亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

        2017-07-18 11:47:12YANGChangsenYANGChaojun
        數(shù)學雜志 2017年4期
        關鍵詞:河南師范大學信息科學乘積

        YANG Chang-sen,YANG Chao-jun

        (College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

        SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

        YANG Chang-sen,YANG Chao-jun

        (College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

        In this paper,we study the relations between the operator inequalities and the operator monotone functions.By using the fundamental conclusions based on majorization,namely,product lemma and product theorem for operator monotone functions,we can give some operator inequalities.This result contains the Furuta inequality,which has a huge impact on positive operator theory.

        operator monotone function;product lemma;product theorem;majorization

        1 Introduction

        LetJbe an interval such thatJ/(-∞,∞).P(J)denotes the set of all operator monotone functions onJ.We setP+(J)={f∈P(J)|f(t)≥0,t∈J}.Iff∈P+(a,b)and-∞<a,thenfhas the natural extension to[a,b),which belongs toP+[a,b).We therefore identifyP+(a,b)withP+[a,b).

        It is well-known that iff(t)∈P+(0,∞),thenare both inP+(0,∞),and that iff(t),φ(t),φ(t)are all inP+(0,∞),then so are

        andf(t)αφ(t)1-αfor 0<α<1(see[1-5]).Throughout this work,we assume that a function is continuous and increasing means “strictly increasing”.Further more,for convenience,letB(H)denote theC?-algebra of all bounded linear operators acting on a Hilbert spaceH.A capital letterAmeans an element belongs toB(H),Φ means a positive linear map fromB(H)toB(H)and we assume Φ(I)=Ialways stand(see[7,8]).In this paper,we also assume thatJ=[a,b)orJ=(a,b)with-∞≤a<b≤+∞.

        De fi nition 1.1[9,10]Letdenote the following sets,respectively,

        whereh-1stands for the inverse function ofh.

        De fi nition 1.2Leth(t)andg(t)be functions defined onJ,andg(t)is increasing,thenhis said to be majorized byg,in symbolh≤gif the compositeh?g-1is operator monotone ong(J),which is equivalent to

        Lemma 1.1(Product lemma)(see[9,10])Leth,gbe non-negative functions defined onJ.Suppose the producthgis increasing,(hg)(a+0)=0 and(hg)(b-0)=∞.Then

        Moreover,for everyψ1,ψ2inP+[0,∞),

        Theorem 1.1(Product theorem)(see[9,10])

        Further,letgi(t)∈LP+(J)for 1≤i≤mandhj(t)∈P-1+(J)for 1≤j≤n.Then for everyψi,φj∈P+[0,∞),we have

        2 Main Results

        Before to prove our main results,we give the following lemmas.

        Lemma 2.1(L-H inequality)(see[2,12])If 0≤α≤1,A≥B≥0,thenAα≥Bα.

        Lemma 2.2(Furuta inequality)(see[6,9])LetA≥B≥0,then

        wherer≥0,p≥1 with

        Lemma 2.3(Hansen inequality)(see[13])LetXandAbe bounded linear operators onH,and such thatX≥ 0,‖A‖≤1.Iffis an operator monotone function on[0,∞),then

        Theorem 2.1PutJ/=(-∞,∞),,fi∈P+(J),i=1,2,···,n,,andkn(t)=f1(t)f2(t)···fn(t).Ifh(t)is defined onJsuch that,then

        (i)the functionφnon(0,∞)defined by

        belongs toP+(0,∞);

        (ii)ifA≤C≤B,then

        Proof(i)Sincef1(t)f1(t)h(t),by product lemmah(t)f1(t)h(t),thereforeh(t)is nondecreasing.When,since,we haveη(t)g(t).Now puttingψ0(s)=s,ψ1(g)=η,ψ2(f1h)=f1,obviously,we haveψ0,ψ1,ψ2∈P+(0,∞).By takingsinψ0(s)asf2···fn,and from product theorem,we obtain

        Therefore we haveφnbelongs toP+(0,∞)forφngiven in(i).

        Wheng(t)=f1(t),by takingψ0(s)=s,ψ1(g(t)h(t))=η(t),we haveψ0,ψ1∈P+(0,∞),and thenφn∈P+(0,∞)by product theorem.

        (ii)First we prove that

        Sinceφn,kn,h,gare all nonnegative,nondecreasing functions andJis a right open interval,by consideringC+?,B+?,we may assume that,h(C),h(B),g(C),g(B)are positive semi-de fi nite and invertible.Through(i),

        This implies the right part of(2.2)holds forn=1.Next we assume the right part of(2.2)holds forn-1.Sinceandand this means that there existssuch thatfn(t)= Ψn(kn-1(t)η(t)).Puts=kn-1(t)η(t),we can obtain.Since the following inequality holds

        Denote the left side of the upper inequalities asH,the right one asK,we have

        ByH=φn-1(kn-1(C)h(C)g(C))=kn-1(C)η(C),we obtain

        By Lemma 2.3 again,we obtain

        From the above inequalities and(2.4),we get

        Therefore the right part of(2.2)holds forn,one can proof the left part of(2.2)similarly.

        RemarkIn Theorem 2.1,letn=2,f1(t)=g(t)=1,f2(t)=tr(r≥0),h(t)=tp(p≥1),andη(t)=t,then we haveφ2(tp+r)=t1+r.So Furuta inequality can be obtained by(2.2)and L-H inequality.

        Lemma 2.4(see[10,11])PutJ(-∞,∞),theng∈LP+(J)if and only if there exists a sequence{gn}of a fi nite product of functions inP+(J)which converges pointwise togonJ,further more,{gn}converges uniformly togon every bounded closed subinterval ofJ.

        Theorem 2.2PutJ(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,then

        (i)the functionφon(0,∞)defined by

        belongs toP+(0,∞);

        (ii)IfA≤C≤B,then forφ∈P(0,∞)such thatφ≤φon(0,∞),

        Proof(i)First consider,thenk=lfand

        Letψ0(s)=s,ψ1(f(t)h(t))=f(t),ψ2(g(t))=η(t),thenψ0,ψ1,ψ2∈P+(0,∞).By takings=l(t)and applying product theorem,we get

        which equals tok(t)η(t)≤k(t)h(t)g(t).So we haveφ∈P+(0,∞)forφsuch that

        Ifg=f,takingψ0(s)=s,ψ1(h(t)g(t))=η(t),obviously,we haveψ0,ψ1∈P+(0,∞),and thenψ0(k)ψ1(hg).Hence we also haveφ∈P+(0,∞)from product theorem.

        (ii)From Lemma 2.4,we obtain there exists a sequence{ln},whereln(t)is a fi nite product of functions inP+(J),such thatln(t)converges ponitwise tol(t).Putkn(t)=f(t)ln(t)then we easily getkn(t)converges tok(t)=f(t)l(t).De fi neφn(kn(t)h(t)g(t))=kn(t)η(t)(t∈J),φn∈P+(0,∞).By Theorem 2.1,we have

        Lemma 2.5(Choi inequality)(see[6,7])Let Φ be a positive unital linear map,then

        (C1)whenA>0 and-1≤p≤0,then Φ(A)p≤Φ(Ap);

        (C2)whenA≥ 0 and 0≤p≤1,then Φ(A)p≥ Φ(Ap);

        (C3)whenA≥ 0 and 1≤p≤2,then Φ(A)p≤Φ(Ap).

        Corollary 2.1PutJ/=(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,the functionφon(0,∞)defined as(2.5),Φ is a positive unital

        linear map.If

        then forφ∈P(0,∞)such thatφ≤φ,

        ProofBy Choi inequality and L-H inequality,we obtain

        Corollary 2.2Put

        such that.Then(2.5)and(2.6)in Theorem 2.2 hold.

        ProofPutc=min{ 1,p},thenf(t)=t1-c∈P+(0,∞).Thus we get

        which means the conditions of Theorem 2.2 is satis fi ed.Therefore(2.5)and(2.6)in Theorem 2.2 hold.

        Corollary 2.3Put,p,r≥0 andp+r≥1,s≥1,we obtain

        ProofPutg(t)=ts(s≥1),η(t)=tin Corollary 2.2.Then we only need to show logs≤φ(s),s∈(0,∞).The de fi nition ofφis given in(2.5).The upper majorization relationship is equivalent to

        It is obviously that logk(t),logh(t),logtsare operator monotone on(0,∞)and,then

        Therefore(2.8)holds.

        [1]Bhatia R.Matrix analysis[M].New York:Springer,1996.

        [3]Horn R A,Johnson C R.Matrix analysis[M].Cambridge:Cambridge Univ.Press,1985.

        [4]Rosenblum M,Rovenyak J.Hardy classes and operator theory[M].Oxford:Oxford Univ.Press,1985.

        [5]Pedersen G K.Some operator monotone functions[J].Proc.Amer.Math.Soc.,1972,36:309-310.

        [6]Choi M D.Some assorted inequalities for positive linear map onC?-algebras[J].J.Oper.The.,1980,4:271-285.

        [7]Choi M D.A Schwarz inequality for positive linear maps onC?-algebras[J].Illinois.J.Math.,1974,18:565-574.

        [8]Ando T.Concavity of certain maps on postive de fi nite matrices and applications to hadamard products[J].Linear Alg.Appl.,1976,26:203-241.

        [9]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities[J].J.Funct.Anal.,2006,231:221-244.

        [10]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities II[J].J.Math.Soc.Japan,2008,60:291-310.

        [11]Uchiyama M.Operator inequalities:from a general theorem to concrete inequalities[J].Linear Alg.Appl.,2015,465:161-175.

        [12]Yang C.Inequalities relating to means of positive operators[J].J.Math.,1996,16(4):467-474.

        [13]Hensen F.An operator inequality[J].Math.Ann.,1980,246:249-250.

        一些蘊含F(xiàn)uruta不等式的算子單調(diào)函數(shù)的算子不等式

        楊長森,楊朝軍

        (河南師范大學數(shù)學與信息科學學院,河南新鄉(xiāng) 453007)

        本文研究了算子不等式與算子單調(diào)函數(shù)之間的聯(lián)系.利用關于算子單調(diào)函數(shù)的乘積引理,乘積定理等基本控制原理,給出許多算子不等式,這些不等式可包含正算子理論中應有十分廣泛的Furuta不等式.

        算子單調(diào)函數(shù);積引理;積定理;控制

        O177.1

        on:47A62;47A63

        A Article ID: 0255-7797(2017)04-0698-07

        date:2015-09-21Accepted date:2015-12-11

        Supported by National Natural Science Foundation of China(11271112;11201127)and Technology and the Innovation Team in Henan Province(14IRTSTHN023).

        Biography:Yang Changsen(1965-),male,born at Xinxiang,Henan,professor,major in functional analysis.

        猜你喜歡
        河南師范大學信息科學乘積
        河南師范大學作品精選
        聲屏世界(2024年1期)2024-04-11 07:51:08
        河南師范大學作品精選
        聲屏世界(2023年23期)2023-03-10 04:49:28
        裳作
        炎黃地理(2022年5期)2022-06-07 03:35:41
        山西大同大學量子信息科學研究所簡介
        河南師范大學美術學院作品選登
        乘積最大
        三元重要不等式的推廣及應用
        Dirichlet級數(shù)及其Dirichlet-Hadamard乘積的增長性
        光電信息科學與工程專業(yè)模塊化課程設計探究
        基于文獻類型矯正影響因子在信息科學與圖書館學期刊中的實證分析
        久久午夜av一区二区三区| 亚洲成a人网站在线看| 中文字幕二区三区在线| 国产在视频线精品视频二代| 男女视频在线观看一区二区| 日本精品一区二区三区福利视频| 无码不卡av东京热毛片| 成人毛片18女人毛片免费| 亚洲处破女av一区二区| 亚洲午夜狼人综合影院| 国产无套粉嫩白浆在线| 伦人伦xxxx国语对白| 国产成年无码aⅴ片在线观看| 亚洲一区二区三区精品久久av| 18国产精品白浆在线观看免费| 午夜精品久久久久久中宇| 亚洲国产精品线路久久| 精品人妻中文字幕一区二区三区| 久久久噜噜噜久久熟女| 人妻av中文字幕久久| 无码手机线免费观看| 国产精品精品| 国产精品国产三级国产专区51区 | 丝袜国产高跟亚洲精品91| 91青青草在线观看视频| 日本一二三区在线观看视频| 国产精品爽黄69天堂a| 久久精品免视看国产明星| 亚洲av色香蕉一区二区蜜桃| 亚洲成人av在线播放不卡| 国产精品久久久久久| 乱人伦中文字幕成人网站在线| 亚洲精品国产不卡在线观看| av男人的天堂手机免费网站 | 日本一区二区高清在线观看| 色综合久久网| 国产人妻无码一区二区三区免费| 久久国产A∨一二三| 久草视频这里只有精品| 野花社区视频在线观看| 韩国精品一区二区三区|