王昕,李海港,程凌云,王寶蘭,申建波*
(1中國農(nóng)業(yè)大學資源與環(huán)境學院植物營養(yǎng)系,植物–土壤相互作用教育部重點實驗室,北京100193;2中國科學院植物研究所,北京100093)
磷與水分互作的根土界面效應及其高效利用機制研究進展
王昕1,李海港1,程凌云1,王寶蘭2,申建波1*
(1中國農(nóng)業(yè)大學資源與環(huán)境學院植物營養(yǎng)系,植物–土壤相互作用教育部重點實驗室,北京100193;2中國科學院植物研究所,北京100093)
【目的】磷與水分利用率低是制約作物生產(chǎn)的重要因子。磷必須在水分的作用下通過根土界面才能被作物吸收利用,磷和水分在根土界面的互作效應是影響其高效利用的關(guān)鍵環(huán)節(jié)。本文以根際為核心,重點綜述了磷與水分在根土界面的互作機制,并剖析了通過強化根土界面磷與水分的協(xié)同,提高農(nóng)田水肥資源利用效率的根際調(diào)控途徑。【主要進展】根系的形態(tài)和生理變化深刻影響磷和水分的有效性,而根系生長和根際過程依賴于植物的營養(yǎng)和水分供應狀況,作物根層適宜的水分和養(yǎng)分供應水平能最大化根系和根際過程的效率,從而促進作物對磷與水資源的高效利用。作物根系除了能對根層土壤中磷和水分的系統(tǒng)供應做出響應外,也對局部磷和水分的變化產(chǎn)生形態(tài)和生理上的反應。根系響應磷和水分的表型可塑性與植物激素的調(diào)控作用密切相關(guān)。ABA、乙烯、NO均參與磷和水分互作的調(diào)控過程,質(zhì)外體pH在調(diào)控植物抵抗水分脅迫過程中具有重要作用,并與植物的營養(yǎng)狀況密切相關(guān)?!菊雇可钊肜斫飧两缑嫠c磷互作的協(xié)同過程及其調(diào)控機制是提高集約化作物體系水分和磷利用效率的關(guān)鍵。未來的研究方向與重點包括:進一步揭示磷和水分互作與激素信號途徑之間的關(guān)系,探明農(nóng)田生態(tài)系統(tǒng)中磷與水分互作的根土界面效應及其高效利用的協(xié)同機制,建立不同種植條件下水肥資源高效利用的根際調(diào)控途徑,為通過根系、根際的定向調(diào)控,發(fā)揮其生物學潛力,提高集約化農(nóng)田水肥資源的利用效率提供科學依據(jù)。
磷;水分;作物;根土界面;根際互作;利用效率
磷是植物生長發(fā)育所必需的大量營養(yǎng)元素之一,是作物生長的重要物質(zhì)基礎(chǔ)。與氮相比,磷是不可再生資源,研究表明磷礦資源的短缺日益突出[1]。磷在土壤中移動性差,擴散速率低,且極易被固定,導致其生物有效性大大降低。我國的磷肥用量超過了世界總量的37%,主要糧食作物磷肥的利用率平均只有15%~20%。養(yǎng)分利用效率低不僅造成資源浪費和環(huán)境污染,也對糧食安全構(gòu)成巨大的挑戰(zhàn)。
水分是地球表面重要的生理生態(tài)因子。除直接影響植物生長外,還影響?zhàn)B分利用效率。適宜的水分條件不僅能促進土壤磷向根表的遷移,而且還能通過強大的“蒸騰流”提高養(yǎng)分的吸收和運輸速率,從而提高磷的利用效率。我國局部地區(qū)的季節(jié)性缺水大大降低了作物對養(yǎng)分的利用效率,造成干旱減產(chǎn)。因此,探索調(diào)控植物營養(yǎng)的新途徑,提高養(yǎng)分水分利用效率已經(jīng)成為新形勢下我國農(nóng)業(yè)生產(chǎn)的重大需求。
根土界面(根際)是作物–土壤相互作用最劇烈的區(qū)域,是養(yǎng)分和水分從土壤進入作物系統(tǒng)的必經(jīng)門戶[2]。磷與水分在根–土界面存在強烈的共濟效應:一方面,根際磷的活化吸收顯著影響根系的形態(tài)和生理特性,從而強化對水分的吸收能力;另一方面,水分供應顯著影響磷的有效性和吸收利用效率。因此,充分理解根土界面中磷與水分的互作效應,對于通過根際調(diào)控挖掘作物高效利用磷和水分的生物學潛力,具有重要的理論研究價值和生產(chǎn)實踐意義。本文針對根土界面中的磷與水分互作效應進行系統(tǒng)綜述,進一步剖析集約化農(nóng)作系統(tǒng)養(yǎng)分水分高效利用的作物–土壤互作機制,為強化養(yǎng)分水分協(xié)同效應,提高土壤磷和水分利用效率提供科學依據(jù)。
1.1 根系形態(tài)和生理變化影響?zhàn)B分和水分的生物有效性
磷在土壤中易被吸附和固定,難以移動,作物必須通過根系形態(tài)變化,擴展吸收范圍以主動獲取磷;或者磷必須借助于水分的擴散作用遷移到根土界面被根系吸收。根系的形態(tài)變化和生理過程深刻影響磷的生物有效性,如植物細根比例、側(cè)根和根毛密度及長度的增加等形態(tài)學變化[3–5],擴大了根系與土壤顆粒的接觸面積,使根系主導的根際范圍增加,幫助植物獲取更多的磷[6]。土壤中的磷和水分是異質(zhì)性分布的,從垂直方向看,表層土壤中含有更多的磷,而水分主要集中在土壤的底土層[7]。研究表明,淺層土壤中側(cè)根發(fā)達、細根廣泛分布的根系構(gòu)型,更有利于植物對土壤表層磷的吸收[7],也有利于植物充分利用較少的降水資源[11];同時,少量深層根系對于植物吸收水分至關(guān)重要,特別是在干旱條件下,植物可利用的水大部分存在于深層土壤中,根系深度的增加顯著提高了植物對水分的吸收[8–11]。植物在進化過程中形成了“表層細根吸磷、深層主根吸水”的根構(gòu)型來提高養(yǎng)分水分吸收效率。
另一方面,植物根系生理的適應性改變對磷和水分的吸收同樣重要。植物在生長過程中可將5%~25%的光合產(chǎn)物以根分泌物的形式通過根系分泌到根際環(huán)境中,目的是為根系生長創(chuàng)造一個良好的環(huán)境條件,以高效獲取養(yǎng)分資源[6]。植物根系分泌的質(zhì)子、有機酸、酸性磷酸酶可以顯著提高根際土壤中磷的有效性[12–14],此外,水溶性根分泌物的釋放提高了根與土的附著程度,根系分泌的粘膠物質(zhì)可以粘結(jié)土壤顆粒,在植物根際形成根鞘[15],顯著改善根際土壤的物理結(jié)構(gòu)和水分狀況[16–17],提高根系貯水能力,利于植物的水分吸收[18]。研究發(fā)現(xiàn),根際土壤水分含量明顯高于非根際土壤[19–20],當根系分泌的粘膠物質(zhì)濃度在6×10–5g/cm2時,增強了水分流向根際的過程,提高了根際持水性[21],表明根系分泌物對于保持根際土壤水分有重要作用。在干旱脅迫下,植物釋放的陰離子[22]、有機酸和酶類[23]增加,維持甚至提高了植物對根際磷的溶解和吸收,表明水分誘導的根系生理變化同時影響了根系對水分和磷的吸收。
理想的根系構(gòu)型能顯著提高水分和養(yǎng)分的利用效率[24–26]。表層土壤含有大量的磷,高量施磷進一步加劇了磷在土壤剖面的異質(zhì)性分布;而土壤水分則主要分布在底層土壤。理想的根系構(gòu)型具有三個特點:1)表層土壤大量分布根系,以高效獲取土壤磷資源;2)具有發(fā)達的深層根系,以獲取深層的水分資源;3)根系構(gòu)型能夠高效協(xié)同空間異質(zhì)性的水分和養(yǎng)分資源。因此,根系的構(gòu)型與土壤剖面水分養(yǎng)分的空間匹配對于提高資源的利用效率具有重要的作用[24–25]。
1.2 磷和水分對根系形態(tài)和生理變化的影響
植物根系的形態(tài)和生理變化深刻影響?zhàn)B分和水分的有效性,而根系生長與生理活性主導的根際過程高度依賴于植物的營養(yǎng)狀況[24]。低磷條件下,植物的主根生長受到抑制,而側(cè)根發(fā)育受到誘導,側(cè)根密度和長度顯著升高[27–29],這與主根分生區(qū)細胞分裂速率降低及伸長區(qū)的細胞生長受到抑制有關(guān)[30–32]。供磷強度與植物根毛的發(fā)育也密切相關(guān)。低磷條件下,擬南芥的根毛長度可達到正常供磷條件下的3倍,而過量供磷會完全抑制其根毛的生長[4]。低磷可以誘導白羽扇豆形成大量密集的排根,排根不僅極大地增加了根系吸收養(yǎng)分水分的面積,同時分泌檸檬酸活化被土壤固定的難溶性磷,提高磷的吸收利用效率[33–34],在增加外界環(huán)境磷的供應時,排根的數(shù)量顯著減少[35]。進一步的研究表明,只有當植株地上部磷濃度低于2~3mg/g這一臨界水平時,才能誘導排根的形成[36–37]。最近的研究表明,當土壤有效磷(Olsen-P)供應水平達到20mg/kg時,小麥可達到高產(chǎn),同時根系保持了較高的生物學效率(磷的吸收能力)[38]。當降低磷的供應強度時,在一定程度上可以增強根系對磷的吸收效率,但小麥產(chǎn)量顯著降低。相反,繼續(xù)增加磷肥投入,產(chǎn)量不再增加,根分泌物的釋放速率顯著被抑制,根際過程的強度降低,根系對磷的利用效率也大大下降[38]。類似地,玉米根層養(yǎng)分濃度控制在臨界水平時,玉米主根與側(cè)根發(fā)達,顯著提高了土壤養(yǎng)分水分的空間有效性;過量施肥反而抑制側(cè)根發(fā)育,養(yǎng)分和水分的空間有效性和利用效率顯著下降[24]。這表明改變根際磷的供應水平能顯著調(diào)控根系吸收能力及根際強度,從而提高作物對土壤養(yǎng)分資源的捕獲和利用能力[6,39]。
土壤水分的供應狀況顯著影響根系的生長發(fā)育以及根分泌物的釋放,從而影響磷和水分的吸收效率。例如,即使在集約化高投入條件下,由于北方早春的氣溫較低,土壤磷的有效性顯著下降,導致石灰性土壤上春玉米季節(jié)性缺磷相當普遍,嚴重影響春玉米根系發(fā)育和幼苗生長,春季干旱缺水進一步加劇了土壤磷的缺乏;當作物遭受季節(jié)性干旱時,大量光合作用合成的碳水化合物被分配到地下,根冠比增加,主根的下扎能力增強,根分泌物的釋放量增加,提高作物對深層土壤養(yǎng)分水分的獲取效率。水分供應狀況還顯著影響植物側(cè)根的生長發(fā)育,側(cè)根增生是植物根系擴展對水分養(yǎng)分吸收范圍、響應土壤環(huán)境變化的重要方面。在遭遇短暫水分脅迫時,大麥和玉米的側(cè)根早期發(fā)育受到顯著抑制[40]。這表明土壤水分是根系生長發(fā)育的重要限制因子,進而影響植物對根際水分和養(yǎng)分的吸收效率[24]。
以上分析表明,土壤養(yǎng)分水分的供應強度低時,根系生長和根際效應得不到充分發(fā)揮;而土壤養(yǎng)分供應過高時根際效應又會受到抑制,只有在供應強度處于適宜水平時,根系和根際過程的效率才能達到最大[6,24–25,39],水分和養(yǎng)分協(xié)同強化根系形態(tài)和生理作用的疊加效應促進了養(yǎng)分和水分資源的高效利用。這為通過外部養(yǎng)分和水分調(diào)控強化根際效應,最大化作物根系對土壤養(yǎng)分和水分的利用潛力,減少外部水肥資源的投入提供了重要依據(jù),是當前我國集約化作物體系從最大化生物學潛力的角度實現(xiàn)“減肥增效”的關(guān)鍵所在。
1.3 植物根系吸收磷和水分過程的協(xié)同作用
在田間土壤條件下,磷和水分在土壤中存在明顯的互作關(guān)系,這種互作效應與根土界面效應交織在一起,對于磷和水分轉(zhuǎn)化及有效性產(chǎn)生重要影響。由于其復雜的化學屬性,磷在土壤中有多種形態(tài)(如土壤溶液中的可溶性磷、土壤顆粒上的吸附磷、被固定的磷、有機磷等),并隨著土壤環(huán)境的改變,不斷發(fā)生著形態(tài)間的轉(zhuǎn)化[6]。植物直接吸收的磷主要是無機形態(tài)的正磷酸鹽(Pi)[41],而由于其易被吸附、固定,在土壤中移動性差,很難通過質(zhì)流和截獲的方式被根系大量吸收。有研究表明,根系通過質(zhì)流和截獲吸收的磷很少,僅占植物總磷需求的不到5%[42–43]。所以,擴散是植物從土壤中獲取磷的重要途徑,而土壤含水量是影響磷擴散過程的重要因素??扇苄粤淄ǔN皆谕寥李w粒表面,土壤微細孔隙中的水膜是其擴散的介質(zhì),一旦水膜中斷,可溶性磷便無法在土壤顆粒間進行擴散。研究表明,根土界面水分下降0.1個單位(體積含水量從0.3降低到0.2cm3/cm3),磷的擴散速率下降98%[44]。用32P的標記試驗表明,缺水脅迫處理降低了番茄對磷的吸收速率[45]。根土界面的水分含量不僅影響了土壤磷的擴散速率,還在一定程度上決定了根系吸收土壤磷的范圍,即根際的范圍。對大豆的研究結(jié)果表明,干旱條件下根系對磷的吸收受到抑制,而復水后根系的磷吸收速率顯著上升,這很大程度上與復水后土壤磷的擴散速率和范圍增加有關(guān)[46]。綜上所述,根土界面上磷的生物有效性受到根際水分含量的深刻影響。
田間的研究表明,供磷可以提高干旱條件下作物根系的水分利用效率(WUE)[47–49],特別是在保水性較差的砂質(zhì)土壤上[50]。磷對水分利用效率的促進作用主要與其對光合作用、蒸騰[49]及根系水導[51]的影響有關(guān)。根系水導是表征根系吸收運輸水分能力的重要指標,水導主要由定位于細胞膜上的水通道蛋白的活性決定。礦質(zhì)養(yǎng)分的缺乏顯著抑制根系水導。研究表明,缺磷導致小麥根系水導顯著降低,氣孔導度下降,而對缺磷的小麥恢復供磷后,被抑制的根系水導可以恢復正常[51]。干旱脅迫下的高粱在恢復供水后根系水導可恢復正常,且與缺磷植株相比,供磷植株根系水導恢復的速率更快[52]。植物缺磷顯著降低根系水導,其原因可能是缺磷抑制了水通道蛋白的活性。有研究表明,外源添加水通道蛋白抑制劑Hg顯著降低正常供磷小麥的根系水導,將Hg清除后,根系水導可以恢復;而缺磷小麥的根系水導與被Hg抑制的供磷小麥的根系水導接近,且添加或清除Hg對缺磷小麥的根系水導沒有影響,暗示缺磷可能抑制了Hg敏感型水通道蛋白活性[53]。在缺水條件下提高葉片磷濃度能夠提高植物的水分利用率和植物的耐旱性[54]。這表明根系對水分的吸收和運輸受到植株磷營養(yǎng)狀況的調(diào)節(jié)。
由此可見,根系對磷和水分的吸收過程存在重要的相互作用:水分可以擴展根際范圍,增加根土界面磷的生物有效性;植物的磷營養(yǎng)狀況可以調(diào)節(jié)根系吸收運輸水分的能力。通過理解根土界面磷與水吸收過程的協(xié)同機制,可為實現(xiàn)農(nóng)業(yè)生產(chǎn)中“以水促磷,以磷節(jié)水”的目標提供重要的理論依據(jù)。
2.1 根系對異質(zhì)性水分或養(yǎng)分供應的響應
土壤中水分和養(yǎng)分通常是異質(zhì)性分布的,作物根系除了對整體養(yǎng)分和水分的供應做出形態(tài)和生理反應外,也可對局部養(yǎng)分水分變化做出響應。土壤水分有效性在剖面的水平和垂直方向上以厘米級的尺度變化[55],植物根系對水分的吸收也會進一步造成土壤水分的異質(zhì)性分布[56–57]。通常植物根系被認為具有向水性反應。對擬南芥的研究表明根系向水性的感受中心是根冠,但其機制與向重力性相互獨立[58]。最近的研究表明,根系具有明顯的向水性,當根系同時接觸干燥和濕潤表面時,側(cè)根和根毛會優(yōu)先朝濕潤的方向生長[59]。這個過程有別于傳統(tǒng)的水分脅迫響應,其與植物體內(nèi)的ABA信號過程相對獨立:局部較高的水分含量調(diào)控了生長素的合成和分布,通過色氨酸轉(zhuǎn)氨酶及生長素流出蛋白(PIN)介導的生長素途徑,促進了局部濕潤區(qū)域的側(cè)根發(fā)育[59]。盡管如此,根系向水性的分子生理與生態(tài)學意義仍需進一步探索[60]。
部分根區(qū)干旱(PRD)是Dry等首先提出的節(jié)水灌溉理論[62],對部分根區(qū)進行適度干旱脅迫,處于干旱區(qū)的根系通過ABA信號系統(tǒng)將干旱信息傳遞到地上部使部分氣孔關(guān)閉,減少奢侈蒸騰,有利于作物保存水分[61–63],同時維持作物產(chǎn)量與品質(zhì)不降低[61,64–65],有效提高了水分利用效率。提水作用是由于夜間植物氣孔關(guān)閉,蒸騰拉力降低,水分從根中向周圍干燥土壤排出的現(xiàn)象[62],通常根系從含水量較高的深層土壤吸收水分,而在較為干旱的淺層土壤排出水分,這種水分的垂直運動被稱為提水作用。提水作用具有重要的生態(tài)價值,包括通過增強活化過程來提高表層土壤養(yǎng)分的有效性[62],延長根系壽命[66],保護菌根真菌等根際微生物[67],影響相鄰植物的水分養(yǎng)分狀況[68]等。相對干旱條件下,根系的提水作用對提高土壤表層的養(yǎng)分水分利用率有重要的影響。
由于磷的擴散速率低、易被固定及土壤生化過程等原因,土壤中的磷通常呈現(xiàn)異質(zhì)性斑塊狀(patches)分布。為了充分獲取土壤中異質(zhì)性分布的磷,植物根系會優(yōu)先分布到能大量獲得養(yǎng)分資源的區(qū)域(磷富集區(qū))。Drew對大麥的經(jīng)典研究表明,根系在局部供應磷的區(qū)域大量增生,根長、根干重顯著增加,一級、二級側(cè)根密度顯著增加[69]。對白羽扇豆的研究表明,局部供應富含磷的有機物質(zhì)能顯著影響根系的分布,有機質(zhì)礦化釋放的磷是刺激局部根系增生的主要原因[70]。局部供磷不僅誘導了大量根系的增生,磷富集區(qū)中的根系的生理過程也顯著增強,一方面啟動快速的養(yǎng)分吸收系統(tǒng),提高根系對磷的吸收速率[71];另一方面局部供磷刺激了根系有機酸、酸性磷酸酶的分泌,強化了根系生理過程,利于根系對富集區(qū)中磷的活化。我們前期的研究表明,在田間條件下局部根系供應磷和銨態(tài)氮不僅增強了玉米側(cè)根的發(fā)育,根長密度和細根的比例顯著增加,而且還誘導根際的強烈酸化,提高根際酸性磷酸酶的活性和養(yǎng)分的活化吸收效率[72–73]。這種促進效應對于低溫條件下提高玉米早期的抗逆性,促進養(yǎng)分、水分的協(xié)同吸收具有重要作用。
2.2 根系對異質(zhì)性養(yǎng)分與水分的綜合協(xié)同響應
自然條件下,養(yǎng)分和水分的異質(zhì)性分布通常同時存在,而根系如何協(xié)調(diào)多種環(huán)境信號并做出響應仍然沒有統(tǒng)一認識。有研究認為植物根系對水分和養(yǎng)分的覓食有交互作用,從而影響植物根系的可塑性變化;而另外一些研究認為根系對異質(zhì)性水分和養(yǎng)分的響應是相互獨立的。揭示根系對局部供磷和水分響應的協(xié)同機制,是深入理解植物如何感應并快速捕獲異質(zhì)性土壤磷和水分資源,提高環(huán)境適應性及養(yǎng)分水分吸收的關(guān)鍵。一個典型的例子是短命植物對干旱沙漠環(huán)境的適應性反應,研究表明,生長在干旱沙漠環(huán)境條件下的植物在遇到短暫的降雨時,形成了典型的沙漠背景下的土壤水分局部富集區(qū),短命植物能通過根系生長和提高吸收速率快速捕獲土壤水分局部富集區(qū)中的水分資源和由此釋放出來的養(yǎng)分[74–75],這反映了植物高效協(xié)同利用局部水分、養(yǎng)分資源,從而適應極端環(huán)境的重要機制。在農(nóng)田生態(tài)系統(tǒng)中,作物也會遇到養(yǎng)分、水分異質(zhì)性分布的環(huán)境,基于作物根系對異質(zhì)性養(yǎng)分水分的響應規(guī)律,采用局部供應養(yǎng)分水分的根際調(diào)控方式能顯著增強作物的生長,從而提高養(yǎng)分利用效率。研究表明,局部同時供應磷和水顯著促進根系生長,提高了根系吸收磷和水分的效率[76]。在干旱條件下,給部分根系供應磷和水分,即可滿足植株的生長需求,形成的地上部生物量不低于均勻供應磷水處理,節(jié)約資源投入,提高磷和水分的利用效率[76]。我們的研究表明,在集約化農(nóng)田條件下,當局部養(yǎng)分和水分在空間上耦合時,顯著提高了玉米的生長和養(yǎng)分吸收,而當局部養(yǎng)分和水分的供應在空間上相分離時,則制約了玉米的生長,降低了玉米根系對土壤空間異質(zhì)性水肥資源的利用效率[77]。然而,這種反應取決于植物本身的性狀和具體的養(yǎng)分環(huán)境條件。我們的研究表明,玉米能夠整合利用空間分離的氮磷資源,通過協(xié)調(diào)同化物碳在不同資源富集區(qū)的投入比例,針對不同資源采取相應的覓食策略,極大地提高玉米對空間分離氮磷養(yǎng)分的吸收效率[78]。說明了植物根系具有高效整合利用處于不同位置資源的潛力。因此,在農(nóng)田條件下,構(gòu)建合理的磷水資源空間配置及其協(xié)同效應,進而強化這種協(xié)調(diào)關(guān)系與作物根系生長和分布的匹配關(guān)系,對于提高作物對養(yǎng)分、水分資源的利用效率,實現(xiàn)可持續(xù)生產(chǎn)具有重要的指導作用[24–25]。
3.1 ABA 和質(zhì)外體 pH介導磷和水分的協(xié)同響應
植物在適應缺磷和水分脅迫過程中伴隨著一系列的形態(tài)結(jié)構(gòu)和生理過程的變化,以提高磷和水分的利用效率,這種根系形態(tài)和生理過程的響應與激素調(diào)控作用密切相關(guān)。一些植物激素或信號物質(zhì)同時參與植物對磷和水分的響應,它們在磷與水分互作中起到了關(guān)鍵作用[79]。如赤霉素(GA)通過GADELLA蛋白途徑參與調(diào)控擬南芥根形態(tài)、生理和分子水平對低磷的響應[80],而水分脅迫也能改變GA的代謝,穩(wěn)定DELLA蛋白,改變根系的發(fā)育[81]。許多研究表明,水分脅迫下根系合成大量脫落酸(ABA),并作為長距離化學信號通過韌皮部運輸?shù)降厣喜縖82],影響保衛(wèi)細胞質(zhì)膜上的離子通道,調(diào)控胞內(nèi)鉀離子濃度,調(diào)節(jié)氣孔開閉和葉片蒸騰,從而在水分脅迫條件下維持植物的存活[83]。研究表明,ABA也參與了缺磷誘導的植物根系的形態(tài)變化,ABA能夠刺激根毛增生,提高根冠比等[79]。
木質(zhì)部汁液/質(zhì)外體pH參與ABA介導的植物在水分脅迫下的氣孔運動。已有的研究表明,木質(zhì)部汁液的pH呈酸性狀態(tài)時,有利于氣孔的開啟,促進蒸騰作用和葉片的生長[84]。用低pH的緩沖液處理葉片,顯著降低了質(zhì)外體pH,使氣孔的導度和開啟程度增加,從而增強了植物的生長和光合作用[84]。水分脅迫會顯著提高質(zhì)外體pH,其機制為水分脅迫影響植物對氮、磷等礦質(zhì)養(yǎng)分的吸收,引起陰陽離子吸收的不平衡,改變離子的電荷平衡和植物體內(nèi)的有機酸代謝,從而導致木質(zhì)部汁液/質(zhì)外體pH升高[85–86]。ABA是一種弱酸,其分子形態(tài)是親脂性的,容易穿過細胞質(zhì)膜。水分脅迫下的木質(zhì)部汁液/質(zhì)外體的高pH改變了木質(zhì)部質(zhì)外體中ABA分子的形態(tài),使其主要解離為疏脂性的酸根離子形態(tài),不能轉(zhuǎn)移進入葉肉細胞的胞質(zhì),而大量積累到保衛(wèi)細胞附近的質(zhì)外體中,加速氣孔關(guān)閉;當木質(zhì)部中pH較低時,ABA通常保持分子狀態(tài),并快速分配到葉肉細胞中,從而減少了ABA在保衛(wèi)細胞附近的積累,引起氣孔開啟。這些調(diào)控氣孔的過程,顯著影響了葉片對水分的利用和其他生理功能[83,87]。
植物質(zhì)外體的pH在很大程度上受礦質(zhì)營養(yǎng)狀況的調(diào)控,植物缺磷上調(diào)H+-ATPase的活性,抑制硝酸鹽的吸收和同化,陰陽離子吸收的不平衡導致根系分泌大量質(zhì)子,使根際pH和質(zhì)外體pH顯著下降,銨態(tài)氮的供應會加劇根際的酸化作用[73]。此外,質(zhì)外體pH和礦質(zhì)營養(yǎng)還可以通過對水通道蛋白基因表達的影響來調(diào)控根部水分的傳導[51–53,88–89]。以上研究結(jié)果表明,質(zhì)外體和根際pH在調(diào)控植物抵抗水分脅迫過程中具有重要作用,礦質(zhì)養(yǎng)分的吸收通過改變根際pH影響植物對水分的吸收。質(zhì)外體和根際pH可能是根土界面上磷和水分調(diào)控機制的重要連接點。有關(guān)研究亟待加強。
3.2 乙烯和 NO 調(diào)控植物對磷和水分的綜合響應
乙烯和NO是介導植物響應干旱和低磷脅迫的重要因子。水分虧缺條件下,根系合成乙烯量增加,通過調(diào)控氣孔運動、改變水通道基因的表達和根系水導,介導一系列植物對干旱脅迫的響應過程[90]。根系水導受乙烯的調(diào)節(jié),在淹水環(huán)境下生長的植物,將其根系短暫暴露在外源乙烯中,根的水通道蛋白活性受到調(diào)控,根系的水導增加,葉片的氣孔開啟[91]。根系中的乙烯同時受到植物磷營養(yǎng)狀況的調(diào)節(jié):低磷脅迫下,根系合成的乙烯量顯著增加[92],根系對乙烯的敏感性增強[93],從而激活一系列低磷脅迫(PSI)誘導基因的表達[94]。另外,乙烯促進植物根尖IAA的合成[95],并對低磷誘導根毛和側(cè)根發(fā)育具有重要的調(diào)控作用[96],磷高效基因型植物的根系產(chǎn)生的乙烯量較高[97],表明乙烯與植物對磷的獲取密切相關(guān)。乙烯在植物水分和磷獲取過程中都起到重要的調(diào)控作用,很大程度上影響了作物根系對根土界面上磷和水分的協(xié)同吸收和利用。一氧化氮(NO)是調(diào)節(jié)植物氣孔運動、介導低磷脅迫下根系形態(tài)生理響應的重要信號分子[98–99]。研究表明NO在保衛(wèi)細胞中的積累是ABA調(diào)控氣孔關(guān)閉的必要條件[100]。外源NO處理能減小植物葉片的氣孔導度、蒸騰速率和離子滲透,從而增加植物對水分脅迫的抗性[101]。低濃度的磷能夠增加植物根尖NO的含量,NO介導了低磷誘導的排根的形成與檸檬酸的分泌[98,102]。除此之外,乙烯、NO與ABA之間的相互作用也與氣孔運動及水分狀況密切相關(guān),乙烯一方面可以拮抗ABA對氣孔的關(guān)閉作用[103],另一方面通過影響活性氧物質(zhì)(過氧化氫、NO)的合成調(diào)控氣孔運動[104]。ABA的存在與否對乙烯調(diào)控氣孔運動的過程有決定性作用:ABA存在時,氣孔導度隨乙烯的增加而增加;ABA不存在時,氣孔導度隨乙烯的增加而降低[83]。值得關(guān)注的是,乙烯的合成過程可能受到NO的抑制[105]。乙烯、NO及其相互作用在植物整體水分平衡中發(fā)揮著重要調(diào)節(jié)作用,與此同時,磷的供應強度顯著改變植物體內(nèi)乙烯和NO的調(diào)控過程,表明乙烯和NO可能參與了植物對磷和水分協(xié)同響應的調(diào)控,有關(guān)分子生理機制的研究有待加強。
綜上所述,根土界面上的磷和水分存在著復雜的相互作用:磷和水分調(diào)控植物的根系形態(tài)和根際過程,而植物的形態(tài)和生理變化又深刻影響了根際磷和水分的生物有效性,根系對磷和水分的吸收過程也存在重要的相互作用及協(xié)調(diào)機制;土壤環(huán)境中,磷和水分的分布不均勻,根系對異質(zhì)性磷和水分存在協(xié)同響應;植物對磷和水分的響應通過一系列植物激素的調(diào)控來實現(xiàn),其中質(zhì)外體pH、ABA、乙烯和NO作為調(diào)控磷和水分響應過程的信號物質(zhì),是根土界面上磷和水分高效利用機制的重要節(jié)點(圖1)。
長期以來,有關(guān)磷和水分高效利用的研究處于相對分離狀態(tài)。以往根際營養(yǎng)的研究主要集中在模擬缺磷脅迫條件下根際養(yǎng)分的活化與吸收方面,對田間自然條件下磷與水分的互作過程,特別是對磷和水分高效利用的根土界面效應及其協(xié)同機制并不清楚。未來研究重點包括以下幾個方面:1)探討植物協(xié)同響應磷和水分的激素信號途徑;2)揭示磷和水分互作的根土界面效應及其調(diào)控機制;3)研究不同種植方式下作物根系如何協(xié)同響應土壤異質(zhì)性的磷和水分?如何通過根際調(diào)控強化作物對磷與水分的高效利用?探明這些問題對于進一步揭示集約化農(nóng)田生態(tài)系統(tǒng)作物–土壤相互作用機制,強化養(yǎng)分和水分的協(xié)同效應,進而提高土壤磷和水分利用效率具有重要的理論和實踐意義,這些問題可能是未來集約化條件下有關(guān)水肥耦合機制與調(diào)控途徑研究的重要方向。
圖1 磷與水分互作的根土界面效應及機制綜合模式圖Fig. 1 The conceptual model of root-soil interface effect and mechanisms of phosphorus and water interactions
參 考 文 獻:
[1]Gilbert N.The disappearing nutrient[J].Nature,2009,461(7265): 716–718.
[2]張福鎖,申建波,馮固.根際生態(tài)學——過程與調(diào)控[M].北京:中國農(nóng)業(yè)大學出版社,2009. Zhang FS,Shen JB,Feng G.Rhizosphere ecology:processes& management[M].Beijing:China Agricultural University Press,2009
[3]López-Bucio J.Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system[J]. Plant Physiology,2002,129(5):244–256.
[4]Bates TR,Lynch JP.Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability[J].Plant Cell &Environment,1996,19(5):529–538.
[5]Zhu J,Zhang C,Lynch JP.The utility of phenotypic plasticity of root hair length for phosphorus acquisition[J].Functional Plant Biology,2010,37(4):313–322.
[6]Shen J,Yuan L,Zhang J,et al.Phosphorus dynamics:from soil to plant[J].Plant Physiology,2011,156(3):997–1005.
[7]Lynch JP.Steep,cheap and deep:an ideotype to optimize water and N acquisition by maize root systems[J].Annals of Botany,2013, 112(2):347–357.
[8]Comas LH,Becker S,Cruz VM V,et al.Root traits contributing to plant productivity under drought[J].Frontiers in Plant Science, 2013,4:442.
[9]Lobet G,Couvreur V,Meunier F,et al.Plant water uptake in drying soils[J].Plant Physiology,2014,164(4):1619–1627.
[10]Rellanalvarez R,Lobet G,Dinneny JR.Environmental control of root system biology[J].Annual Review of Plant Biology,2016, 67(1):619–642.
[11]Zhan A,Schneider H,Lynch JP.Reduced lateral root branching density improves drought tolerance in maize[J].Plant Physiology, 2015,168(4):1603–1615.
[12]Kouas S,Debez A,Slatni T,et al.Root proliferation,proton efflux, and acid phosphatase activity in common bean(Phaseolus vulgaris) under phosphorus shortage[J].Journal of Plant Biology,2009, 52(5):395–402.
[13]Ligaba A,Shen H,Shibata K,et al.The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus)[J].Physiologia Plantarum,2004,120(4):575–584.
[14]Shen H,Chen J,Wang Z,et al.Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation[J]. Journal of Experimental Botany,2006,57(6):1353–1362.
[15]Mccully ME.Roots in soil:Unearthing the complexities of roots and their rhizospheres[J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:695–718.
[16]Walker TS,Bais HP,Grotewold E,et al.Root exudation and rhizosphere biology[J].Plant Physiology,2003,132(1):44–51.
[17]Ahmed MA,Kroener E,Benard P,et al.Drying of mucilage causes water repellency in the rhizosphere of maize:measurements and modelling[J].Plant and Soil,2015,407:161–171.
[18]Carminati A.Rhizosphere wettability decreases with root age:a problem or astrategy to increase water uptake of young roots?[J]. Frontiers in Plant Science,2013,4:298.
[19]Carminati A,Moradi AB,Vetterlein D,et al.Dynamics of soil water content in the rhizosphere[J].Plant and Soil,2010,332: 163–176.
[20]Young IM.Variation in moisture contents between bulk soil and the rhizosheath of wheat(Triticum aestivum L.cv.Wembley)[J]. New Phytologist,1995,130(1):135–139.
[21]Schwartz N,Carminati A,Javaux M.The impact of mucilage on root water uptake—A numerical study[J].Water Resources Research,2016,52(1):264–277.
[22]Liebersbach H,Steingrobe B,Claassen N.Roots regulate ion transport in the rhizosphere to counteract reduced mobility in dry soil[J].Plant and Soil,2004,260(1/2):79–88.
[23]周來良.干旱對根際土壤酶、氮磷鉀及根部有機酸的影響[D].重慶:西南大學碩士學位論文,2009. Zhou LL.Effects of drought stress on rhizosphere enzyme,N,P,K and root organic acid[D].Chongqing:MS Thesis of Southwest University,2009.
[24]Shen J,Li C,Mi G,et al.Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China[J].Journal of Experimental Botany,2013, 64(5):1181–1192.
[25]Jiao X,Yang L,Wu X,et al.Grain production versus resource and environmental costs:towards increasing sustainability of nutrient use in China[J].Journal of Experimental Botany,2016,67(17): 4935–4949.
[26]Lynch JP.Opportunities and challenges in the subsoil:pathways to deeper rooted crops[J].Journal of Experimental Botany,2015, 66(8):2199–2210.
[27]Williamson LC,Ribrioux SP,Fitter AH,et al.Phosphate availability regulates root system architecture in Arabidopsis[J]. Plant Physiology,2001,126(2):875–882.
[28]Reymond M,Svistoonoff S,Loudet O,et al.Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana[J].Plant Cell&Environment,2006,29(1): 115–125.
[29]Peret B,Desnos T,Jost R,et al.Root architecture responses:in search for phosphate[J].Plant Physiology,2014,166(4): 1713–1723.
[30]Ticconi CA,Delatorre CA,Lahner B,et al.Arabidopsis pdr2 reveals aphosphate-sensitive checkpoint in root development[J]. Plant Journal,2004,37(6):801–814.
[31]Ticconi CA,Lucero RD,Sakhonwasee S,et al.ER-resident proteins PDR2and LPR1mediate the developmental response of root meristems to phosphate availability[J].Proceedings of the National Academy of Sciences of the United States of America, 2009,106(33):14174–14179.
[32]Svistoonoff S,Creff A,Reymond M,et al.Root tip contact with low-phosphate media reprograms plant root architecture[J].Nature Genetics,2007,39(6):792–796.
[33]Shu L,Shen J,Rengel Z,et al.Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources[J].Plant Science,2007,172(5): 1017–1024.
[34]Shen J,Li H,Neumann G,et al.Nutrient uptake,cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in asplit-root system[J]. Plant Science,2005,168(3):837–845.
[35]Abdolzadeh A,Xing W,Veneklaas EJ,et al.Effects of phosphorus supply on growth,phosphate concentration and cluster-root formation in three Lupinus species[J].Annals of Botany,2010, 105(3):365–374.
[36]Gilbert GA,Knight JD,Vance CP,et al.Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate[J].Annals of Botany,2000,85(6):921–928.
[37]Li H,Shen J,Zhang F,et al.Is there acritical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus?[J].Functional Plant Biology,2008,35(4):328.
[38]Teng W,Deng Y,Chen XP,et al.Characterization of root response to phosphorus supply from morphology to gene analysis in fieldgrown wheat[J].Journal of Experimental Botany,2013,64(5): 1403–1411.
[39]Zhang F,Shen J,Zhang J,et al.Rhizosphere processes and management for improving nutrient use efficiency and crop productivity:Implications for China[A].Xu J,Huang PM. Molecular environmental soil science at the interfaces in the earth’s critical zone[M].Burlington:Academic Press,2010.
[40]Babe A,Lavigne T,Severin JP,et al.Repression of early lateral root initiation events by transient water deficit in barley and maize[J].Proceedings of the National Academy of Sciences of the United States of America,2012,367(1595):1534–1541.
[41]Schachtman DP,Reid RJ,Ayling SM.Phosphorus uptake by plants:from soil to cell[J].Plant Physiology,1998,116(2): 447–453.
[42]Barber SA.Soil nutrient bioavailability—A mechanistic approach[J].Quarterly Review of Biology,1995:140–141.
[43]Lambers H,Chapin FS,Pons TL.Plant physiological ecology[M]. New York:Springer,2008:375–402.
[44]Bhadoria PB S,Kaselowsky J,Claassen N,et al.Phosphate diffusion coefficients in soil as affected by bulk density and water content[J].Journal of Plant Nutrition and Soil Science,1991, 154(1):53–57.
[45]Greenway H,Hughes PG,Klepper B.Effects of water deficit on phosphorus nutrition of tomato plants[J].Physiologia Plantarum, 1969,22(1):199–207.
[46]Marais JN,Wiersma D.Phosphorus uptake by soybeans as influenced by moisture stress in the fertilized zone[J].Agronomy Journal,1975,67(6):777–781.
[47]Ackerson RC.Osmoregulation in cotton in response to water stress: III.Effects of phosphorus fertility[J].Plant Physiology,1985,77(2): 309–312.
[48]Hossner LR,Lascao RJ.Soil phosphorus availability and Pearl Millet water-use efficiency[J].Cropence,1992,32(4):1010–1015.
[49]Singh DK,Sale PW G,Pallaghy CK,et al.Role of proline and leaf expansion rate in the recovery of stressed white clover leaves with increased phosphorus concentration[J].New Phytologist,2000, 146(2):261–269.
[50]Graciano C,Guiamét JJ,Goya JF.Impact of nitrogen and phosphorus fertilization on drought responses in Eucalyptus grandis seedlings[J].Forest Ecology&Management,2005,212(1–3): 40–49.
[51]Fan M,Bai R,Zhao X,et al.Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots[J].Journal of Integrative Plant Biology,2007,49(5): 598–604.
[52]Shangguan ZP,Lei TW,Shao MA,et al.Effects of phosphorus nutrient on the hydraulic conductivity of sorghum(Sorghum vulgare Pers.)seedling roots under water deficiency[J].Journal of Integrative Plant Biology,2005,47(4):421–427.
[53]Clarkson DT,Carvajal M,Henzler T,et al.Root hydraulic conductance:diurnal aquaporin expression and the effects of nutrient stress[J].Journal of Experimental Botany,2000,51(342): 61–70.
[54]Singh DK,Pwg S,Pallaghy CK,et al.Phosphorus concentrations in the leaves of defoliated white clover affect abscisic acid formation and transpiration in drying soil[J].New Phytologist,2000, 146(2):249–259.
[55]Dekker LW,Doerr SH,Oostindie K,et al.Water repellency and critical soil water content in adune sand[J].Soil Science Society of America Journal,2001,65(6):1667–1674.
[56]Grose MJ,Gilligan CA,Spencer D,et al.Spatial heterogeneity of soil water around single roots:use of CT-scanning to predict fungal growth in the rhizosphere[J].New Phytologist,1996,133(2): 261–272.
[57]Wan C,Sosebee RE,Mcmichael BL.Water acquisition and rooting characteristics in northern and southern populations of Gutierrezia sarothrae[J].Environmental&Experimental Botany, 1995,35(1):1–7.
[58]Kobayashi A,Takahashi A,Kakimoto Y,et al.A gene essential for hydrotropism in roots[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(11): 4724–4729.
[59]Bao Y,Aggarwal P,Robbins NE,et al.Plant roots use apatterning mechanism to position lateral root branches toward available water[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(25):9319–9324.
[60]Cole ES,Mahall BE.A test for hydrotropic behavior by roots of two coastal dune shrubs[J].New Phytologist,2006,172(2): 358–368.
[61]Dry PR,Loveys BR.Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried[J]. Vitis,1999,38(4):151–156.
[62]Hodge A.Roots:The acquisition of water and nutrients from the heterogeneous soil environment[J].Progress in Botany,2010,71: 307–338.
[63]Davies WJ,Bacon MA,Thompson DS,et al.Regulation of leaf and fruit growth in plants growing in drying soil:exploitation of the plants’chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture[J].Journal of Experimental Botany,2000,51(350):1617–1626.
[64]Souza CR D,Maroco JP,Santos TP D,et al.Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars[J].Agriculture Ecosystems&Environment,2005, 106(2–3):261–274.
[65]Santos TP D,Lopes CM,Rodrigues ML,et al.Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines[J].Scientia Horticulturae,2007,112(3):321–330.
[66]Bauerle TL,Richards JH,Smart DR,et al.Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil[J].Plant Cell&Environment,2008,31(2):177–186.
[67]Querejeta JI,Egertonwarburton LM,Allen MF.Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in aCalifornia Oak savanna[J].Soil Biology& Biochemistry,2007,39(2):409–417.
[68]Pang J,Wang Y,Lambers H,et al.Commensalism in an agroecosystem:hydraulic redistribution by deep-rooted legumes improves survival of adroughted shallow-rooted legume companion[J].Physiologia Plantarum,2013,149(1):79–90.
[69]Drew M.Comparison of the effects of alocalised supply of phosphate,nitrate,ammonium and potassium on the growth of the seminal root system,and the shoot,in barley[J].New Phytologist, 1975,75(3):479–490.
[70]Li HG,Shen JB,Zhang FS,et al.Localized application of soil organic matter shifts distribution of cluster roots of white lupin in the soil profile due to localized release of phosphorus[J].Annals of Botany,2010,105(4):585–593.
[71]Jackson RB,Manwaring JH,Caldwell MM.Rapid physiological adjustment of roots to localized soil enrichment[J].Nature,1990, 344(6261):58–60.
[72]Ma Q,Wang X,Li H,et al.Localized application of NH4+-N plus P enhances zinc and iron accumulation in maize via modifying root traits and rhizosphere processes[J].Field Crops Research,2014, 164:107–116.
[73]Jing J,Zhang F,Rengel Z,et al.Localized fertilization with Pplus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake[J].Field Crops Research,2012,133: 176–185.
[74]Shi Z,Mickan B,Feng G,et al.Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions[J].Journal of Arid Land,2014,7(3):414–420.
[75]Zhang T,Sun Y,Song Y,et al.On-site growth response of adesert ephemeral plant,Plantago minuta,to indigenous arbuscular mycorrhizal fungi in acentral Asia desert[J].Symbiosis,2011, 55(2):77–84.
[76]Zhan A,Chen X,Li S.The combination of localized phosphorus and water supply indicates ahigh potential for savings of irrigation water and phosphorus fertilizer[J].Journal of Plant Nutrition and Soil Science,2014,177(6):884–891.
[77]胡義熬.玉米對異質(zhì)性磷和水分的響應及其高效利用的根際調(diào)控途徑[D].北京:中國農(nóng)業(yè)大學碩士學位論文,2016. Hu YA.Maize response to heterogeneous phosphorus and water and approach of rhizosphere management for water and phosphorus efficient use[D].Beijing:MS Thesis of China Agricultural University,2016.
[78]王昕,唐宏亮,申建波.玉米根系對土壤氮、磷空間異質(zhì)性分布的響應[J].植物營養(yǎng)與肥料學報,2013,19(5):1058–1064. Wang X,Tang HL,Shen JB.Root responses of maize to spatial heterogenous nitrogen and phosphorus[J].Journal of Plant Nutrition and Fertilizer,2013,19(5):1058–1064.
[79]Wittenmayer L,Merbach W.Plant responses to drought and phosphorus deficiency:contribution of phytohormones in rootrelated processes[J].Journal of Plant Nutrition and Soil Science, 2005,168(4):531–540.
[80]Jiang C,Fu X.Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis[J].Plant Physiology,2007,145(4):1460–1470.
[81]Claeys H,Skirycz A,Maleux K,et al.DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity[J]. Plant Physiology,2012,159(2):739–747.
[82]Wilkinson S,Hartung W.Food production:reducing water consumption by manipulating long-distance chemical signalling in plants[J].Journal of Experimental Botany,2009,60(7):1885–1891.
[83]Wilkinson S,Davies WJ.Drought,ozone,ABA and ethylene:new insights from cell to plant to community[J].Plant Cell& Environment,2010,33(4):510–525.
[84]Bacon MA,Wilkinson S,Davies WJ.pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent[J].Plant Physiology,1998,118(4):1507–1515.
[85]Wilkinson S,Davies WJ.Xylem sap pH increase:A drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast[J].Plant Physiology,1997,113(2):559–573.
[86]Wilkinson S,Davies WJ.Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation[J].Journal of Experimental Botany,2008,59(3):619–631.
[87]Wilkinson S,Davies WJ.Ozone suppresses soil drying and abscisic acid(ABA)-induced stomatal closure via an ethylene-dependent mechanism[J].Plant Cell&Environment,2009,32(8):949–959.
[88]Caba?ero FJ,Carvajal M.Different cation stresses affect specifically osmotic root hydraulic conductance,involving aquaporins,ATPase and xylem loading of ions in Capsicum annuum,L.plants[J].Journal of Plant Physiology,2007,164(10): 1300–1310.
[89]Maurel C,Verdoucq L,Luu DT,et al.Plant aquaporins:membrane channels with multiple integrated functions[J].Plant Biology,2008, 59(59):595–624.
[90]Aroca R,Porcel R,Ruizlozano JM.Regulation of root water uptake under abiotic stress conditions[J].Journal of Experimental Botany, 2012,63(1):43–57.
[91]Kamaluddin M,Zwiazek JJ.Ethylene enhances water transport in hypoxic aspen[J].Plant Physiology,2002,128(3):962–969.
[92]Lei M,Zhu C,Liu Y,et al.Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis[J]. New Phytologists,2011,189(4):1084–1095.
[93]He CJ,Morgan PW,Drew MC.Enhanced sensitivity to ethylene in nitrogen-or phosphate-starved roots of Zea mays L.during aerenchyma formation[J].Plant Physiology,1992,98(1):137–142.
[94]Nagarajan VK,Smith AP.Ethylene’s role in phosphate starvation signaling:more than just aroot growth regulator[J].Plant and Cell Physiology,2012,53(2):277–286.
[95]Stepanova AN,Hoyt JM,Hamilton AA,et al.A link between ethylene and auxin uncovered by the characterization of two rootspecific ethylene-insensitive mutants in Arabidopsis[J].2005,17(8): 2230–2242.
[96]Ticconi CA,Delatorre CA,Abel S.Attenuation of phosphate starvation responses by phosphite in Arabidopsis[J].Plant Physiology,2001,127(3):963–972.
[97]Lynch JP,Brown KM.Topsoil foraging-an architectural adaptation of plants to low phosphorus availability[J].Plant and Soil,2001, 237(2):225–237.
[98]Wang BL,Tang XY,Cheng LY,et al.Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin[J].New Phytologists,2010,187(4): 1112–1123.
[99]Bessonbard A,Pugin A,Wendehenne D.New insights into nitric oxide signaling in plants[J].Plant Biology,2008,59(59):21–39.
[100]Garcia-Mata C,Lamattina L.Abscisic acid(ABA)inhibits lightinduced stomatal opening through calcium-and nitric oxidemediated signaling pathways[J].Nitric Oxide,2007,17(3–4): 143–151.
[101]Lamattina L.Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J].Plant Physiology, 2001,126(3):1196–1204.
[102]Cheng L,Bucciarelli B,Shen J,et al.Update on white lupin cluster root acclimation to phosphorus deficiency[J].Plant Physiology, 2011,156(3):1025–1032.
[103]Tanaka Y,Hasezawa S.Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis thaliana[J].Plant Physiology,2005, 138(4):2337–2343.
[104]Desikan R,Last K,Harrettwilliams R,et al.Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis[J].Plant Journal,2006,47(6): 907–916.
[105]Leshem YA Y,Haramaty E.The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn.foliage[J].Journal of Plant Physiology,1996,148(3–4):258–263.
[106]Davies WJ.Exploiting plant drought stress biology to increase resource use efficiency and yield of crops under water scarcity[J]. Theoretical and Experimental Plant Physiology,2014,26(1):1–3.
Advances of root-soil interface effect of phosphorus and water interaction and mechanisms of their efficient use
WANG Xin1,LI Hai-gang1,CHENG Ling-yun1,WANG Bao-lan2,SHEN Jian-bo1*
(1 College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China; 2 Institute of Botany, Chinese Academy of Science, Beijing 100093, China)
【Objectives】Low use efficiencies of phosphorus and water are key limiting factors in intensive farming system.Only under the driving flow by soil water,phosphorus can be absorbed by plants mainly via the root-soil interface.Root-soil interface effects of phosphorus and water interactions are the key points in their efficient use mechanism by crop.This review summarizes recent advances on the mechanisms of interactions of phosphorus and water in root-soil interface and puts forward the rhizosphere management strategies of improving phosphorus and water use efficiency through enhancing their synergy in the plant-soil system.【Advances】The biological availability of phosphorus and water can be highly affected by root morphological and physiological plasticity,and in turn,root development and rhizosphere physiological processes are also dependent on phosphorus and water supply status.Under an appropriate intensity of water and phosphorus supply,root and rhizosphere process efficiency can be maximized to increase the resource use efficiency.Plant roots can highlyrespond to not only integral supply strength of phosphorus and water in root zone,but also heterogeneous spatiotemporal distribution of phosphorus and water with changing root morphological and physiological reactions. Phytohormones are closely related to the root plasticity under different phosphorus and water supply.ABA, ethylene,and NO are involved in the regulation processes of plant responses to phosphorus and water supply. Apoplast pH could play an important role in plant regulation processes to cope with water and nutrient deficiency.【Prospects】Better understanding of synergy effects and regulating mechanisms of phosphorus and water interactions in the root-soil interface is critical to increase use efficiency of phosphorus and water in intensive farming system.Hence,future research directions and emphases are proposed:exploring the mechanism of phosphorus and water interactions and the relationships with phytohormone in the plants,clarifying the interface effects of phosphorus and water interaction processes and their synergy mechanisms in the rhizosphere, and establishing effective rhizosphere management strategies and pathways for increasing phosphorus and water use efficiency in various cropping systems.These advances will provide scientific basis for improving use efficiency and coupling of water and nutrients in intensive crop production through engineering crop root and rhizosphere interaction processes.
phosphorus;water;crop;root-soil interface;rhizosphere interaction;use efficiency
2016–11–30接受日期:2017–03–19
國家自然科學基金重點項目(31330070);國家自然科學基金杰出青年基金項目(30925024)資助。
王昕(1994—),女,山西長治人,博士研究生,主要從事植物根際磷營養(yǎng)方面的研究。E-mail:wangxin@cau.edu.cn *通信作者E-mail:jbshen@cau.edu.cn