曲家惠,都 玲,趙方昕,楊麗麗,張文杰
(1 沈陽(yáng)理工大學(xué) 環(huán)境與化學(xué)工程學(xué)院,沈陽(yáng) 110159; 2 沈陽(yáng)理工大學(xué) 信息科學(xué)與工程學(xué)院,沈陽(yáng) 110159)
溶膠-凝膠法制備La2Ti2O7/HZSM-5及其光催化活性
曲家惠1,都 玲1,趙方昕2,楊麗麗1,張文杰1
(1 沈陽(yáng)理工大學(xué) 環(huán)境與化學(xué)工程學(xué)院,沈陽(yáng) 110159; 2 沈陽(yáng)理工大學(xué) 信息科學(xué)與工程學(xué)院,沈陽(yáng) 110159)
采用溶膠-凝膠法制備La2Ti2O7/HZSM-5光催化劑,并對(duì)其光催化活性進(jìn)行研究。結(jié)果表明:La2Ti2O7經(jīng)HZSM-5分子篩負(fù)載后,并未改變?cè)芯?,仍為單斜晶系鈣鈦礦結(jié)構(gòu)。負(fù)載后的La2Ti2O7分散在分子篩表面,催化劑的比表面積大幅增加并形成新的中孔結(jié)構(gòu)。HZSM-5制約了La2Ti2O7的生長(zhǎng),導(dǎo)致晶粒尺寸減小。材料的光譜吸收邊界隨負(fù)載量的減小而發(fā)生藍(lán)移,禁帶寬度增大。負(fù)載樣品中La3d和O1s的電子結(jié)合能增大。La2Ti2O7/HZSM-5比純La2Ti2O7具有更高的光催化活性。經(jīng)紫外光照120min后,活性艷紅X-3B在70%La2Ti2O7/HZSM-5上的總脫色率為91.8%,而在La2Ti2O7上僅為31.7%。
溶膠-凝膠;鈦酸鑭;HZSM-5;光催化
光催化凈化技術(shù)在解決環(huán)境問(wèn)題、應(yīng)對(duì)環(huán)境污染方面起到了重要作用[1]。在被廣泛研究的光催化劑中,鑭系鈦酸鹽優(yōu)良的物理化學(xué)性質(zhì)引起研究人員的興趣[2,3]。La2Ti2O7作為其中重要的代表物質(zhì),近年來(lái)受到較多關(guān)注[4,5]。La2Ti2O7的合成大都采用傳統(tǒng)的固相反應(yīng)法。自Milanova等[6]采用簡(jiǎn)單的檸檬酸聚合絡(luò)合法制備純相La2Ti2O7以來(lái),液相法合成La2Ti2O7的報(bào)道逐漸增多。對(duì)于純相La2Ti2O7而言,由于其較大的晶粒尺寸、低比表面積及高的電子-空穴復(fù)合率,而使其光催化降解能力較低[7]。很多學(xué)者運(yùn)用摻雜、貴金屬沉積等手段對(duì)其進(jìn)行改性[8-10]。ZSM-5分子篩是一種常見(jiàn)載體,具有獨(dú)特的交叉孔道體系和較大的比表面積。研究人員以分子篩為載體負(fù)載氧化鈦和SrTiO3,提高了光催化劑的活性[11,12]。本工作以HZSM-5為載體,采用溶膠-凝膠法制備La2Ti2O7/HZSM-5光催化劑,進(jìn)行X射線衍射(XRD)、中遠(yuǎn)紅外光譜 (FT-IR/FIR)、紫外-可見(jiàn)漫反射光譜(UV-Vis)、比表面(BET)及X光電子能譜(XPS)表征,考察負(fù)載量對(duì)La2Ti2O7的晶體結(jié)構(gòu)、表面形貌等物化性質(zhì)的影響,并以活性艷紅X-3B為初始污染物,研究負(fù)載型La2Ti2O7的光催化降解性能。
1.1 材料制備
將0.85mL鈦酸四丁酯逐滴加入8mL無(wú)水乙醇中,充分?jǐn)嚢?,形成A液。稱取1.0825g(n(La)∶n(Ti)=1∶1)硝酸鑭溶于8mL蒸餾水,再加入8mL冰醋酸,形成B液。在強(qiáng)力攪拌下將A液滴至B液內(nèi),并向混合液中緩慢加入2mL乙二醇。向溶液中投加一定量HZSM-5,隨后迅速將混合液轉(zhuǎn)入水浴鍋內(nèi),在70℃下攪拌,直至形成淡黃色凝膠。將凝膠置于110℃烘箱內(nèi)干燥15h后研磨,再于馬弗爐中以5℃·min-1的升溫速率將溫度升至800℃,恒溫煅燒3h。冷卻至室溫后將樣品研磨成細(xì)粉,即可制得負(fù)載量分別為20%,50%,70%,90%的La2Ti2O7/HZSM-5。文中所指負(fù)載量均為L(zhǎng)a2Ti2O7在樣品中的質(zhì)量分?jǐn)?shù)。制備La2Ti2O7時(shí),混合液中不加入分子篩,其他過(guò)程相同。
1.2 催化劑表征
采用D8 Advance X射線衍射儀(CuKα,λ=0.1541nm)分析催化劑的晶體結(jié)構(gòu);采用Frontier FT-IR/FIR中遠(yuǎn)紅外光譜儀對(duì)催化劑進(jìn)行紅外光譜分析;采用LAMBDA 35紫外-可見(jiàn)光譜儀分析催化劑的紫外漫反射光譜;采用F-Sorb3400比表面及孔徑分析儀測(cè)試催化劑的比表面積及孔結(jié)構(gòu);采用Thermo ESCALAB 250Xi X光電子能譜儀分析催化劑表面元素的化學(xué)環(huán)境。
1.3 光催化活性評(píng)價(jià)
光催化劑活性評(píng)價(jià)在自制的反應(yīng)器中進(jìn)行,在100mL石英燒杯上方放置主波長(zhǎng)253.7nm 的20W紫外燈。反應(yīng)溶液體積為50mL,活性艷紅X-3B的初始濃度為30mg·L-1。使用721E型可見(jiàn)分光光度計(jì)測(cè)定活性艷紅X-3B最大吸收波長(zhǎng)540nm處的吸光度。在本實(shí)驗(yàn)中La2Ti2O7的濃度均為500mg·L-1,與染料溶液混合后于暗處攪拌至吸附-脫附平衡。取5mL溶液,經(jīng)微濾膜(孔徑為0.45μm)過(guò)濾后測(cè)定其吸光度。剩余溶液經(jīng)光催化反應(yīng)后過(guò)濾,測(cè)其吸光度。根據(jù)朗伯-比爾定律[13]計(jì)算活性艷紅X-3B的吸附率以及光催化降解率?;钚云G紅X-3B的光催化降解符合一級(jí)反應(yīng)方程ln(C0/C)=k×t[14],其中,k為光催化反應(yīng)速率常數(shù),C0為染料溶液初始濃度,C為光照一定時(shí)間后的染料溶液濃度,t為光照時(shí)間。
2.1 樣品的表征
圖1 La2Ti2O7和不同負(fù)載量的La2Ti2O7/HZSM-5的XRD譜圖Fig.1 XRD patterns of La2Ti2O7 and La2Ti2O7/HZSM-5 with different loading content
圖2為L(zhǎng)a2Ti2O7及不同負(fù)載量的La2Ti2O7/HZSM-5的FT-IR和FT-FIR光譜圖。可知,3440cm-1及1631cm-1附近出現(xiàn)的是羥基伸縮和彎曲振動(dòng)吸收峰,這是由于樣品表面吸附的水分子及分子篩本身的表面羥基所致。分子篩表面的羥基可以捕集更多的光生空穴,形成具有強(qiáng)氧化能力的羥基自由基[17]。1232cm-1處的峰歸屬于Al—O—Al或Si—O—Si的反對(duì)稱伸縮振動(dòng)峰[18],1096cm-1處寬而強(qiáng)的吸收帶為Si—O—Si鍵的反對(duì)稱伸縮振動(dòng)峰,796cm-1處為SiO4的四面體環(huán)振動(dòng)峰[19]。
圖2 La2Ti2O7及不同負(fù)載量的La2Ti2O7/HZSM-5的FT-IR(a)和FT-FIR譜圖(b) Fig.2 FT-IR spectra(a) and FT-FIR spectra(b) of La2Ti2O7 and La2Ti2O7/HZSM-5 with different loading content
由圖2(b)遠(yuǎn)紅外譜圖可以更清楚地觀察金屬氧化物的成鍵信息。647cm-1和353cm-1附近的吸收帶歸屬于La—O吸收峰[20],554cm-1附近強(qiáng)而寬的吸收帶為T(mén)iO6八面體中Ti—O的伸縮振動(dòng)峰,554cm-1處的吸收帶隨負(fù)載量的減小而增強(qiáng),為HZSM-5特征雙五環(huán)的反對(duì)稱伸縮振動(dòng)吸收峰[21]與其疊加所致,462cm-1處的吸收帶由Ti—O—La振動(dòng)引起[22], 452cm-1處伴隨負(fù)載量下降而變強(qiáng)的吸收峰為四面體Si—O的彎曲振動(dòng)峰。可以看出,負(fù)載后的樣品保持了La2Ti2O7的所有特征吸收峰,且在1033cm-1處未出現(xiàn)新吸收帶,表明La3+并未進(jìn)入到分子篩骨架[21]。
圖3為L(zhǎng)a2Ti2O7和不同負(fù)載量的La2Ti2O7/HZSM-5的紫外-可見(jiàn)漫反射光譜。催化劑在紫外區(qū)有很好的吸收。根據(jù)愛(ài)因斯坦關(guān)系式Eg=1240/λg[14],計(jì)算可得La2Ti2O7及負(fù)載量為90%,70%,50%,20%的La2Ti2O7/HZSM-5的禁帶寬度分別為2.84,3.11,3.20,3.21,3.32eV。可以看出,隨著負(fù)載量的減小,光譜吸收邊界發(fā)生藍(lán)移,禁帶寬度有所增大。由于負(fù)載到HZSM-5上的La2Ti2O7晶粒生長(zhǎng)受到抑制,晶粒細(xì)化使帶隙寬化。
材料的比表面積、孔結(jié)構(gòu)和吸附量如表1所示。未負(fù)載的La2Ti2O7幾乎沒(méi)有孔結(jié)構(gòu),累計(jì)孔容僅為0.0011cm3·g-1。負(fù)載后樣品的孔容及平均孔徑有所增加。值得注意的是, 低負(fù)載量(20%~50%)樣品的孔容隨分子篩的減少而下降,在高負(fù)載量時(shí)卻未繼續(xù)減少。這是由于低負(fù)載量樣品的孔容由HZSM-5本身的微孔所提供,分子篩減少后孔容隨之下降。高負(fù)載量的La2Ti2O7在分子篩表面密集堆積而形成新的中孔結(jié)構(gòu),增加的孔容抵消了分子篩含量下降而減少的孔容。此時(shí),平均孔徑的增加也證實(shí)了樣品孔結(jié)構(gòu)的改變。HZSM-5對(duì)染料沒(méi)有任何吸附能力,對(duì)活性艷紅分子的吸附全部來(lái)自于La2Ti2O7。當(dāng)負(fù)載量較大時(shí),La2Ti2O7與分子篩間新的孔結(jié)構(gòu)使其具有較大的孔容,有利于對(duì)染料的吸附。
圖3 La2Ti2O7及不同負(fù)載量的La2Ti2O7/HZSM-5的紫外-可見(jiàn)漫反射光譜圖Fig.3 UV-Vis diffuse reflectance spectra of La2Ti2O7 and La2Ti2O7/HZSM-5 with different loading content
表1 HZSM-5,La2Ti2O7和不同負(fù)載量的La2Ti2O7/HZSM-5的比表面積、孔結(jié)構(gòu)和吸附量Table 1 Specific surface area,porous structure and adsorption capacity of HZSM-5,La2Ti2O7 and La2Ti2O7/HZSM-5 with different loading content
圖4為70%La2Ti2O7/HZSM-5及La2Ti2O7光催化劑中La3d,Ti2p,O1s的XPS譜圖。由圖3(a)可知,La3d顯示出較為復(fù)雜的多峰圖譜,這是由于其自旋軌道相互作用導(dǎo)致La3d的芯級(jí)能譜分裂所致。負(fù)載樣品中834.2,836.0,838.8,847.4eV對(duì)應(yīng)于La3d5/2結(jié)合能的位置,851.0,852.8,855.6,862.7eV則對(duì)應(yīng)于La3d3/2結(jié)合能位置。這與文獻(xiàn)報(bào)道非常接近[23],表明La處于+3價(jià)態(tài),并以氧化物形式存在[24,25]。位于La3d3/2,La3d5/2左側(cè)高能端的振起(shake-up)伴峰的強(qiáng)度變化可反映出O的2p電子轉(zhuǎn)移至La的能力。負(fù)載后La3d3/2與La3d5/2伴峰所占比例由純La2Ti2O7的71.8%,76.7%減小至70.0%和67.7%。表明負(fù)載樣品內(nèi)La2Ti2O7中O的外層價(jià)電子向La轉(zhuǎn)移的能力有所下降,即La—O間共價(jià)性[26]和La周?chē)碾娮釉泼芏葴p小,電子結(jié)合能相應(yīng)增加。這與擬合圖譜中結(jié)果相對(duì)應(yīng),即負(fù)載樣品中La3d的電子結(jié)合能向高能端偏移0.1~0.5eV。
圖4 La2Ti2O7及70%La2Ti2O7/HZSM-5的XPS譜圖 (a)La3d;(b)Ti2p;(c)O1sFig.4 XPS spectra of La2Ti2O7 and 70%La2Ti2O7/HZSM-5 (a)La3d;(b)Ti2p;(c)O1s
由圖4(b)可知,70%La2Ti2O7/HZSM-5樣品中458.3,464.0eV處兩對(duì)稱的譜峰對(duì)應(yīng)于Ti2p3/2及Ti2p1/2結(jié)合能位置,峰距為5.7eV,為T(mén)i4+的特征XPS譜峰[27]。負(fù)載前后峰距未有變化,表明Ti所處的化學(xué)環(huán)境沒(méi)有發(fā)生明顯改變。
由圖4(c)可知,結(jié)合能為529.4,529.7,531.3eV對(duì)應(yīng)于La2Ti2O7的晶格氧、表面吸附氧和羥基中的氧。70%La2Ti2O7/HZSM-5中O1s擬合圖譜內(nèi)新出現(xiàn)的532.7eV處結(jié)合能位置歸屬于分子篩骨架中的晶格氧。負(fù)載后的樣品中,由于La—O間共價(jià)性的減小,O周?chē)碾娮釉泼芏葢?yīng)有所增加,電子結(jié)合能也應(yīng)有所降低。然而,負(fù)載樣品中O1s的電子結(jié)合能反而向高能端移動(dòng)0.2~0.4eV,這是由于分子篩對(duì)La2Ti2O7中O周?chē)娮虞^強(qiáng)的吸引作用所致。
2.2 光催化活性
圖 5為不同負(fù)載量的La2Ti2O7/HZSM-5對(duì)活性艷紅X-3B的降解活性。本工作使用的HZSM-5對(duì)染料無(wú)光催化降解能力,光催化活性均來(lái)自于負(fù)載到HZSM-5表面的La2Ti2O7。未經(jīng)負(fù)載的La2Ti2O7的光催化活性比較低,經(jīng)紫外光照30min后活性艷紅X-3B的降解率僅為6.4%。負(fù)載后樣品的光催化活性隨負(fù)載量不同而有較大變化。當(dāng)負(fù)載量為70%時(shí),70%La2Ti2O7/HZSM-5樣品有最佳的光催化活性,經(jīng)紫外光照30min后活性艷紅X-3B的降解率為34.8%。
圖5 不同負(fù)載量的La2Ti2O7/HZSM-5對(duì)活性艷紅X-3B的降解率Fig.5 Photocatalytic degradation efficiency of RBR X-3B on La2Ti2O7/HZSM-5 with different loading content
活性艷紅X-3B在70%La2Ti2O7/HZSM-5和La2Ti2O7上的光催化反應(yīng)速率常數(shù)k值分別為0.02122,0.00311min-1,負(fù)載樣品為未負(fù)載La2Ti2O7的6.8倍。一方面,分子篩對(duì)La2Ti2O7有著較好的分散作用,La2Ti2O7擁有更小的晶粒尺寸、更大的比表面積和新的孔結(jié)構(gòu),對(duì)染料分子有更好的吸附作用,提高了光催化反應(yīng)效率。另一方面,XPS結(jié)果顯示出HZSM-5可使La2Ti2O7周?chē)娮釉泼芏冉档停种屏穗娮优c空穴的復(fù)合,進(jìn)而增強(qiáng)了氧化還原能力。這與O′Neill等[28]研究相吻合,電子轉(zhuǎn)移使材料的光催化活性提高。但是,隨著分子篩含量的繼續(xù)增加,降解率呈現(xiàn)出明顯的下降趨勢(shì)。這主要是因?yàn)樵诘拓?fù)載量時(shí),為保持La2Ti2O7催化劑含量不變,反應(yīng)體系中HZSM-5顆粒增多,阻礙了La2Ti2O7對(duì)入射光的吸收。同時(shí),催化劑對(duì)染料分子的吸附能力有所下降,不利于光催化反應(yīng)進(jìn)行。
圖6為不同光照時(shí)間時(shí)La2Ti2O7及70%La2Ti2O7/HZSM-5對(duì)活性艷紅X-3B降解時(shí)溶液的紫外-可見(jiàn)吸收光譜圖。隨反應(yīng)時(shí)間的增加,位于540nm處活性艷紅的偶氮共軛體系吸收峰強(qiáng)度降低,說(shuō)明其結(jié)構(gòu)受到破壞,造成染料脫色。光催化反應(yīng)120min時(shí),染料在70%La2Ti2O7/HZSM-5上的總脫色率可達(dá)91.8%,而在La2Ti2O7上僅為31.7%。位于230,280,310nm處的吸收峰歸屬于染料分子中苯環(huán)結(jié)構(gòu)和萘環(huán)結(jié)構(gòu)的特征峰。未負(fù)載La2Ti2O7幾乎不能對(duì)其降解,70%La2Ti2O7/HZSM-5的降解效果卻很顯著。
圖6 不同光照時(shí)間時(shí)La2Ti2O7(a)及70%La2Ti2O7/HZSM-5(b)光催化降解活性艷紅X-3B的紫外-可見(jiàn)吸收光譜圖Fig.6 UV-Vis absorption spectra of RBR X-3B photocatalytic degradation on La2Ti2O7(a) and 70%La2Ti2O7/HZSM-5(b) with different irradiation time
(1)采用溶膠-凝膠法制備La2Ti2O7/HZSM-5光催化劑。La2Ti2O7分散在HZSM-5分子篩表面,La2Ti2O7/HZSM-5的比表面積遠(yuǎn)大于La2Ti2O7,并可形成新的中孔結(jié)構(gòu)。
(2)La2Ti2O7經(jīng)分子篩負(fù)載后晶型沒(méi)有改變,仍為單斜晶系的鈣鈦礦結(jié)構(gòu)。HZSM-5制約了La2Ti2O7的生長(zhǎng),晶粒尺寸有所減小。
(3)La2Ti2O7/HZSM-5比La2Ti2O7有更強(qiáng)的吸附及光催化降解能力。當(dāng)負(fù)載量為70%時(shí),70%La2Ti2O7/HZSM-5具有最佳的光催化活性。
[1] 陳昱,王京鈺,李維尊,等.新型二氧化鈦基光催化材料的研究進(jìn)展[J].材料工程,2016,44(3):103-113.
CHEN Y,WANG J Y,LI W Z,et al.Research progress in TiO2-based photocatalysis material[J].Journal of Materials Engineering,2016,44(3):103-113.
[2] XUE H,ZHANG Y W,XU J,et al.Facile one-pot synthesis of porous Ln2Ti2O7(Ln = Nd,Gd,Er) with photocatalytic degradation performance for methyl orange[J].Catalysis Communications,2014,51:72-76.
[3] BAYART A,SAITZEK S,FERRI A,et al.Microstructure and nanoscale piezoelectric/ferroelectric properties in Ln2Ti2O7(Ln = La,Pr and Nd) oxide thin films grown by pulsed laser deposition[J].Thin Solid Films,2014,553:71-75.
[4] ARNEY D,PORTER B,GREVE B,et al.New molten-salt synthesis and photocatalytic properties of La2Ti2O7particles[J].Journal of Photochemistry and Photobiology A:Chemistry,2008,199:230-235.
[5] YANG Q L,KANG S Z,CHEN H,et al.La2Ti2O7:an efficient and stable photocatalyst for the photoreduction of Cr(VI) ions in water[J].Desalination,2011,266:149-153.
[6] MILANOVA M M,KAKIHANA M,ARIMA M,et al.A simple solution route to the synthesis of pure La2Ti2O7and Nd2Ti2O7at 700-800℃ by polymerized complex method[J].Journal of Alloys and Compounds,1996,242:6-10.
[7] HOU W M,KU Y.Synthesis and characterization of La2Ti2O7employed for photocatalytic degradation of reactive red 22 dyestuff in aqueous solution[J].Journal of Alloys and Compounds,2011,509:5913-5918.
[8] 李鴻建,陳剛,李中華,等.燒綠石結(jié)構(gòu)La2Ti2-xCoxO7的制備及可見(jiàn)光分解水性能[J].物理化學(xué)學(xué)報(bào),2007,23(5):761-764.
LI H J,CHEN G,LI Z H,et al.Synthesis and photocatalytic decomposition of water under visible light irradiation of La2Ti2-x-CoxO7with pyrochlore structure[J].Acta Physico-Chimica Sinica,2007,23(5):761-764.
[9] SRIVASTAVA A M.Chemical bonding and crystal field splitting of the Eu3+7F1 level in the pyrochlores Ln2B2O7(Ln=La3+,Gd3+,Y3+,Lu3+;B=Sn4+,Ti4+)[J].Optical Materials,2009,31:881-885.
[10] HWANG D W,KIM H G,LEE J S,et al.Photocatalytic hydrogen production from water over M-doped La2Ti2O7(M=Cr,Fe) under visible light irradiation (λ>420 nm) [J].Journal of Physical Chemistry B,2005,109:2093-2102.
[11] GUO P,WANG X S,GUO H C.TiO2/Na-HZSM-5 nano-composite photocatalyst:reversible adsorption by acid sites promotes photocatalytic decomposition of methyl orange[J].Applied Catalysis B:Environmental,2009,90:677-687.
[12] 劉春玲,畢菲非,張文杰,等.負(fù)載型SrTiO3/HZSM-5光催化材料制備與性能研究[J].材料工程,2016,44(12):22-27.
LIU C L,BI F F,ZHANG W J,et al.Preparation and properties of supported SrTiO3/HZSM-5 photocatalyst[J].Journal of Materials Engineering,2016,44(12):22-27.
[13] BROCK J R.A note on the Beer-Lambert law[J].Analytica Chimica Acta,1962,27:95-97.
[14] BAILEY R A,CLARK H M,FERRIS J P.Chemistry of the Environment[M].Beijing:World Book Inc,2005.
[15] SCHWARZ A,HARTIG K J,GETOFF N.Diffusion controlled photocurrent transients at the surface of thin polycrystallinen-TiO2layers [J].International Journal of Hydrogen Energy,1988,13(2):81-86.
[16] ZHANG W J,BI F F,YU Y,et al.Phosphoric acid treating of ZSM-5 zeolite for the enhanced photocatalytic activity of TiO2/HZSM-5[J].Journal of Molecular Catalysis A:Chemical,2013,372:6-12.
[17] 仲鑫,孫劍,劉守新,等.可見(jiàn)光響應(yīng)Pt沉積La2O3/TiO2制備及其對(duì)甲苯的光熱催化去除[J].無(wú)機(jī)材料學(xué)報(bào),2011,26(11):1175-1180.
ZHONG X,SUN J,LIU S X,et al.Preparation of visible light response Pt-doped La2O3/TiO2and thermo-photocatalytic degradation of toluene[J].Journal of Inorganic Materials,2011,26(11):1175-1180.
[18] 郭文珪,辛勤,張慧,等.ZSM-5型沸石的紅外光譜結(jié)構(gòu)分析[J].催化學(xué)報(bào),1981,2(1):36-41.
GUO W G,XIN Q,ZHANG H,et al.Structural analysis of ZSM-5 type zeolite by infrared spectroscopy[J].Chinese Journal of Catalysis,1981,2(1):36-41.
[19] 張文杰,于揚(yáng),李可心.NaZSM-5分子篩磷酸改性對(duì)TiO2/ZSM-5光催化劑的影響[J].功能材料,2012,43(10):1308-1315.
ZHANG W J,YU Y,LI K X.Effects of phosphoric acid modification of NaZSM-5 zeolite on the properties of TiO2/ZSM-5 photocatalyst[J].Journal of Functional Materials,2012,43(10):1308-1315.
[20] 趙震,遠(yuǎn)松月,于作龍.甲烷氧化偶聯(lián)Ti-La-Li系混合氧化物催化劑[J].物理化學(xué)學(xué)報(bào),1994,10(4):324-329.
ZHAO Z,YUAN S Y,YU Z L.Study of methane oxidative cou-pling over Ti-La-Li mixed oxides[J].Acta Physico-Chimica Sinica,1994,10(4):324-329.
[21] LI X,LI B S,XU J Q,et al.Synthesis and characterization of Ln-ZSM-5/MCM-41 (Ln = La,Ce) by using kaolin as raw material[J].Applied Clay Science,2010,50:81-86.
[22] SOLER G I,LOUIS A,SANCHEZ C.Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly[J].Chemistry of Materials,2002,14(2):750-759.
[23] SU J H,LI C J,BO C,et al.Visible light driven (Fe,Cr)-codoped La2Ti2O7photocatalyst for efficient photocatalytic hydrogen production[J].Journal of Power Sources,2014,266:304-312.
[24] SUNDING K,HADIDIA S,DIPLASB O M,et al.XPS characterisation ofinsitutreated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures[J].Journal of Electron Spectroscopy and Related Phenomena,2011,184:399-409.
[25] YING M,HUO L H,ZHAO H,et al.Electrical properties and acetone-sensing characteristics of LaNi1-xTixO3perovskite system prepared by amorphous citrate decomposition[J].Sensors and Actuators B:Chemical,2009,143:111-118.
[26] POUILLEAU J,DEVILLIERS D,GROULT H,et al.Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy[J].Journal of Materials Science,1997,32(21):5645-5651.
[27] MA H Q,TAN X,ZHU H M,et al.XPS characterization of La1-xCexFeO3perovskite as high-temperature water-gas shift catalysts[J].Journal of the Chinese Rare Earth Society,2003,21(4):445-448.
[28] O′NEILL M A,COZENS F L,SCHEPP N P.Photogeneration and migration of electrons and holes in zeolite NaY[J].Journal of Physical Chemistry B,2001,105:12746-12758.
(本文責(zé)編:王 晶)
Sol-gel Synthesis and Photocatalytic Activity of La2Ti2O7/HZSM-5
QU Jia-hui1,DU Ling1,ZHAO Fang-xin2,YANG Li-li1,ZHANG Wen-jie1
(1 School of Environmental and Chemical Engineering,Shenyang Ligong University,Shenyang 110159,China;2 School of Information Science and Engineering,Shenyang Ligong University, Shenyang 110159,China)
La2Ti2O7/HZSM-5 photocatalysts were prepared by sol-gel method, and its photocatalytic activity was studied. The results show that the original crystal phase of La2Ti2O7is not changed after loading La2Ti2O7on HZSM-5,and is still perovskite structure. La2Ti2O7is dispersed on the surface of HZSM-5 after loading to apparent increasing specific surface area and formation of new mesoporous structure. The growth of La2Ti2O7is constrainted by HZSM-5, resulting in the reduction of grain size. The absorption boundary has a blue shift and the band gap increases with decreasing La2Ti2O7loading content. Binding energies of La3d and O1s electrons move to higher energy after loading La2Ti2O7on HZSM-5. La2Ti2O7/HZSM-5 has enhanced photocatalytic activity as compared to La2Ti2O7. 91.8% of the reactive brilliant red(RBR) X-3B is decolorized on 70%La2Ti2O7/HZSM-5 after 120min of UV irradiation, while only 31.7% of the dye is removed on La2Ti2O7.
sol-gel;lanthanum titanate;HZSM-5;photocatalysis
10.11868/j.issn.1001-4381.2015.001422
O643
A
1001-4381(2017)07-0071-06
國(guó)家自然科學(xué)基金青年基金資助項(xiàng)目(51504154);遼寧省自然科學(xué)基金資助項(xiàng)目(2015020186)
2015-11-21;
2017-03-06
張文杰(1969-),男,博士,教授,研究方向是環(huán)境凈化功能材料,聯(lián)系地址:遼寧省沈陽(yáng)市渾南新區(qū)沈陽(yáng)理工大學(xué)環(huán)境與化學(xué)工程學(xué)院(110159),E-mail:wjzhang@aliyun.com