亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

        2017-07-18 11:47:12YANGChangsenYANGChaojun
        數(shù)學雜志 2017年4期
        關鍵詞:河南師范大學信息科學乘積

        YANG Chang-sen,YANG Chao-jun

        (College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

        SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

        YANG Chang-sen,YANG Chao-jun

        (College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

        In this paper,we study the relations between the operator inequalities and the operator monotone functions.By using the fundamental conclusions based on majorization,namely,product lemma and product theorem for operator monotone functions,we can give some operator inequalities.This result contains the Furuta inequality,which has a huge impact on positive operator theory.

        operator monotone function;product lemma;product theorem;majorization

        1 Introduction

        LetJbe an interval such thatJ/(-∞,∞).P(J)denotes the set of all operator monotone functions onJ.We setP+(J)={f∈P(J)|f(t)≥0,t∈J}.Iff∈P+(a,b)and-∞<a,thenfhas the natural extension to[a,b),which belongs toP+[a,b).We therefore identifyP+(a,b)withP+[a,b).

        It is well-known that iff(t)∈P+(0,∞),thenare both inP+(0,∞),and that iff(t),φ(t),φ(t)are all inP+(0,∞),then so are

        andf(t)αφ(t)1-αfor 0<α<1(see[1-5]).Throughout this work,we assume that a function is continuous and increasing means “strictly increasing”.Further more,for convenience,letB(H)denote theC?-algebra of all bounded linear operators acting on a Hilbert spaceH.A capital letterAmeans an element belongs toB(H),Φ means a positive linear map fromB(H)toB(H)and we assume Φ(I)=Ialways stand(see[7,8]).In this paper,we also assume thatJ=[a,b)orJ=(a,b)with-∞≤a<b≤+∞.

        De fi nition 1.1[9,10]Letdenote the following sets,respectively,

        whereh-1stands for the inverse function ofh.

        De fi nition 1.2Leth(t)andg(t)be functions defined onJ,andg(t)is increasing,thenhis said to be majorized byg,in symbolh≤gif the compositeh?g-1is operator monotone ong(J),which is equivalent to

        Lemma 1.1(Product lemma)(see[9,10])Leth,gbe non-negative functions defined onJ.Suppose the producthgis increasing,(hg)(a+0)=0 and(hg)(b-0)=∞.Then

        Moreover,for everyψ1,ψ2inP+[0,∞),

        Theorem 1.1(Product theorem)(see[9,10])

        Further,letgi(t)∈LP+(J)for 1≤i≤mandhj(t)∈P-1+(J)for 1≤j≤n.Then for everyψi,φj∈P+[0,∞),we have

        2 Main Results

        Before to prove our main results,we give the following lemmas.

        Lemma 2.1(L-H inequality)(see[2,12])If 0≤α≤1,A≥B≥0,thenAα≥Bα.

        Lemma 2.2(Furuta inequality)(see[6,9])LetA≥B≥0,then

        wherer≥0,p≥1 with

        Lemma 2.3(Hansen inequality)(see[13])LetXandAbe bounded linear operators onH,and such thatX≥ 0,‖A‖≤1.Iffis an operator monotone function on[0,∞),then

        Theorem 2.1PutJ/=(-∞,∞),,fi∈P+(J),i=1,2,···,n,,andkn(t)=f1(t)f2(t)···fn(t).Ifh(t)is defined onJsuch that,then

        (i)the functionφnon(0,∞)defined by

        belongs toP+(0,∞);

        (ii)ifA≤C≤B,then

        Proof(i)Sincef1(t)f1(t)h(t),by product lemmah(t)f1(t)h(t),thereforeh(t)is nondecreasing.When,since,we haveη(t)g(t).Now puttingψ0(s)=s,ψ1(g)=η,ψ2(f1h)=f1,obviously,we haveψ0,ψ1,ψ2∈P+(0,∞).By takingsinψ0(s)asf2···fn,and from product theorem,we obtain

        Therefore we haveφnbelongs toP+(0,∞)forφngiven in(i).

        Wheng(t)=f1(t),by takingψ0(s)=s,ψ1(g(t)h(t))=η(t),we haveψ0,ψ1∈P+(0,∞),and thenφn∈P+(0,∞)by product theorem.

        (ii)First we prove that

        Sinceφn,kn,h,gare all nonnegative,nondecreasing functions andJis a right open interval,by consideringC+?,B+?,we may assume that,h(C),h(B),g(C),g(B)are positive semi-de fi nite and invertible.Through(i),

        This implies the right part of(2.2)holds forn=1.Next we assume the right part of(2.2)holds forn-1.Sinceandand this means that there existssuch thatfn(t)= Ψn(kn-1(t)η(t)).Puts=kn-1(t)η(t),we can obtain.Since the following inequality holds

        Denote the left side of the upper inequalities asH,the right one asK,we have

        ByH=φn-1(kn-1(C)h(C)g(C))=kn-1(C)η(C),we obtain

        By Lemma 2.3 again,we obtain

        From the above inequalities and(2.4),we get

        Therefore the right part of(2.2)holds forn,one can proof the left part of(2.2)similarly.

        RemarkIn Theorem 2.1,letn=2,f1(t)=g(t)=1,f2(t)=tr(r≥0),h(t)=tp(p≥1),andη(t)=t,then we haveφ2(tp+r)=t1+r.So Furuta inequality can be obtained by(2.2)and L-H inequality.

        Lemma 2.4(see[10,11])PutJ(-∞,∞),theng∈LP+(J)if and only if there exists a sequence{gn}of a fi nite product of functions inP+(J)which converges pointwise togonJ,further more,{gn}converges uniformly togon every bounded closed subinterval ofJ.

        Theorem 2.2PutJ(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,then

        (i)the functionφon(0,∞)defined by

        belongs toP+(0,∞);

        (ii)IfA≤C≤B,then forφ∈P(0,∞)such thatφ≤φon(0,∞),

        Proof(i)First consider,thenk=lfand

        Letψ0(s)=s,ψ1(f(t)h(t))=f(t),ψ2(g(t))=η(t),thenψ0,ψ1,ψ2∈P+(0,∞).By takings=l(t)and applying product theorem,we get

        which equals tok(t)η(t)≤k(t)h(t)g(t).So we haveφ∈P+(0,∞)forφsuch that

        Ifg=f,takingψ0(s)=s,ψ1(h(t)g(t))=η(t),obviously,we haveψ0,ψ1∈P+(0,∞),and thenψ0(k)ψ1(hg).Hence we also haveφ∈P+(0,∞)from product theorem.

        (ii)From Lemma 2.4,we obtain there exists a sequence{ln},whereln(t)is a fi nite product of functions inP+(J),such thatln(t)converges ponitwise tol(t).Putkn(t)=f(t)ln(t)then we easily getkn(t)converges tok(t)=f(t)l(t).De fi neφn(kn(t)h(t)g(t))=kn(t)η(t)(t∈J),φn∈P+(0,∞).By Theorem 2.1,we have

        Lemma 2.5(Choi inequality)(see[6,7])Let Φ be a positive unital linear map,then

        (C1)whenA>0 and-1≤p≤0,then Φ(A)p≤Φ(Ap);

        (C2)whenA≥ 0 and 0≤p≤1,then Φ(A)p≥ Φ(Ap);

        (C3)whenA≥ 0 and 1≤p≤2,then Φ(A)p≤Φ(Ap).

        Corollary 2.1PutJ/=(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,the functionφon(0,∞)defined as(2.5),Φ is a positive unital

        linear map.If

        then forφ∈P(0,∞)such thatφ≤φ,

        ProofBy Choi inequality and L-H inequality,we obtain

        Corollary 2.2Put

        such that.Then(2.5)and(2.6)in Theorem 2.2 hold.

        ProofPutc=min{ 1,p},thenf(t)=t1-c∈P+(0,∞).Thus we get

        which means the conditions of Theorem 2.2 is satis fi ed.Therefore(2.5)and(2.6)in Theorem 2.2 hold.

        Corollary 2.3Put,p,r≥0 andp+r≥1,s≥1,we obtain

        ProofPutg(t)=ts(s≥1),η(t)=tin Corollary 2.2.Then we only need to show logs≤φ(s),s∈(0,∞).The de fi nition ofφis given in(2.5).The upper majorization relationship is equivalent to

        It is obviously that logk(t),logh(t),logtsare operator monotone on(0,∞)and,then

        Therefore(2.8)holds.

        [1]Bhatia R.Matrix analysis[M].New York:Springer,1996.

        [3]Horn R A,Johnson C R.Matrix analysis[M].Cambridge:Cambridge Univ.Press,1985.

        [4]Rosenblum M,Rovenyak J.Hardy classes and operator theory[M].Oxford:Oxford Univ.Press,1985.

        [5]Pedersen G K.Some operator monotone functions[J].Proc.Amer.Math.Soc.,1972,36:309-310.

        [6]Choi M D.Some assorted inequalities for positive linear map onC?-algebras[J].J.Oper.The.,1980,4:271-285.

        [7]Choi M D.A Schwarz inequality for positive linear maps onC?-algebras[J].Illinois.J.Math.,1974,18:565-574.

        [8]Ando T.Concavity of certain maps on postive de fi nite matrices and applications to hadamard products[J].Linear Alg.Appl.,1976,26:203-241.

        [9]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities[J].J.Funct.Anal.,2006,231:221-244.

        [10]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities II[J].J.Math.Soc.Japan,2008,60:291-310.

        [11]Uchiyama M.Operator inequalities:from a general theorem to concrete inequalities[J].Linear Alg.Appl.,2015,465:161-175.

        [12]Yang C.Inequalities relating to means of positive operators[J].J.Math.,1996,16(4):467-474.

        [13]Hensen F.An operator inequality[J].Math.Ann.,1980,246:249-250.

        一些蘊含F(xiàn)uruta不等式的算子單調(diào)函數(shù)的算子不等式

        楊長森,楊朝軍

        (河南師范大學數(shù)學與信息科學學院,河南新鄉(xiāng) 453007)

        本文研究了算子不等式與算子單調(diào)函數(shù)之間的聯(lián)系.利用關于算子單調(diào)函數(shù)的乘積引理,乘積定理等基本控制原理,給出許多算子不等式,這些不等式可包含正算子理論中應有十分廣泛的Furuta不等式.

        算子單調(diào)函數(shù);積引理;積定理;控制

        O177.1

        on:47A62;47A63

        A Article ID: 0255-7797(2017)04-0698-07

        date:2015-09-21Accepted date:2015-12-11

        Supported by National Natural Science Foundation of China(11271112;11201127)and Technology and the Innovation Team in Henan Province(14IRTSTHN023).

        Biography:Yang Changsen(1965-),male,born at Xinxiang,Henan,professor,major in functional analysis.

        猜你喜歡
        河南師范大學信息科學乘積
        河南師范大學作品精選
        聲屏世界(2024年1期)2024-04-11 07:51:08
        河南師范大學作品精選
        聲屏世界(2023年23期)2023-03-10 04:49:28
        裳作
        炎黃地理(2022年5期)2022-06-07 03:35:41
        山西大同大學量子信息科學研究所簡介
        河南師范大學美術學院作品選登
        乘積最大
        三元重要不等式的推廣及應用
        Dirichlet級數(shù)及其Dirichlet-Hadamard乘積的增長性
        光電信息科學與工程專業(yè)模塊化課程設計探究
        基于文獻類型矯正影響因子在信息科學與圖書館學期刊中的實證分析
        国产精品99久久免费| 久久一本日韩精品中文字幕屁孩| 成视频年人黄网站免费视频| av无码久久久久不卡网站下载| 国产精品九九热| av网站一区二区三区| 欧美巨大xxxx做受中文字幕| 国产女主播福利一区在线观看| 日本高清视频在线观看一区二区| 2019最新中文字幕在线观看| 竹菊影视欧美日韩一区二区三区四区五区 | 午夜视频一区二区在线观看| 麻豆国产精品久久人妻| 牲欲强的熟妇农村老妇女| 日日爽日日操| 国产成人av区一区二区三| 国产又黄又硬又粗| 国产精品无套内射迪丽热巴| 无码视频一区二区三区在线播放| 蕾丝女同一区二区三区| 一区二区三区人妻av| 一区二区三区乱码在线 | 欧洲| 亚洲香蕉视频| 国产精品三级1区2区3区| 国产亚洲超级97免费视频| 久久久久久久久蜜桃| 精品国产免费久久久久久| 91久久国产露脸国语对白| 4455永久免费视频| 婷婷丁香五月中文字幕| 精品国产午夜久久久久九九| 国产一区三区二区视频在线观看 | 小荡货奶真大水真多紧视频 | 国外精品视频在线观看免费| 美女视频很黄很a免费国产| 日本一区二区高清精品| 在线观看视频播放| 精品人妻伦九区久久aaa片69| 亚洲男人天堂av在线| 亚洲精品一区二区成人精品网站| 67194熟妇人妻欧美日韩|