亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The existence of n-order algebraic curve solutions ofplanar quadratic polynomialsystems

        2017-08-31 12:16:51LiJibinSchoolofMathematicalSciencesHuaqiaoUniversityQuanzhou362021ChinaDepartmentofMathematicsZhejiangNormalUniversityJinhua321004China

        Li Jibin(1.Schoolof Mathematical Sciences,Huaqiao University,Quanzhou 362021,China; 2.Departmentof Mathematics,Zhejiang NormalUniversity,Jinhua 321004,China)

        The existence of n-order algebraic curve solutions ofplanar quadratic polynomialsystems

        Li Jibin1,2
        (1.Schoolof Mathematical Sciences,Huaqiao University,Quanzhou 362021,China; 2.Departmentof Mathematics,Zhejiang NormalUniversity,Jinhua 321004,China)

        In this shortarticle,we show that for any given positive integer n≥2,there is a planar quadratic differentialsystem having n-degree and 2n?degree classicalalgebraic curve solutions.

        quadratic differentialsystem;algebraic curve solution;periodic solution;integrable system

        2010 MSC:14H50,34C25,35Q72

        1 Introduction

        We are interested in the study of planar polynomialsystems,because they occur very often in applications. Indeed,such equations appear in modelling chemicalreactions,population dynamics,travelling wave systems of nonlinear evolution equations in mathematical physics and in many other areas of applied mathematics and mechanics.From the mathematicalpointofview,quadratic systems are perhaps the mostsimple nonlineardifferential systems.Despite their simplicity,there are important open questions around them.It is a particular case of the famous Hilbert′s 16th problem[1].

        More recently,Garcia and Llibre[2]gave a lot of examples to show that classical planar algebraic curves are realizable by quadratic polynomialdifferentialsystems.We say thata given algebraic curve is realized by a quadratic system when this algebraic curve is an invariantcurve solution ofa system

        where aijand bijare constantparameters.

        Itis wellknown thatany cubic algebraic curve is always realized by some quadratic Hamiltonian system[3?4]. Quadratic systems realizing classicalquadratic and higherdegree algebraic curves have been found.

        For a given positive integer n,is there an n-degree algebraic curve such thatitis realizable by quadratic polynomialdifferentialsystems?In this paper,we show the following conclusion.

        Theorem 1 For any given positive integer n≥2,there is a planar quadratic differentialsystem having ndegree and 2n?degree classicalalgebraic curve solutions.

        The proofof this theorem is given in section 2.

        2 An integrable quadratic system having n-degree classicalalgebraic curve solution

        Consider the quadratic differentialsystem

        This is an integrable system with the firstintegral

        We only considerthe case a>0.Otherwise,we applythe transformation x→?x,y→?y.

        Clearly,system(2)alwayshastwo singularpoints E.When ab>0,there existtwo singularpoints?in the straightline x=0.

        Let M(xj,y)be the coefficientmatrix ofthe linearized system forequation(2)ata singularpoint.We have

        By using the above information,we have the following qualitative analysis.

        Lemma 1 The planar quadratic system(2)has two symmetric centers with respectto the y?coordinate axis, for which there existexactly three topologicalphase portraits shown in Figs.1(a),1(b)and 1(c).

        Figure 1 The phase portraits of the system(2)for a>0

        give rise to two periodic solutions ofsystem(2),see Fig.1(a).

        Lemma 3 Take a>0,b=?n<?1,where n is a positive integer.Then the 2n?degree algebraic curves defined by

        give rise to two periodic solutions ofsystem(2),see Fig.1(b).

        Thus we have proved Theorem 1 by Lemma 2 and Lemma 3.

        [1]Li J.Hilbert′s 16th problem and bifurcations of planar polynomial vector fields[J].Int J Bifurcation and Chaos,2003, 13:47-106.

        [2]Garcia IA,Llibre J.Classicalplanar algebraic realizable by quadratic polynomialdifferentialsystem[J].IntJBifurcation and Chaos,2017,27,to appear.

        [3]LiJ.Exactparametric representations oforbits defined by cubic Hamiltonian[J].JShanghaiNormalUniversity(NatSci), 2014,43(5):456–463.

        [4]Smogorzhevskii A S,Stolova E S.Handbook of the theory of planar curves of the third order[M].Moscow:Fizmatgiz, 1961.

        O 29 Document code:A Article ID:1000-5137(2017)03-0439-03

        10.3969/J.ISSN.100-5137.2017.03.013

        date:2017-03-17

        This research was partially supported by the National Natural Science Foundation of China(No.1147 1289,11571318).

        Li Jibin,professor,reseach area:dynamical systems,differential equation,solitons and chaos, E-mail:ijb@zjnu.cn

        人人超碰人人爱超碰国产| 日本精品一区二区在线看| 亚洲一区二区三区精彩视频| 亚洲精品人成中文毛片| 无码人妻av一二区二区三区| 久久AV中文一区二区三区| 亚洲av午夜福利精品一区二区| 各类熟女熟妇激情自拍| 国产成人无码精品久久久露脸| 亚洲日韩乱码中文无码蜜桃臀| 国色天香精品亚洲精品| 亚洲日产乱码在线中文字幕| 亚洲欧洲成人a∨在线观看| 成人综合网亚洲伊人| 久久亚洲午夜牛牛影视| 国产av一级二级三级| 国产精品无码人妻在线| 欧美性猛交xxxx乱大交丰满| 国产精品女丝袜白丝袜 | 婷婷色香五月综合激激情| 国产日韩欧美亚洲精品中字 | 亚洲夜夜性无码| 亚洲精品成人网站在线观看| 亚洲欧美日韩中文综合在线不卡| av免费在线国语对白| 国产午夜福利久久精品| 国际无码精品| 亚洲视频在线观看青青草| 日产一区二区三区免费看| 麻豆国产原创视频在线播放| 成人无码视频在线观看网站| 久久久黄色大片免费看| 丰满少妇被粗大猛烈进人高清 | 亚洲两性视频一三区| 人妻秘书被社长浓厚接吻| 丁香婷婷激情综合俺也去| 少妇熟女视频一区二区三区| 亚洲国产色图在线视频| 亚洲中文久久精品字幕| 国产亚洲人成a在线v网站| 91亚洲欧洲日产国码精品 |