì) Cd污染土壤小白菜生長(zhǎng)的影響
如圖1所示,隨著土壤中鎘濃度的增加,小白菜的生物量均出現(xiàn)了下降的趨勢(shì)。與未添加Cd土壤的小白菜植株相比,Cd污染水平為1mg/kg時(shí),施用銨態(tài)氮、硝態(tài)氮、硝銨1∶1和尿素的小白菜可食部分鮮重分別下降了31%、16%、21%和26%;Cd污染水平為3mg/kg時(shí),分別下降了58%、28%、35%和39%;Cd污染水平為5mg/kg時(shí),分別下降了83%、38%、52%和69%。由此可見(jiàn),施用硝態(tài)氮和硝銨比1∶1的氮肥時(shí)Cd對(duì)小白菜生長(zhǎng)的抑制作用相對(duì)較小。
Cd耐受系數(shù)(TICd)通常被用于反映植株抗Cd生長(zhǎng)脅迫的能力。表1結(jié)果表明,隨著Cd處理濃度的增加,所有氮肥處理下小白菜的TICd均出現(xiàn)了不同程度的降低。當(dāng)Cd處理濃度為1mg/kg時(shí),全硝與硝銨1∶1處理間TICd差異不顯著,但均高于全銨和尿素處理。Cd處理濃度為3mg/kg時(shí),全硝和硝銨1∶1處理下小白菜的TICd分別比全銨和尿素處理高了約30%~40%,達(dá)顯著性水平。Cd處理濃度為5 mg/kg時(shí),全硝處理下小白菜的TICd與硝銨1∶1處理間的差異仍然未達(dá)顯著水平,但分別是全銨和尿素處理的2.5和2.7倍。上述結(jié)果表明:全銨和尿素處理下TICd降幅遠(yuǎn)大于全硝和硝銨1∶1處理;與全銨和尿素處理相比,全硝和硝銨1∶1處理下的小白菜具有更強(qiáng)的Cd耐受能力。
2.2 不同氮形態(tài)對(duì) Cd 污染土壤小白菜葉片光合作用的影響
如表2所示,隨著土壤Cd濃度的提高,4個(gè)氮形態(tài)處理小白菜的光合作用速率均受到了嚴(yán)重的抑制。與對(duì)照相比,在Cd1mg/kg處理,施加銨態(tài)氮、硝態(tài)氮、硝銨1∶1和酰胺態(tài)氮的小白菜葉片光合作用速率分別下降了14%、10%、12%和13%;Cd3mg/kg處理的分別下降了33%、22%、25%和40%;Cd5mg/kg處理的分別下降了53%、42%、41%和56%。施用銨態(tài)氮和酰胺態(tài)氮小白菜光合速率受到的抑制高于施用硝態(tài)氮和硝銨1∶1處理,并且該差異隨著Cd濃度的提高而加大。
圖1 鎘污染土壤中施用不同氮肥小白菜的可食部分鮮重Fig. 1 Fresh biomass of the edible part of pakchoi supplied with different N forms under different levels of Cd-contamination
表1 鎘污染土壤中施用不同形態(tài)氮小白菜鎘耐受系數(shù) (TICd)Table 1 Cd tolerance index (TICd) of pakchoi in different N form supply under different Cd stress
表2 土壤不同鎘脅迫水平、施用不同形態(tài)氮小白菜葉片的光合速率[μmol/(m2·s)]Table 2 Photosynthetic rate of pakchoi supplied with different N forms under Cd stress levels
2.3 不同速效氮肥對(duì) Cd 誘導(dǎo)的氧化脅迫的影響
如圖2所示,與未添加Cd對(duì)照相比,1mg/kg Cd污染土壤中施加銨態(tài)氮、硝態(tài)氮、硝銨1∶1和酰胺態(tài)氮的小白菜葉片MDA含量增加了11%、4%、9%和11%;產(chǎn)生速率增加了5%、1%、2%和4%。硝態(tài)氮處理下Cd誘導(dǎo)的氧化脅迫未達(dá)顯著水平,而銨態(tài)氮和酰胺態(tài)氮處理的小白菜葉片MDA含量和產(chǎn)生速率受Cd污染影響顯著。
2.4 不同速效氮形態(tài)對(duì)小白菜組織 Cd 含量的影響
土壤Cd污染程度的增加,可使所有氮肥處理下的小白菜葉片和莖Cd含量成倍增加(圖3)。然而,不同速效氮肥供應(yīng)下小白菜體內(nèi)Cd含量存在一定差異。于1mg/kg Cd濃度下,全銨與尿素處理小白菜葉片和莖Cd含量無(wú)顯著差異,但均顯著高于全硝和硝銨復(fù)合處理,增幅可達(dá)70%~150%。3mg/kg和5 mg/kg Cd處理下,不同形態(tài)氮肥處理小白菜Cd含量變化趨勢(shì)較為接近,3mg/kg Cd濃度時(shí),全銨、尿素和硝銨處理下小白菜體內(nèi)Cd含量分別是全硝處理的2.5、1.9和1.3倍(葉)和2.6、2.3和1.2倍(莖);5mg/kg Cd濃度時(shí),則分別是全硝處理的2.8、1.6和1.1倍(葉)和5.3、5.0和1.5倍(莖)。上述結(jié)果表明,全硝處理下的小白菜Cd含量最低,硝銨處理次之,全銨和尿素處理最高。并且,隨著Cd處理濃度的增加,氮肥處理之間的差異也更為明顯。
根據(jù)小白菜葉、莖和根中Cd的含量,可計(jì)算Cd轉(zhuǎn)移系數(shù)TF根至地上部、TF根至莖和TF莖至葉用以研究植物體內(nèi)Cd的分配情況。如圖4所示,1mg/kg Cd土壤中,銨態(tài)氮處理的小白菜有著最大的TF根至地上部,比硝態(tài)氮、硝銨1∶1和酰胺態(tài)處理分別增加了82%、52%和8%,說(shuō)明施加銨態(tài)氮的小白菜中Cd從根轉(zhuǎn)移至地上部的能力最強(qiáng)。銨態(tài)氮及酰胺態(tài)氮處理下小白菜的TF根至莖無(wú)明顯差異,約為硝態(tài)氮和硝銨1∶1處理的1.5~1.9倍,說(shuō)明銨態(tài)氮和酰胺態(tài)氮顯著提高了小白菜中Cd從根至莖的轉(zhuǎn)運(yùn)能力。硝態(tài)氮、硝銨1∶1和酰胺態(tài)氮處理下的TF莖至葉無(wú)顯著差異,分別比銨態(tài)氮處理高了7%、8%和3%,說(shuō)明在硝態(tài)氮和硝銨1∶1處理下,進(jìn)入小白菜地上部的Cd在植物體內(nèi)更易向葉轉(zhuǎn)運(yùn)。
2.5 不同速效氮形態(tài)化肥對(duì)土壤 pH和 Cd 有效性的影響
由圖5可知,各氮肥處理之間土壤的pH差異顯著。其中,全硝處理下土壤pH最高。袁波等[50]研究表明土壤pH對(duì)土壤有效態(tài)Cd含量影響較大,通常情況下呈負(fù)相關(guān)性。我們的結(jié)果也符合這一規(guī)律,即硝態(tài)氮處理下土壤有效態(tài)Cd含量最低,硝銨1∶1處理次之,酰胺態(tài)氮和銨態(tài)氮處理最高。
圖2 不同鎘脅迫水平、施用不同形態(tài)氮小白菜葉片的 MDA 含量和產(chǎn)生速率Fig. 2 MDA concentrations andproduction rates in leaves of pakchoi supplied with different N forms under different Cd stress levels
圖3 不同鎘脅迫水平和施用不同形態(tài)氮小白菜組織鎘含量Fig. 3 Cd concentrations in pakchoi supplied with different N forms under different Cd stress levels
本研究的結(jié)果表明,Cd會(huì)抑制小白菜的生長(zhǎng),引起生物量的下降。在土壤Cd處理濃度為1、3或5mg/kg時(shí),供應(yīng)銨態(tài)氮和尿素的小白菜生物量減產(chǎn)高于供應(yīng)硝態(tài)氮和硝銨1∶1處理(圖1)。由耐受系數(shù)TICd值可知,全硝和硝銨處理下小白菜對(duì)Cd的耐性無(wú)顯著差異,并均高于全銨和尿素處理(表1)。這些數(shù)據(jù)均說(shuō)明了Cd污染土壤中,施用硝態(tài)氮肥時(shí)Cd對(duì)小白菜的生長(zhǎng)脅迫低于全銨及尿素處理。雖然硝銨1∶1處理下的小白菜的Cd耐受性與全硝處理無(wú)顯著性差異,但該處理下小白菜的生物量仍低于全硝處理,這可能與小白菜是一種喜硝作物有關(guān)[51]。因此,在本供試土壤條件下,綜合考慮Cd對(duì)植株生長(zhǎng)的抑制及小白菜喜硝的特點(diǎn),全硝供氮形式為最優(yōu)選。眾所周知,Cd對(duì)植物光合作用的抑制引起植物生物量的下降,被認(rèn)為是Cd引起植物生長(zhǎng)脅迫的重要成因之一[52–53]。本研究結(jié)果表明,硝氮處理下小白菜葉片的光合性能因Cd引起的下降顯著小于銨氮和尿素處理(表2)。這可能是導(dǎo)致硝氮處理下小白菜生物量下降幅度相較于銨肥和尿素處理低的可能原因之一。另一方面,Cd脅迫能誘導(dǎo)植物體內(nèi)氧化脅迫的發(fā)生[54]。本研究表明,Cd脅迫均導(dǎo)致了各種供氮處理下小白菜葉片中O2–的累積(圖2)。其中,銨氮和尿素處理下小白菜葉片O2–的積累更為顯著。隨著活性氧的積累,細(xì)胞膜脂質(zhì)過(guò)氧化加劇,組織或器官脂質(zhì)過(guò)氧化反應(yīng)將產(chǎn)生MDA[55–56]。本研究也顯示,全銨和尿素處理下小白菜葉片MDA積累幅度也超過(guò)了全硝和硝銨復(fù)合處理。因此,我們認(rèn)為全銨和尿素處理下Cd引起的氧化脅迫大于硝肥處理也可能是導(dǎo)致硝肥處理下小白菜生物量下降幅度相較于全銨和尿素處理低的原因。
圖4 1 mg/kg 鎘脅迫水平下施用不同形態(tài)氮小白菜的鎘轉(zhuǎn)移系數(shù)Fig. 4 TFs of Cd in pakchoi supplied with different N forms under 1 mg/kg Cd stress level
圖5 1 mg/kg 鎘脅迫下施用不同形態(tài)氮的土壤 pH 和有效態(tài)鎘含量Fig. 5 Soil pH values and available Cd contents affected by nitrogen forms under 1 mg/kg of Cd stress level
由于對(duì)食物的大量需求,中國(guó)仍有大面積受Cd污染的土壤用于農(nóng)業(yè)生產(chǎn)[57]。土壤Cd污染引起的農(nóng)產(chǎn)品Cd積累已成為農(nóng)業(yè)生產(chǎn)及食品安全的嚴(yán)峻問(wèn)題。由于中國(guó)大多數(shù)地區(qū)土壤的平均肥力不高,氮素不易在土壤中積累,因此氮肥在農(nóng)業(yè)中有著廣泛的應(yīng)用。本研究發(fā)現(xiàn),與硝氮處理的小白菜相比,Cd污染土壤中施用全銨和尿素的小白菜葉和莖中Cd含量更高(圖3)。該現(xiàn)象與大多數(shù)觀點(diǎn)一致,即土壤施用銨態(tài)氮肥會(huì)增加Cd在植物體內(nèi)的積累[25,58–59]。引起上述現(xiàn)象的機(jī)制可能與植物對(duì)氮的吸收引起緩沖性較差土壤的pH變化有關(guān)。如,土壤中的H+伴隨著硝酸根離子的吸收而進(jìn)入植物體,導(dǎo)致土壤pH的增加。而當(dāng)銨根離子被植物體吸收時(shí),植物體內(nèi)的H+則會(huì)釋放到土壤中,造成土壤酸化[23,60–61]。土壤pH的變化,又會(huì)通過(guò)離子交換作用影響重金屬?gòu)慕粨Q態(tài)或土壤膠體中的解吸從而影響土壤Cd的植物有效性[62–64]。因此,氮肥可改變土壤中Cd的有效性及其在植物中的積累[65]。本試驗(yàn)通過(guò)測(cè)定各處理下土壤的pH和有效態(tài)Cd也證實(shí),施用全銨、硝銨復(fù)合及尿素的土壤pH均低于全硝處理,有效態(tài)Cd含量則高于全硝處理(圖5)。全硝處理下較高的土壤pH和較低的有效態(tài)Cd可能是該處理下小白菜體內(nèi)Cd含量最低的原因。處理間pH和Cd有效性的差異也可從側(cè)面解釋以下現(xiàn)象:1)全銨處理下,土壤Cd有效性高,Cd由根向莖的轉(zhuǎn)運(yùn)能力強(qiáng)(圖4);2)硝銨復(fù)合處理下土壤Cd有效性略高于全硝處理,施用硝銨復(fù)合肥小白菜的Cd含量低于施用銨態(tài)氮肥和尿素,但略高于全硝氮肥(圖3和圖5);3)土壤中施用尿素后雖會(huì)因尿酶的水解而導(dǎo)致土壤pH的升高,但長(zhǎng)期存留在土壤中的尿素會(huì)轉(zhuǎn)化為銨根從而引起土壤pH的降低[26]。因而,尿素處理下Cd污染對(duì)小白菜的生長(zhǎng)抑制及Cd含量的影響情況近似全銨處理(圖1、圖3和圖4)。另外,最新的水培研究表明硝態(tài)氮能促進(jìn)Cd共運(yùn)至植物體內(nèi)[31,66]。該結(jié)論從某種程度上也為本研究中硝態(tài)氮處理TF莖至葉高于銨和尿素處理給予了一定的解釋(圖4)。
綜上,硝態(tài)氮肥更有利于維持土壤pH和低的有效態(tài)Cd水平,可緩解Cd誘導(dǎo)的光合抑制和氧化脅迫,減輕Cd對(duì)小白菜的生長(zhǎng)脅迫,并有利于降低作物體內(nèi)Cd的含量。因此,在葉菜類(lèi)蔬菜的氮肥管理中,建議在緩沖性較差的Cd污染土壤中優(yōu)選硝態(tài)氮肥。另外,今后還應(yīng)該進(jìn)一步選用不同特性的土壤(尤其是緩沖性較好的土壤)開(kāi)展后續(xù)研究,以明確在不同土壤特性Cd污染條件下的氮肥施用方法。值得注意的是,本研究采用了人工模擬土壤,不能完全代表其他Cd污染水平的農(nóng)田情況。因此,建議今后的研究選用長(zhǎng)期輕微、輕度Cd污染農(nóng)田土壤為供試對(duì)象,以獲取更全面的信息。
[1]李志濤,王夏暉,劉瑞平,等.耕地土壤鎘污染管控對(duì)策研究[J].環(huán)境與可持續(xù)發(fā)展,2016,41(2):21–23. Li ZT,Wang XH,Liu RP,et al.Control strategy research of cadmium pollution in cultivated soils[J].Environment and Sustainable Development,2016,41(2):21–23.
[2]Holmgren GG S,Meyer MW,Chaney RL,Daniels RB.Cadmium, lead,zinc,copper,and nickel in agricultural soils of the United States of America[J].Journal of Environmental Quality,1993,22(2): 335–348.
[3]Han FX,Banin A,Su Y,et al.Industrial age anthropogenic inputs of heavy metals into the pedosphere[J].The Science of Nature,2002, 89(11):497–504.
[4]Roussel H,Waterlot C,Pelfrêne A,et al.Cd,Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters[J].Archives of Environmental Contamination and Toxicology,2010,58(4): 945–954.
[5]Tolyer MP,Mackay AK,Hudson-Edwards KA,Holz E.Soil Cd, Cu,Pb and Zn contaminants around Mount Isa city,Queensland, Australia:potential sources and risks to human health[J].Applied Geochemistry,2010,25(6):841–855.
[6]Adelekan BA,Abegunde KD.Heavy metals contamination of soil and groundwater at automobile mechanic villages in Ibadan, Nigeria[J].International Journal of Physical Sciences,2011,6(5): 1045–1058.
[7]Sharma RK,Agrawal M,Marshall F.Heavy metal contamination of soil and vegetables in suburban areas of Varanasi,India[J]. Ecotoxicology and Environmental Safety,2007,66(2):258–266.
[8]Chen HM,Zheng CR,Tu C,Zhu YG.Heavy metal pollution in soils in China:status and countermeasures[J].A Journal of the Human Environment,1999,28(2):130–134.
[9]環(huán)境保護(hù)部,國(guó)土資源部.全國(guó)土壤污染狀況調(diào)查公報(bào)[EB/OL]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm,2014-04-17/2017-01-21. Ministry of Environmental,Ministry of Land and Resources.National survey of soil pollution bulletin[EB/OL].http://www.gov. cn/foot/2014-04/17/content_2661768.htm,2014-04-17/2017-01-21.
[10]Wei BG,Yang LS.A review of heavy metal contaminations in urban soils,urban road dusts and agricultural soils from China[J]. Microchemical Journal,2010,94(2):99–107.
[11]Wang G,Su MY,Chen YH,et al.Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China[J].Environmental Pollution,2006, 144(1):127–135.
[12]Li PJ,Wang X,Allinson G,et al.Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China[J].Journal of Hazardous Materials,2009,161(1):516–521.
[13]李小牛,周長(zhǎng)松,杜斌,馮民權(quán).北方污灌區(qū)土壤重金屬污染特征分析[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,42(6):205–212. Li XN,Zhou CS,Du B,Feng MQ.Pollution characteristic of heavy metals in sewage irrigated soil of Northern China[J].Journal of Northwest A&F University(Nature Science Edition),2014,42(6): 205–212.
[14]Sanitàdi Toppi L,Gabbrielli R.Response to cadmium in higher plants[J].Environmental and Experimental Botany,1999,41(2): 105–130.
[15]董彬.中國(guó)土壤重金屬污染修復(fù)研究展望[J].生態(tài)科學(xué),2012, 31(6):683–687. Dong B.Research advance of soil heavy metals pollution in China[J]. Ecological Science,2012,31(6):683–687.
[16]Martin TA,Ruby MV.Review of in situ remediation technologies for lead,zinc and cadmium in soil[J].Remediation Journal,2004,14(3):35–53.
[17]Fin?gar N,Kos B,Le?tan D.Bioavailability and mobility of Pb after soil treatment with different remediation methods[J].Plant Soil and Environment,2006,52(1):25–34.
[18]Medina J,Guida HN.Stabilization of lateritic soils with phosphoric acid[J].Geotechnical and Geological Engineering,1995,13(4): 199–216.
[19]Wuana RA,Okieimen FE.Heavy metals in contaminated soils:a review of sources,chemistry,risks and best available strategies for remediation[J].International Scholarly Research Network Ecology, 2011:1–20,doi:10.5402/2011/402647.
[20]黃化剛,李廷強(qiáng),朱治強(qiáng),等.可溶性磷肥對(duì)重金屬?gòu)?fù)合污染物土壤東南景天提取鋅/鎘及其養(yǎng)分積累的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(2):382–389. Huang HG,Li TQ,Zhu ZQ,et al.Effects of soluble phosphate fertilizer on Zn/Cd phytoextraction and nutrient accumulation of Sedum alfredii H.in co-contaminated soil[J].Plant Nutrition and Fertilizer Science,2012,18(2):382–389.
[21]Daniel-Vedele F,Krapp A,Kaiser WM.Cellular biology of nitrogen metabolism and signaling[J].Plant Cell Monographs,2010,17: 145–172.
[22]繆其松,曾后清,朱毅勇,等.銨態(tài)氮營(yíng)養(yǎng)下水稻根系分泌氫離子與細(xì)胞膜電位及質(zhì)子泵的關(guān)系[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2011,17(5): 1044–1049. Miu QS,Zeng HQ,Zhu YY,et al.Relationship between membrane potential,plasma membrane H+-pump and H+release by rice root under ammonium nutrition[J].Plant Nutrition and Fertilizer Science, 2011,17(5):1044–1049.
[23]Florijn PJ,Nelemans JA,van Beusichem ML.The influence of the form of nitrogen nutrition on uptake and distribution of cadmium in lettuce varieties[J].Journal of Plant Nutrition,1992,15(11): 2405–2416.
[24]Zaccheo P,Crippa L,Pasta VD M.Ammonium nutrition as a strategy for cadmium mobilization in the rhizosphere of sunflower[J]. Plant and Soil,2006,283(1–2):43–56.
[25]Eriksson JE.Effects of nitrogen-containing fertilizers on solubility and plant uptake of cadmium[J].Water,Air and Soil Pollution,1990, 49(3–4):355–368.
[26]Willaert G,Verloo M.Effects of various nitrogen fertilizers on the chemical and biological activity of major and trace elements in a cadmium contaminated soil[J].Pédologie,1992,42(1):83–91.
[27]Liu WX,Zhang CJ,Hu PJ,et al.Influence of nitrogen form on the phytoextraction of cadmium by anewly discovered hyperaccumulator Carpobrotus rossii[J].Environmental Science and Pollution Research,2016,23(2):1246–1253.
[28]Hassan MJ,Wang F,Ali S,Zhang GP.Toxic effect of cadmium on rice as affected by nitrogen fertilizer form[J].Plant and Soil,2005, 277(1/2):359–365.
[29]Xie HL,Jiang RF,Zhang FS,et al.Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens[J].Plant and Soil,2009, 318(1/2):205–215.
[30]Hu PJ,Yin YG,Ishikawa S,et al.Nitrate facilitates cadmium uptake,transport and accumulation in the hyperaccumulator Sedum plumbizincicola[J].Environment Science and Pollution Research, 2013,20(9):6306–6316.
[31]Luo BF,Du ST,Lu KX,et al.Iron uptake system mediates nitratefacilitated cadmium accumulation in tomato(Solanum lycopersicum) plants[J].Journal of Experimental Botany,2012,63(8):3127–3136.
[32]Yang YJ,Xiong J,Chen RJ,et al.Excessive nitrate enhances cadmium(Cd)uptake by up-regulating the expression of OsIRT1in rice(Oryza sativa)[J].Environmental and Experimental Botany, 2016,122:141–149.
[33]Zhang RR,Liu Y,Xue WL,et al.Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi(Brassica chinensis L.)grown in Cd-contaminated soil[J].Environment Science and Pollution Research,2016,23(24):25074–25083.
[34]Xu RK,Zhao AZ,Yuan JH,Jiang J.pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars[J].Journal of Soils and Sediments,2012,12(4):494–502.
[35]Baldantoni D,Morra L,Zaccardelli M,Alfani A.Cadmium accumulation in leaves of leafy vegetables[J].Ecotoxicology and Environmental Safety,2016,123:89–94.
[36]Shentu JL,He ZL,Yang XE,Li TQ.Accumulation properties of cadmium in aselected vegetable-rotation system of southeastern China[J].Journal of Agricultural and Food Chemistry,2008,56(15): 6382–6388.
[37]Liu WT,Zhou QX,An J,et al.Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars[J].Journal of Hazardous Materials,2010,173(1–3): 737–743.
[38]Chen X,Wang J,Shi Y,et al.Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard[J].Botanical Studies,2011,52:41–46.
[39]楊蕓,周坤,徐衛(wèi)紅,等.外源鐵對(duì)不同品種番茄光合特性、品質(zhì)及鎘積累的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(4):1006–1015. Yang Y,Zhou K,Xu WH,et al.Effect of exogenous iron on photosynthesis,quality,and accumulation of cadmium in different varieties of tomato[J].Journal of Plant Nutrition and Fertilizer,2015, 21(4):1006–1015.
[40]黃紹文,唐繼偉,李春花.不同栽培方式菜田耕層土壤重金屬狀況[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(3):707–718. Huang SW,Tang JW,Li CH.Status of heavy metals in vegetable soils under different patterns of land use[J].Journal of Plant Nutrition and Fertilizer,2016,22(3):707–718.
[41]鮑士旦.土壤農(nóng)化分析[M].北京:中國(guó)農(nóng)業(yè)出版社,2005. Bao SD.Soil and agricultural chemical analysis[M].Beijing:China Agriculture Press,2005.
[42]魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社, 2000. Lu RK.Soil agrochemistry analytical methods[M].Beijing:Chinese Agricultural Science and Technology Press,2000.
[43]陜紅,劉榮樂(lè),李書(shū)田.施用有機(jī)物料對(duì)土壤鎘形態(tài)的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(1):136–144. Shan H,Liu RL,Li ST.Cadmium fractions in soils as influenced byapplication of organic materials[J].Plant Nutrition and Fertilizer Science,2010,16(1):136–144.
[44]Yang XE,Long XX,Ye HB,et al.Cadmium tolerance and hyperaccumulation in anew Zn-hyperaccumulation plant species (Sedum alfredii Hance)[J].Plant and Soil,2004,259(1–2):181–189.
[45]Yan H,Filardo F,Hu XT,et al.Cadmium stress alters the redox reaction and hormone balance in oilseed rape(Brassica napus L.) leaves[J].Environment Science and Pollution Research,2016,23(4): 3758–3769.
[46]GB/T23739-2009.土壤質(zhì)量有效態(tài)鉛和鎘的測(cè)定原子吸收法[S]. GB/T23739-2009.Soil quality-analysis of available lead and cadmium contents in soils atomic absorption spectrometry[S].
[47]Gill SS,Khan NA,Tuteja N.Differential cadmium stress tolerance in five Indian mustard(Brassica juncea L.)cultivars:an evaluation of the role of antioxidant machinery[J].Plant Signaling&Behavior, 2011,6(2):293–300.
[48]Mattina MJ I,Lannucci-Berger W,Musante C,White JC. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil[J].Environment Pollution,2003,124(3): 375–378.
[49]Mu?oz N,González C,Molina A,et al.Cadmium-induced early changes inand antioxidative enzymes in soybean(Glycine max L.)leaves[J].Plant Growth Regulation,2008,56:159–166.
[50]袁波,傅瓦利,藍(lán)家程,等.菜地土壤鉛、鎘有效態(tài)與生物有效性研究[J].水土保持學(xué)報(bào),2011,25(5):130–134. Yuan B,Fu WL,Lan JC,et al.Study on the available and bioavailability of lead and cadmium in soil of vegetable plantation[J]. Journal of Soil and Water Conservation,2011,25(5):130–134.
[51]張攀偉,羅金葵,陳巍,沈其榮.硝銨比例影響小白菜生長(zhǎng)和葉綠素含量的原因探究[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2006,12(5):711–716. Zhang PW,Luo JK,Chen W,Shen QR.Influence of NO–:NH+34ratio on growth and chlorophyll content in pakchoi[J].Plant Nutrition and Fertilizer Science,2006,12(5):711–716.
[52]Krupa Z.Cadmium-induced changes in the composition and structure of the light-harvesting chlorophyll a/b protein complexⅡin radish cotyledons[J].Physiologia Plantarum,1988,73(4):518–524.
[53]Siedlecka A,BaszyńAski T.Inhibition of electron flow around photosystemⅠin chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency[J].Physiologia Plantarum,1993,87(2): 199–202.
[54]Fornazier RF,Ferreira RR,Vitória AP,et al.Effect of cadmium on antioxidant enzyme activities in sugar cane[J].Biologia Plantarum, 2002,45(1):91–97.
[55]Cho UH,Park JO.Mercury-induced oxidative stress in tomato seedlings[J].Plant Science,2000,156(1):1–9.
[56]Malecka A,Jarmuszkiewicz W,Tomaszewska B.Antioxidative defense to lead stress in subcellular compartments of pea root cells[J]. Acta Biochimica Polonica,2001,48(3):687–698.
[57]Yu H,Wang JL,Fang W,et al.Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J]. Science of the Total Environment,2006,370(2/3):302–309.
[58]Tsadilas CD,Karaivazoglou NA,Tsotsolis NC,et al.Cadmium uptake by tobacco as affected by liming,N form,and year of cultivation[J].Environmental Pollution,2005,134(2):239–246.
[59]Sarwar N,Saifullah,Malhi SS,et al.Role of mineral nutrition in minimizing cadmium accumulation by plants[J].Journal of the Science of Food and Agriculture,2010,90(6):925–937.
[60]Havlin JL,Beaton JD,Tisdale SL,Nelson WR.Soil fertility and fertilizers:an introduction to nutrient management[M].New Jersey: Prentice Hall,1999.
[61]Marschner H.Mineral nutrition of higher plants(2ndedition)[M]. London:Academic Press,1995.
[62]Lorenz SE,Hamon RE,McGrath SP,et al.Application of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants[J].European Journal of Soil Science,1994,45(2): 159–165.
[63]Xian XF,Shokohifard GI.Effect of pH on chemical forms and plant availability of cadmium,zinc,and lead in polluted soils[J].Water, Air,and Soil Pollution,1989,45(3/4):265–273.
[64]Guttormsen G,Singh BR,Jeng AS.Cadmium concentration in vegetable crops grown in asandy soil as affected by Cd levels in fertilizer and soil pH[J].Nutrient Cycling in Agroecosystems,1995, 41(1):27–32.
[65]Valdez-González JC,López-Chuken UJ,Guzmán-Mar JL,et al. Saline irrigation and Zn amendment effect on Cd phytoavailability to Swiss chard(Beta vulgaris L.)grown on along-term amended agricultural soil:a human risk assessment[J].Environmental Science and Pollution Research,2014,21(9):5909–5916.
[66]Mao QQ,Guan MY,Lu KX,et al.Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis[J].Plant Physiology,2014,166(2):934–944.
Effects of nitrogen forms on the growth and Cd concentration of pakchoi (Brassica chinensis L.) under Cd stress
PAN Wei,XU Qian-ru#,LU Qi,LIU Yue,XUE Wan-lei,SONG Bi-xiu,DU Shao-ting*
(College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China)
【Objectives】Effects of common nitrogen(N)supply forms(ammonium,nitrate,ammonium/nitrate and urea)on the growth of Chinese cabbage pakchoi(Brassica chinensis L.)grown in the cadmium(Cd)-contaminated soil were studied to develop proper nitrogen management strategies for Cd-contaminated soils.【Methods】A pot experiment was conducted using soils from vegetable garden in Hangzhou.The tested soil was adjusted to four Cd contamination levels(0,1,3and5mg/kg)with CdCl2solution in advance.Four Nsupply forms[ammonium,nitrate,ammonium/nitrate(1∶1)and urea]were supplied for the pakchoi respectively,with the addition amount of N400mg/kg soil.After the harvest,the biomass,photosynthesis,Cd-induced oxidative stress and Cd concentration of the plants in different treatments were investigated.【Results】1)Compared with the Cd0,the fresh weights of the edible parts of pakchoi were reduced by31%,16%,21%and26%in Cd1,by 58%,28%,35%and39%in Cd3,and by83%,38%,52%and69%in Cd5in the presence of ammonium,nitrate,ammonium/nitrate and urea,respectively.There were no significant differences in the tolerance index(TICd) between the nitrate and ammonium/nitrate treatments,and the tolerance indices of the nitrate and ammonium/nitrate treatments were higher than those of the ammonium and urea treatments.2)Compared with Cd 0,the photosynthetic rates in the plants exposed to ammonium,nitrate,ammonium/nitrate,and urea were significantly decreased by14%,10%,12%and13%in Cd1,by33%,22%,25%and40%in Cd3,and by53%, 42%,41%and56%in Cd5;the levels of MDA andproduction rates were increased by11%,4%,9%and 11%,and5%,1%,2%and4%in Cd1,respectively.The Cd induced-photosynthesis inhibition and oxidative stress were relatively lower in the pakchoi with nitrate supply.3)The content of Cd in pakchoi were in the order of:nitrate cadmium;readily auailable nitrogen;pakchoi;photosynthesis;oxidative stress;cadmium content 2016–11–18接受日期:2017–02–16 浙江省公益技術(shù)應(yīng)用研究項(xiàng)目(2017C32001);大學(xué)生科技創(chuàng)新項(xiàng)目(GJ201723003,2016r408057,CX201723005)資助。 潘維(1994—),女,江蘇淮安人,碩士研究生,主要從事污染環(huán)境的生理生態(tài)方面的研究。E-mail:2506914508@qq.com #徐茜茹與第一作者同等貢獻(xiàn),E-mail:378841167@qq.com *通信作者Tel:0571-28008209,E-mail:dushaoting@zjgsu.edu.cn
植物營(yíng)養(yǎng)與肥料學(xué)報(bào)2017年4期