郭明++夏中元
[摘要] Sestrin2是一種高保守、應(yīng)激誘導(dǎo)抑制雷帕霉素靶蛋白的重要蛋白分子。作為P53調(diào)節(jié)哺乳動(dòng)物雷帕霉素靶蛋白信號(hào)通路抗氧化應(yīng)激作用的一種重要蛋白分子,Sestrin2可以激活磷酸腺苷依賴蛋白激酶蛋白并磷酸化結(jié)節(jié)性硬化復(fù)合物,進(jìn)而抑制哺乳動(dòng)物雷帕霉素靶蛋白,可減輕組織因缺血再灌注導(dǎo)致的損傷。近幾年,國(guó)內(nèi)外對(duì)Sestrin2蛋白分子的研究已有很大的進(jìn)展,本文就近幾年Sestrin2抗氧化應(yīng)激作用研究進(jìn)展以及其可能的臨床應(yīng)用進(jìn)行綜述。
[關(guān)鍵詞] Sestrin2;磷酸腺苷活化蛋白激酶;哺乳動(dòng)物雷帕霉素靶蛋白;氧化應(yīng)激
[中圖分類號(hào)] R2-4 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)06(b)-0028-04
Research progress of Sestrin2 anti-oxidative stress effect in ischemia reperfusion
GUO Ming XIA Zhongyuan
Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China
[Abstract] Sestrin2 is a highly conserved, stress-inducible protein. As a important protein for P53-regulated mammalian target of rapamyein complex (mTORC1) signaling pathway, Sestrin2 activates AMP activated protein kinase (AMPK) and target it to phosphorylate tuberous seleresis complex (TSC2), thereby inhibiting mTORC1, reducing the ischemia-reperfusion injury. In recent years, there are great progress in the studis of Sestrin2. This paper reviews the role of Sestrin2 in anti-oxidative stress and the potential clinical application as a therapeutic target to prevent/treat related diseases.
[Key words] Sestrin2; AMP activated protein kinase; Mammalian target of rapamyein complex; Oxidative stress
隨著社會(huì)經(jīng)濟(jì)的發(fā)展,人們的飲食結(jié)構(gòu)及生活方式也發(fā)生了明顯變化,導(dǎo)致肥胖、血脂代謝紊亂、高血壓、糖尿病、癌癥等疾病的患病率明顯增加。這些疾病易引起人體全身多部位發(fā)生組織內(nèi)氧化應(yīng)激,導(dǎo)致多種慢性并發(fā)癥,嚴(yán)重可危及生命安全。國(guó)際糖尿病聯(lián)合會(huì)報(bào)告,2001年全球糖尿病患者約為17 100萬(wàn)人,預(yù)計(jì)2030年,全球患糖尿病的人數(shù)將達(dá)到36 600萬(wàn)人[1]。因糖尿病、肥胖等疾病導(dǎo)致的血糖血脂代謝紊亂、心血管疾病以及死亡率都將隨之增高[2-3]。糖尿病、高血脂等大多數(shù)疾病的主要致病因素是活性氧(reactive oxygen species,ROS)的大量釋放以及氧化應(yīng)激反應(yīng),導(dǎo)致機(jī)體多器官發(fā)生組織內(nèi)氧化應(yīng)激,最終進(jìn)展為慢性疾病,嚴(yán)重者可危及生命。
1 氧化應(yīng)激
氧元素是生物體能量供應(yīng)及多種生理活性物質(zhì)合成的必須物質(zhì)。機(jī)體氧元素在發(fā)生氧化還原反應(yīng)時(shí),產(chǎn)生一些帶有不配對(duì)電子的分子、離子或是基團(tuán),被稱為活性氧[4]。機(jī)體代謝產(chǎn)生的少量活性氧參與代謝,過(guò)多的活性氧可被機(jī)體抗氧化應(yīng)激防御系統(tǒng)快速清除,保護(hù)機(jī)體免受損傷。正常機(jī)體氧化應(yīng)激反應(yīng)和抗氧化應(yīng)激反應(yīng)處于動(dòng)態(tài)平衡狀態(tài),若氧化應(yīng)激反應(yīng)過(guò)于強(qiáng)烈或是抗氧化應(yīng)激能力受損將會(huì)導(dǎo)致過(guò)多的活性氧釋放,超負(fù)荷的活性氧代謝產(chǎn)物與細(xì)胞內(nèi)分子反應(yīng)產(chǎn)生毒性作用[5-6],損害機(jī)體。機(jī)體反饋性地開(kāi)發(fā)了抗氧化應(yīng)激防御體系,以便消除過(guò)多的活性氧,其主要包括一些酶類,例如超氧化物氣化酶、過(guò)氧化物酶,以及一些小分子量的抗氧化劑等[7]。低水平的ROS參與機(jī)體一系列的生理調(diào)節(jié),如維持血管張力、控制紅細(xì)胞生成素的合成以及調(diào)節(jié)一些膜受體信號(hào)通路傳導(dǎo)[8]。當(dāng)組織發(fā)生氧化應(yīng)激反應(yīng)釋放大量的ROS,而抗氧化應(yīng)激系統(tǒng)未能將其及時(shí)清除,過(guò)多的ROS將破壞DNA的結(jié)構(gòu),造成線粒體及其他細(xì)胞器的損傷,引起蛋白質(zhì)的折疊錯(cuò)誤和神經(jīng)元突觸功能障礙等[9-10]。氧化應(yīng)激反應(yīng)能夠明顯抑制細(xì)胞的生存,縮短細(xì)胞壽命,并可導(dǎo)致細(xì)胞死亡[11-12]。在病理?xiàng)l件下,氧化應(yīng)激被認(rèn)為與多種疾病的發(fā)生相關(guān),涉及心血管疾病、癌癥、神經(jīng)系統(tǒng)疾病、糖尿病、缺血再灌注和其他疾病。越來(lái)越多的證據(jù)表明,氧化應(yīng)激是導(dǎo)致多種急、慢性疾病發(fā)病的病理生理學(xué)機(jī)制[13-14]。
2 Sestrin2蛋白結(jié)構(gòu)及抗氧化應(yīng)激機(jī)制
Sestrin2屬于Sestrins家族蛋白,研究發(fā)現(xiàn)編碼Sestrins的基因位于6號(hào)染色體q臂21位點(diǎn)。哺乳動(dòng)物Sestrins含有3個(gè)亞型,分別是Sestrin1、Sestrin2、Sestrin3[15]。Sestrins均具有抗氧化應(yīng)激的作用,以Sestrin2抗氧化能力最強(qiáng),研究最為廣泛。Sestrin2的晶體結(jié)構(gòu)主要為偽對(duì)稱的兩個(gè)球形結(jié)構(gòu)域,其兩個(gè)結(jié)構(gòu)域結(jié)構(gòu)相似但功能不同。N末端結(jié)構(gòu)域主要通過(guò)其螺旋-轉(zhuǎn)-螺旋氧化還原酶降低活性氧,C末端結(jié)構(gòu)域主要發(fā)揮抑制mTORC1的作用。以上從Sestrin2晶體結(jié)構(gòu)揭示了其降低ROS的積累以及抑制mTORC1的機(jī)制。
Sestrin2被確定為一種進(jìn)化上高度保守的重要抗氧化蛋白質(zhì)分子,在細(xì)胞內(nèi)發(fā)揮調(diào)節(jié)細(xì)胞增殖和細(xì)胞活力的作用[16]。Sestrin2表達(dá)在多種應(yīng)激條件下上調(diào),減少活性氧的積累,保護(hù)細(xì)胞免受氧化應(yīng)激損傷。Sestrin2在靜息細(xì)胞中表達(dá)比較低,但當(dāng)環(huán)境和代謝發(fā)生異常時(shí),如DNA損傷、缺氧、內(nèi)質(zhì)網(wǎng)應(yīng)激、能量缺乏、饑餓等情況下,Sestrin2的表達(dá)上調(diào),其主要是通過(guò)激活一些轉(zhuǎn)錄因子,包括P53、FoxO、CCAAT、ATF4、AP-1等[15,17-18]。除此之外,Sestrin2負(fù)反饋通過(guò)激活A(yù)MPK蛋白激酶可抑制mTORC1[19-24]。mTORC1是自噬負(fù)性調(diào)控因子,參與基因轉(zhuǎn)錄、蛋白質(zhì)翻譯等生物過(guò)程,在細(xì)胞的生長(zhǎng)、凋亡和自噬中發(fā)揮重要作用。自噬是真核細(xì)胞內(nèi)清理受損細(xì)胞器以及蛋白聚集體的重要機(jī)制[25]。線粒體自噬被認(rèn)為對(duì)于整個(gè)線粒體網(wǎng)絡(luò)功能完整性和維持機(jī)體氧化還原系統(tǒng)平衡關(guān)鍵過(guò)程。正常生理狀態(tài)下,受損的線粒體被特異性包裹進(jìn)自噬體中,并與溶酶體融合,從而被選擇性清除以維護(hù)細(xì)胞內(nèi)環(huán)境的穩(wěn)定[26]。Sestrin2通過(guò)上述機(jī)制可緩解肥胖、糖尿病代謝異常、胰島素抵抗、心血管疾病等導(dǎo)致的氧化應(yīng)激損傷[20,27]。
3 Sestrin2在抗氧化應(yīng)激方面的實(shí)驗(yàn)研究
3.1 Sestrin2在腦缺血再灌注損傷方面的研究
腦缺血再灌注研究揭示,當(dāng)大腦發(fā)生缺血缺氧時(shí)短時(shí)間內(nèi)即可導(dǎo)致血腦屏障水腫,通透性增高,繼而大腦受到損害,嚴(yán)重者發(fā)生腦梗死[28]。研究發(fā)現(xiàn),Sestrin2在腦組織受到較為嚴(yán)重的損傷時(shí),可通過(guò)HIF1α調(diào)控Sestrin2的表達(dá)水平顯著升高,發(fā)揮保護(hù)作用[29],可以減輕血腦屏障水腫,改善其通透性,減少腦梗死面積。出生10 d的新生大鼠建立缺血缺氧性腦病模型,檢測(cè)腦梗死面積、腦功能、Sestrin2表達(dá)水平,發(fā)現(xiàn)給予rh-Sestrin2激動(dòng)劑處理的大鼠腦梗死面積明顯低于其他大鼠,腦功能評(píng)估水平顯著高于其他大鼠,Sestrin2表達(dá)水平也顯著升高,且差異有統(tǒng)計(jì)學(xué)意義,證實(shí)了Sestrin2通過(guò)對(duì)mTORC1的抑制進(jìn)而對(duì)腦缺血缺氧損傷有明顯的改善作用[30]。隨著腦缺血時(shí)間在一定范圍內(nèi)延長(zhǎng),Sestrin2的表達(dá)水平逐漸升高,當(dāng)缺血時(shí)間達(dá)到24 h時(shí)Sestrin2的水平達(dá)最高,進(jìn)而促進(jìn)RpS6磷酸化,抑制mTOR復(fù)合物,發(fā)揮抗氧化應(yīng)激作用[31]。除此之外,腦源性神經(jīng)營(yíng)養(yǎng)因子BDNF也通過(guò)提高Sestrin2的表達(dá),進(jìn)而激活NO/PKG/NF-κB通路發(fā)揮其抗氧化應(yīng)激作用,保護(hù)腦皮質(zhì)神經(jīng)元[32]。研究發(fā)現(xiàn),Sestrin2具有減輕小鼠腦組織淀粉樣β肽的形成,并調(diào)節(jié)自噬以及保護(hù)神經(jīng)的功能[33],對(duì)阿爾茲海默癥的研究具有重要價(jià)值。
3.2 Sestrin2在心肌缺血再灌注損傷方面的研究
全球范圍糖尿病發(fā)病率的大幅增高,作為冠狀動(dòng)脈粥樣硬化的重要致病因素,心絞痛和心肌梗死的發(fā)生明顯增加。缺血性心臟病是糖尿病患者主要的心血管并發(fā)癥及首要的致死原因[34]。在研究PDH對(duì)心肌缺血損傷的作用時(shí),發(fā)現(xiàn)PDH作為心肌糖代謝調(diào)節(jié)的關(guān)鍵蛋白,通過(guò)Sestrin2和LKB1相互作用,激活A(yù)MPK通路,減輕心肌缺血損傷[20,35]。除此之外,劇烈的炎性反應(yīng)與氧化應(yīng)激之間相互聯(lián)系,相互誘發(fā),嚴(yán)重?fù)p傷組織結(jié)構(gòu)及功能。維持線粒體穩(wěn)態(tài)在各種炎性疾病中都具有重要的意義。膿毒癥是一種嚴(yán)重的全身炎性反應(yīng),對(duì)重要臟器心腦腎等都產(chǎn)生嚴(yán)重的損害。Sestrin2通過(guò)抑制NLRP3炎性體,清除受損線粒體,并誘導(dǎo)正常線粒體自噬的發(fā)生。Sestrin2發(fā)揮雙重作用,一方面促使線粒體在細(xì)胞核周?chē)奂T導(dǎo)線粒體識(shí)別自噬機(jī)制;另一方面Sestrin2通過(guò)激活線粒體自噬,在Sestrin2缺陷的小鼠中,因炎癥和膿毒癥模型導(dǎo)致的死亡率明顯增加[36]。
3.3 Sestrin2在肝、腎等重要臟器氧化應(yīng)激損傷方面的研究
肥胖以及非酒精性肝病過(guò)程中肝臟過(guò)多的脂肪堆積可引發(fā)慢性內(nèi)質(zhì)網(wǎng)應(yīng)激,內(nèi)質(zhì)網(wǎng)動(dòng)態(tài)平衡被擾亂可導(dǎo)致肝細(xì)胞壞死以及一系列炎性反應(yīng)、氧化應(yīng)激以及肝臟纖維化[37-38]。長(zhǎng)時(shí)間內(nèi)質(zhì)網(wǎng)應(yīng)激Sestrin2表達(dá)升高,通過(guò)內(nèi)質(zhì)網(wǎng)應(yīng)激激活轉(zhuǎn)錄因子CCAAT增強(qiáng)子結(jié)合蛋白,提高其表達(dá)水平,降低細(xì)胞蛋白質(zhì)翻譯,以防止過(guò)多的未折疊蛋白質(zhì)的積累,同時(shí)抑制哺乳動(dòng)物mTORC1,對(duì)內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)疾病起保護(hù)作用,使機(jī)體不會(huì)在很短時(shí)間內(nèi)發(fā)生嚴(yán)重的損害[27,39]。Sestrin2調(diào)節(jié)細(xì)胞內(nèi)活性氧以及超氧化硫的產(chǎn)生,腎臟多巴胺D2受體D2R通過(guò)調(diào)節(jié)Sestrin2防止腎臟細(xì)胞內(nèi)過(guò)多的ROS產(chǎn)生并可清除已經(jīng)產(chǎn)生的ROS,從而維持正常血壓,D2R敲除大鼠腎臟Sestrin2表達(dá)水平較野生型大鼠顯著降低。當(dāng)誘導(dǎo)人腎近曲小管細(xì)胞DS2沉默,Sestrin2表達(dá)明顯降低,超氧化物水平顯著升高,實(shí)驗(yàn)結(jié)果表明Sestrin2維持腎臟氧化還原處于動(dòng)態(tài)平衡,有助于維持血壓正常[40]。
4 Sestrin2研究展望
目前對(duì)Sestrin2的研究發(fā)現(xiàn)Sestrin2主要通過(guò)AMPK調(diào)節(jié)mTORC1發(fā)揮作用,調(diào)節(jié)機(jī)體能量代謝、細(xì)胞增殖與凋亡、線粒體自噬,影響細(xì)胞功能,在多種疾病中發(fā)揮抗氧化應(yīng)激作用。Sestrin2在腦心等重要臟器缺血缺氧后發(fā)揮抗氧化應(yīng)激產(chǎn)生保護(hù)作用已有文獻(xiàn)報(bào)道,Sestrin2在未來(lái)臨床可能作為一種調(diào)整代謝性疾病的高效安全生物制劑。Sestrin2作為近幾年在抗氧化應(yīng)激研究領(lǐng)域研究的熱點(diǎn),未來(lái)更多的研究與進(jìn)一步的探索將全面詳細(xì)揭示Sestrin2的機(jī)制和作用。
[參考文獻(xiàn)]
[1] Wild S,Roglic G,Green A,et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030 [J]. Diabetes Care,2004,27(5):1047-1053.
[2] Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview [J]. Diabetes Care,2014,37(1):9-16.
[3] Zoungas S,Chalmers J,Ninomiya T,et al. Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds [J]. Diabetologia,2012,55(3):636-643.
[4] Harman D. Aging:a theory based on free radical and radiation chemistry [J]. J Gerontol,1956,11(3):298-300.
[5] Valko M,Leibfritz D,Moncol J,et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. Int J Biochem Cell Biol,2007,39(1):44-84.
[6] Kurutas EB,Ciragil P,Gul M,et al. The effects of oxidative stress in urinary tract infection [J]. Mediators Inflamm,2005,2005(4):242-244.
[7] McCord JM,F(xiàn)ridovich I. Superoxide dismutase. An enzymic function for erythrocuprein(hemocuprein)[J]. J Biol Chem,1969,244(22):6049-6055.
[8] Flora SJ. Structural,chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure [J]. Oxid Med Cell Longev,2009,2(4):191-206.
[9] Harish G,Mahadevan A,Pruthi N,et al. Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion [J]. J Neurochem,2015,134(1):156-172.
[10] Maiese K,Chong ZZ,Wang S,et al. Oxidant stress and signal transduction in the nervous system with the PI3-K,Akt,and mTOR cascade [J]. Int J Mol Sci,2012,13(11):13830-13866.
[11] Peng S,Zhao S,Yan F,et al. HDAC2 selectively regulates FOXO3a-mediated gene transcription during oxidative stress-induced neuronal cell death [J]. J Neurosci,2015,35(3):1250-1259.
[12] Maiese K. mTOR:Driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus [J]. World J Diabetes,2015,6(2):217-224.
[13] Dalle-Donne I,Rossi R,Colombo R,et al. Biomarkers of oxidative damage in human disease [J]. Clin Chem,2006, 52(4):601-623.
[14] Finkel T,Holbrook NJ. Oxidants,oxidative stress and the biology of ageing [J]. Nature,2000,408(6809):239-247.
[15] Velasco-Miguel S,Buckbinder L,Jean P,et al. PA26,a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes [J]. Oncogene,1999,18(1):127-137.
[16] Woo HA,Bae SH,Park S,et al. Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins [J]. Antioxid Redox Signal,2009,11(4):739-745.
[17] Lee JH,Budanov AV,Karin M. Sestrins orchestrate cellular metabolism to attenuate aging [J]. Cell Metab,2013, 18(6):792-801.
[18] Budanov AV,Shoshani T,F(xiàn)aerman A,et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability [J]. Oncogene,2002,21(39):6017-6031.
[19] Kim JS,Ro S,Kim M,et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes [J]. Sci Rep,2015,5:9502.
[20] Morrison A,Chen L,Wang J,et al. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart [J]. FASEB J,2015,29(2):408-417.
[21] Peng M,Yin N,Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling [J]. Cell,2014,159(1):122-133.
[22] Park H,Park H,Ro S,et al. Hepatoprotective role of Sestrin2 against chronic ER stress [J]. Nat Commun,2014, 5(5):4233.
[23] Kim J,Kundu M,Viollet B,et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 [J]. Nat Cell Biol,2011,13(2):132-141.
[24] Lee JH,Budanov AV,Park EJ,et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies [J]. Science,2010,327(5970):1223-1228.
[25] Mizushima N. Autophagy: process and function [J]. Genes Dev,2007,21(22):2861-2873.
[26] Guo Y,Darshi M,Ma Y,et al. Quantitative proteomic and functional analysis of liver mitochondria from high fat diet(HFD)diabetic mice [J]. Mol Cell Proteomics,2013, 12(12):3744-3758.
[27] 胡永亮,譚啟杏,王紅麗,等.Sestrin2通過(guò)抑制砷化物誘導(dǎo)的氧化應(yīng)激反應(yīng)發(fā)揮拮抗細(xì)胞凋亡的保護(hù)性作用[J].生物技術(shù)通訊,2016,27(3):314-317.DOI:10.3969/j.issn.1009-0002.2016.03.003.
[28] Bain JM,Moore L,Ren Z,et al. Vascular Endothelial Growth Factors A and C are Induced in the SVZ Following Neonatal Hypoxia-Ischemia and Exert Different Effects on Neonatal Glial Progenitors [J]. Translat Stroke Res,2013, 4(2):158-170.
[29] Shi X,Doycheva DM,Xu L,et al. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats [J]. Neurobiol Dis,2016,95:111-121.
[30] Shi X,Xu L,Doycheva DM,et al. Sestrin2,as a negative feedback regulator of mTOR,provides neuroprotection by activation AMPK phosphorylation in neonatal hypoxic-ischemic encephalopathy in rat pups [J]. J Cerebral Blood Flow Metab,2016,37(4):1447-1460.
[31] Chuang Y,Yang J,Yang D,et al. Roles of Sestrin2 and ribosomal protein S6 in transient global ischemia-induced hippocampal Neuronal Injury [J]. Int J Mol Sci,2015, 16(11):26406-26416.