宋嘯中
(陜西省寶雞中學,陜西 寶雞 721013)
·試題研究·
巧用運動分解法 妙解滾輪線運動
宋嘯中
(陜西省寶雞中學,陜西 寶雞 721013)
帶電粒子在復合場中若所受洛倫茲力與電場力(或重力)不平衡,運動軌跡為滾輪線。本文針對這類問題的特點,探討了一種運動分解的方法,將帶電粒子復雜的曲線運動分解為勻速直線運動和勻速圓周運動加以研究,物理情景清晰,可使問題化繁為簡。
帶電粒子;復合場;運動分解;滾輪線運動
帶電粒子在正交的勻強磁場和勻強電場(或重力場)所形成的復合場中運動,這類問題近年來在高考、自主招生考試及物理競賽中均有涉及。若所受洛倫茲力與電場力(或重力)不平衡,電場力(或重力)會改變粒子的速度,而速度的變化又會使洛倫茲力不斷變化,使粒子做復雜的曲線運動,學生難以形成清晰的物理情景,問題求解就顯得很困難,常規(guī)方法難于求解此類問題。
針對這類問題的特點,本文探討了一種運動分解的方法,將這種復雜的曲線運動分解為兩個簡單運動,物理情景更清晰,使問題的解決也變得簡單。若給帶電粒子附加一對等大反向的速度(這并不影響帶電粒子的運動)或?qū)щ娏W拥某跛俣冗M行分解,由于帶電粒子所受電場力(或重力)為恒力,使其中與一個速度對應的洛倫茲力與電場力(或重力)平衡,則該速度對應的分運動為勻速直線運動;另一速度對應的分運動就僅受洛倫茲力而做勻速圓周運動,這樣就可將帶電粒子復雜的曲線運動分解為勻速直線運動和勻速圓周運動加以研究,現(xiàn)結合近幾年的典型考題加以具體分析。
例1(2013年福建卷第22題):如圖1所示,空間存在一范圍足夠大的垂直于xOy平面向外的勻強磁場,磁感應強度大小為B。若在此空間再加入沿y軸正向、大小為E的勻強電場,讓一質(zhì)量為m、電荷量為q(q>0)的粒子從坐標原點O以初速度v0沿y軸正向發(fā)射。研究表明:粒子在xOy平面內(nèi)做周期性運動,且在任一時刻,粒子速度的x分量vx與其所在位置的y坐標成正比,比例系數(shù)與場強大小E無關。求該粒子運動過程中的最大速度vm(不計重力和粒子間的作用)。
圖1
解析:當粒子從O點以初速度v0沿y軸正向發(fā)射時,給粒子附加沿x軸正向和負向大小都是v1的速度,這兩個附加速度的合速度為零,不影響粒子以后的運動。
點評:利用給粒子附加一對等大反向的速度,將粒子的復雜運動分解成兩個簡單運動,物理情景清晰,且不需要用到題目給出的“研究表明”部分的提示,化繁為簡。
例2(2013年“北約”自主招生第12題):如圖2所示,在豎直平面內(nèi)有一水平勻強磁場,磁感應強度B的方向垂直該豎直平面朝里。豎直平面中a、b兩點在同一水平線上,兩點相距l(xiāng)。帶電量q>0、質(zhì)量為m的質(zhì)點P,以初速度v從a對準b射出。略去空氣阻力,不考慮P與地面接觸的可能性,設定q、m和B均為不可改變的給定量。
圖2
(1) 若P不能經(jīng)直線運動通過b點,則l取哪些值,可使P必定會經(jīng)曲線運動通過b點?
(2) 計算各種可能的曲線運動對應的P從a到b所經(jīng)過的時間。
解析:質(zhì)點P不能經(jīng)直線運動通過b點,即洛倫茲力和重力不平衡,將初速度v沿水平方向分解為v1和v2,即v=v1+v2。
圖3
點評:對于給定初速度的質(zhì)點,通過對初速度進行分解,將復雜運動分解成兩個簡單運動,雖然不同的初速度會對應不同的偏轉(zhuǎn)方向和運動軌跡,但圓周運動的周期與速度大小無關,問題就能很容易得到解決。
例3(第28屆物理競賽復賽第4題):如圖4所示,空間某區(qū)域存在勻強電場和勻強磁場,在此區(qū)域建立直角坐標系。勻強電場沿x軸正向,電場強度為E0,磁場沿z軸正向,磁感應強度為B0,E0、B0分別為已知常量。有一束帶電量都為+q、質(zhì)量都為m的粒子,同時從Oyz平面內(nèi)的某點射出,它們的初速度均在Oyz平面內(nèi),速度的大小和方向各不相同,不計粒子所受重力以及各帶電粒子之間的相互作用,問經(jīng)過多少時間這些粒子又能同時回到Oyz平面內(nèi)?
圖4
解析:粒子初速度均在yOz平面內(nèi),設初速度y方向和z方向的分量分別為vy0和vz0,因粒子在z方向不受電場力和洛倫茲力作用,故粒子在z方向是以初速度vz0做勻速運動,z方向的分運動不會使粒子離開yOz平面。
圖5
點評:大量粒子在三維空間受磁場力和電場力做不同的復雜曲線運動,通過沿y軸附加等大反向速度vy1,將復雜的空間曲線運動分解為z方向的勻速運動、y軸負向的勻速運動以及xOy面內(nèi)的勻速圓周運動,運動情景豁然開朗,問題也就迎刃而解。
由以上分析可以看出,帶電粒子在正交的勻強磁場和勻強電場(或重力場)中的這種復雜曲線運動,就是勻速圓周運動和勻速直線運動的疊加。我們考慮勻速運動的汽車輪緣上任一點的運動,該點相對輪軸做勻速圓周運動,而輪軸相對地面做勻速直線運動,輪緣上任一點相對地面的運動就是勻速圓周運動和勻速直線運動的疊加,因此我們可以把帶電粒子在復合場中的這種復雜曲線運動稱為滾輪線運動。
[1] 沈晨.更高更妙的物理[M].杭州:浙江大學出版社,2012.
[2] 范小輝.高校自主招生考試直通車[M].上海:上海交通大學出版社,2014.