亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        THE GROWTH ON ENTIRE SOLUTIONS OF FERMAT TYPE Q-DIFFERENCE DIFFERENTIAL EQUATIONS

        2017-07-18 11:47:12LIUXinlingLIUKai
        數(shù)學雜志 2017年4期
        關(guān)鍵詞:費馬數(shù)學系南昌大學

        LIU Xin-ling,LIU Kai

        (Department of Mathematics,Nanchang University,Nanchang 330031,China)

        THE GROWTH ON ENTIRE SOLUTIONS OF FERMAT TYPE Q-DIFFERENCE DIFFERENTIAL EQUATIONS

        LIU Xin-ling,LIU Kai

        (Department of Mathematics,Nanchang University,Nanchang 330031,China)

        This paper is devoted to consider the entire solutions on Fermat typeq-di ff erence di ff erential equations.Using the classical and di ff erence Nevanlinna theory and functional equations theory,we obtain some results on the growth of the Fermat typeq-di ff erence di ff erential equations.

        q-di ff erence di ff erential equations;entire solutions; fi nite order

        1 Introduction

        Letf(z)be a meromorphic function in the complex plane.We assume that the reader is familiar with standard symbols and fundamental results of Nevanlinna theory[5,16].As we all know that Nevanlinna theory was extensively applied to considering the growth,value distribution,and solvability of meromorphic solutions of di ff erential equations[6].Recently,di ff erence analogues of Nevanlinna theory were established,which also be used to consider the corresponding properties of meromorphic solutions on di ff erence equations orq-di ff erence equations,such as[2,4,7-12,14,17].

        Let us recall the classical Fermat type equation

        Equation(1.1)has the entire solutionsf(z)=sin(h(z))andg(z)=cos(h(z)),whereh(z)is any entire function,no other solutions exist.However,the above result fails to give more precise informations wheng(z)has a special relationship withf(z).Yang and Li[15] fi rst considered the entire solutions of the Fermat type di ff erential equation

        and they proved the following result.

        Theorem A[15,Theorem 1]The transcendental meromorphic solutions of(1.2)must satisfy

        Tang and Liao[13]further investigated the entire solutions of a generalization of(1.2)as follows

        whereP(z),Q(z)are non-zero polynomials and obtained the next result.

        Theorem B[13,Theorem 1]If the di ff erential equation(1.3)has a transcendental meromorphic solutionf,thenP(z)≡A,Q(z)≡B,kis an odd andf(z)=bsin(az+d),wherea,b,dare constants such thatAak=±1,b2=B.

        Recently,the di ff erence analogues of Nevanlinna theory were used to consider the solutions properties of Fermat type di ff erence equations.Liu,Cao and Cao[8]investigated the fi nite order entire solutions of the di ff erence equation,wherePis non-zero constant and

        here and in the following,cis a non-zero constant andP(z),Q(z)are non-zero polynomial,unless otherwise speci fi ed.The result can be stated as follows.

        Theorem C[8,Theorem 1.1]The transcendental entire solutions with fi nite order of(1.4)must satisfyf(z)=sin(Az+B),whereBis a constant and,kis an integer.

        Furthermore,Liu and Yang[10]considered a generalization of(1.4)as follows

        and obtained the following result.

        Theorem DLetP(z),Q(z)be non-zero polynomials.If the di ff erence equation(1.5)admits a transcendental entire solution of fi nite order,thenP(z)≡±1 andQ(z)reduces to a constantq.

        If an equation includes theq-di ff erencef(qz)and the derivatives off(z)orf(z+c),then this equation can be calledq-di ff erence di ff erential equation.Liu and Cao[11]considered the entire solutions on Fermat typeq-di ff erence di ff erential equation

        and obtained the following result.

        Theorem E[11,Theorem 3.1]The transcendental entire solutions with fi nite order of(1.6)must satisfyf(z)=sin(z+B)whenq=1,andf(z)=sin(z+kπ)orf(z)=-sin(z+kπ+)whenq=-1.There are no transcendental entire solutions with fi nite order when1.

        By comparing with the above fi ve theorems,we state the following questions which will be considered in this paper.

        Question 1From Theorem A to Theorem E,we remark that the order of all transcendental entire solutions with fi nite order of di ff erent equations are equal to one.Hence,considering a generalization of equation(1.6),such as

        it is natural to ask if the fi nite order of the entire solutions of(1.7)is equal to one or not?

        Question 2From Theorem B to Theorem E,the existence of fi nite order entire solutions of(1.3)and(1.5)forces the polynomialP(z)reduce to a constant.Is it also remain valid for equation(1.7)?

        However,Examples 1 and 2 below show that Questions 1 and 2 are false in generally.

        Example 1Entire functionf(z)=sinznsolves

        whereqsatis fi esqn=1.It implies that the solutions order of(1.7)may take arbitrary numbers andP(z)2=n2z2(n-1)is not a constant.

        Example 2We can construct a general solution from Example 1.Entire functionf(z)=sin(h(z))solves

        whereqsatis fi esqn=1 andh(z)is a non-constant polynomial.

        Example 3Functionf(z)=sinhzis also an entire solution off′(z)2-f(qz)2=1 andf(z)=coshzis an entire solution off′(z)2-f(qz)2=-1,whereq=-1.

        From Example 1 to Example 3,we also remark that ifP(z)2=±1,the transcendental entire solutionsf(z)are of order one,ifP(z)=nz(n-1),the transcendental entire solutionsf(z)are of ordern.Hence,it is reasonable to conjecture that the order of entire solutions of(1.7)is equal toρ(f)=1+degP(z).In this paper,we will answer the above conjecture and obtain the following result.

        Theorem 1.1If|q>|1,then the entire solution of(1.7)should be a polynomial.If there exists a fi nite order transcendental entire solutionfof(1.7),thenρ(f)=1+degP(z)and|q|=1.

        In the following,we will consider anotherq-di ff erence di ff erential equation

        and obtain the following result.

        Theorem 1.2If|q>|1,then the entire solution of(1.8)should be a polynomial.If there exist a fi nite order transcendental entire solutionfof(1.8),thenρ(f)=1+degP(z)and|q|=1.

        Example 4Functionf(z)=sinzis an entire solution off′(z+c)2+f(qz)2=1,wherec=πandq=-1.

        Finally,we consider otherq-di ff erence equation

        Theorem 1.3If|q>|1,then the entire solutionf(z)of(1.9)should be a polynomial.

        IfP(z)2=1 in(1.9),the following example shows that we can not give the precise expression of fi nite order entire solution and the order off(z)does not satisfyρ(f)=1+degP(z)and|q|=1.

        Example 5[11]Ifq=-1,,thusf(z)=sinzsatis fi es,thus

        andkis an integer.Thus

        satis fi es

        Remark 1The proofs of Theorem 1.2 and Theorem 1.3 are similar as the proof of Theorem 1.1.Hence we will not give the details here.

        2 Some Lemmas

        For the proofs of Theorems 1.1,1.2 and 1.3,we need the following results.

        Lemma 2.1[3,Lemma 3.1]Let:(1,∞)→(0,∞)be a monotone increasing function,and letfbe a nonconstant meromorphic function.If for some real constantα∈(0,1),there exist real constantsK1>0 andK2≥1 such that

        then

        Lemma 2.2[11,Lemma 2.15]Letp(z)be a non-zero polynomial with degreen.Ifp(qz)-p(z)is a constant,thenqn=1 andp(qz)≡p(z).Ifp(qz)+p(z)is a constant,thenqn=-1 andp(qz)+p(z)≡2a0,wherea0is the constant term ofp(z).

        Lemma 2.3[2,Theorem 2.1]Letf(z)be transcendental meromorphic function of fi nite orderρ.Then for anyε>0,we have

        Lemma 2.4[16,Theorem 1.62]Letfj(z)be meromorphic functions,fk(z)(k=1,2,···,n-1)be not constants,satisfyingand

        whereλ<1 andk=1,2,···,n-1,thenfn(z)≡ 1.

        3 Proof of Theorem 1.1

        If|q>|1 andf(z)is an entire solution of(1.7),we use the observation(see[1])that

        holds for any meromorphic functionfand any constantq.Iff(z)is a transcendental entire function,then from(1.7)and Valiron-Mohon’ko theorem,we have

        Letα=and|q>|1.Then we have

        Hence,we haveT(r,f(z))≤T(αr,f(z))+S(αr,f(z)).From Lemma 2.1,we haveρ(f)=0.Combining Hadamard factorization theorem,we havef′(z)+iP(z)f(qz)=Q1(z)andf′(z)-iP(z)f(qz)=Q2(z),thusis a polynomial,which is a contradictio n withf(z)is a transcendental entire function.Thusf(z)should be a polynomial.

        Assume thatf(z)is a transcendental entire solution of(1.7)with fi nite order,then

        Thus bothf′(z)+iP(z)f(qz)andf′(z)-iP(z)f(qz)have fi nitely many zeros.Combining(3.1)with the Hadamard factorization theorem,we assume that

        and

        whereh(z)is a non-constant polynomial provided thatf(z)is of fi nite order transcendental andQ1(z)Q2(z)=Q(z),whereQ1(z),Q2(z)are non-zero polynomials.Thus we have

        and

        From(3.2),we have

        Taking fi rst derivative of(3.3),we have

        where

        and

        From(3.4)and(3.5),we have

        Obviously,ifh(qz)is a constant,thenh(z)is a constant,thusf(z)should be a polynomial.Ifh(qz)is a non-constant entire function,thenh(qz)-h(z)andh(qz)+h(z)are not constants simultaneously.The following,we will discuss two cases.

        Case 1Ifh(qz)-h(z)is not a constant,from Lemma 2.4,we know that

        Sincef(z)is a fi nite order entire solution,thenh(z)should satis fi esh(z)=anzn+···+a0is a non-constant polynomial,thus|q|=1 follows for avoiding a contradiction.From Lemma 2.2,we haveh(qz)+h(z)=2a0.Hence,we have

        In addition,from(3.8),we also get

        which implies that

        Thus

        Substitute(3.6)and(3.7)into(3.13),we have

        Sincef(z)is a fi nite order entire solution,by comparing with the degree of both hand side of(3.14),we have

        It implies thatρ(f)=1+degP(z).

        Case 2Ifh(qz)+h(z)is not a constant,from Lemma 2.4,we know that

        Hence|q|=1 follows for avoiding a contradiction.Assume thath(z)=anzn+···+a0,thush(qz)=h(z).Hence we have

        In addition,from(3.8),we also get

        Thus,similar as the above,we also getρ(f)=1+degP(z).

        [1]Bergweiler W,Ishizaki K,Yanagihara N.Meromorphic solutions of some functional equations[J].Meth.Appl.Anal,1998,5:248-258.

        [2]Chiang Y M,Feng S J.On the Nevanlinna characteristic off(z+η)and di ff erence equations in the complex plane[J].Ramanujan.J.,2008,16:105-129.

        [3]Gundensen G,Heittokangas J,Laine I,Rieppo J,Yang D G.Meromorphic solutions of generalized Schr¨oder equations[J].Aequations Math.,2002,63:110-135.

        [4]Halburd R G,Korhonen R J.Di ff erence analogue of the lemma on the logarithmic derivative with applications to di ff erence equations[J].J.Math.Anal.Appl.,2006,314:477-487.

        [5]Hayman W K.Meromorphic functions[M].Oxford:Clarendon Press,1964.

        [6]Laine I.Nevanlinna theory and complex di ff erential equations[M].Berlin,New York:Walter de Gruyter,1993.

        [7]Liu K.Meromorphic functions sharing a set with applications to di ff erence equations[J].J.Math.Anal.Appl.,2009,359:384-393.

        [8]Liu K,Cao T B,Cao H Z.Entire solutions of Fermat type di ff erential-di ff erence equations[J].Arch.Math.,2012,99:147-155.

        [9]Liu K,Yang L Z,Liu X L.Existence of entire solutions of nonlinear di ff erence equations[J].Czech.Math.J.,2011,61(2):565-576.

        [10]Liu K,Yang L Z.On entire solutions of some di ff erential-di ff erence equations[J].Comput.Meth.Funct.Theory,2013,13:433-447.

        [11]Liu K,Cao T B.Entire solutions of Fermat type di ff erence di ff erential equations[J].Electron.J.Di ff.Equ.,2013,2013:1-10.

        [12]Liu K,Yang L Z.Some results on complex di ff erential-di ff erence theory[J].J.Math.,2013,33(5):830-836.

        [13]Tang J F,Liao L W.The transcendental meromorphic solutions of a certain type of nonlinear di ff erential equations[J].J.Math.Anal.Appl.,2007,334:517-527.

        [14]Yang C C,Laine I.On analogies between nonlinear di ff erence and di ff erential equations[J].Proc.Japan Acad.,Ser.A,2010,86:10-14.

        [15]Yang C C,Li P.On the transcendental solutions of a certain type of nonlinear di ff erential equations[J].Arch.Math.,2004,82:442-448.

        [16]Yang C C,Yi H X.Uniqueness theory of meromorphic functions[M].Nederland:Kluwer Academic Publishers,2003.

        [17]Zhang J L,Korhonen R J.On the Nevanlinna characteristic off(qz)and its applications[J].J.Math.Anal.Appl.,2010,369:537-544.

        費馬q-差分微分方程整函數(shù)解的增長性研究

        劉新玲,劉 凱

        (南昌大學數(shù)學系,江西南昌 330031)

        本文研究了費馬q-差分微分方程的整函數(shù)解的相關(guān)問題.利用經(jīng)典和差分的Nevanlinna理論和函數(shù)方程理論的研究方法,獲得了q-差分微分方程整函數(shù)解增長性的幾個結(jié)果.

        q-差分微分方程;整函數(shù)解;有窮級

        O174.5

        on:30D35;39B32;34M05

        A Article ID: 0255-7797(2017)04-0761-08

        date:2013-10-21Accepted date:2014-02-25

        Supported by the NSFC(11301260;11101201);the NSF of Jiangxi(20132BAB211003)and the YFED of Jiangxi(GJJ13078).

        Biography:Liu Xinling(1982-),female,born at Jinan,Shandong,instructor,major in complex analysis.

        猜你喜歡
        費馬數(shù)學系南昌大學
        一個人就是一個數(shù)學系
        ——丘成桐
        《南昌大學學報(醫(yī)學版)》稿約
        《南昌大學學報(醫(yī)學版)》稿約
        《南昌大學學報(醫(yī)學版)稿約》
        《南昌大學學報(醫(yī)學版)稿約》
        北京師范大學數(shù)學系教授葛建全
        費馬—歐拉兩平方和定理
        反證法與高次費馬大定理
        歪寫數(shù)學史:史上最牛公務員皮埃爾·費馬
        比爾猜想與費馬大定理
        色狠狠色噜噜av天堂一区| 伊人影院成人在线观看| 一区二区三区婷婷在线| 中文亚洲第一av一区二区| 丝袜美腿亚洲综合在线播放| 亚洲爆乳无码精品aaa片蜜桃| 色八区人妻在线视频免费 | 亚洲不卡av一区二区三区四区 | 国产成人av一区二区三区在线观看| 1区2区3区高清视频| 午夜福利不卡无码视频| 一区二区三区中文字幕在线观看| 蜜桃tv在线免费观看| 18禁止看的免费污网站| 精品久久久噜噜噜久久久| 日韩美女高潮流白浆视频在线观看| 国产精品视频一区二区久久| 久久午夜福利无码1000合集 | 国产精品免费久久久免费| 中文字幕被公侵犯的丰满人妻| 丰满人妻一区二区三区视频| 亚洲日本在线电影| 在线国产视频精品视频| 国产在线一区二区三区香蕉| 国产亚av手机在线观看| 欧美丰满熟妇bbbbbb百度| 久久午夜伦鲁鲁片免费| 日本在线观看三级视频| 久久午夜福利无码1000合集| 国产手机在线αⅴ片无码观看| 久久无码中文字幕东京热| 亚洲高清精品一区二区| 国产高清在线观看av片 | av中文字幕潮喷人妻系列| 亚洲的天堂av无码| 国产亚洲精品成人av在线| 男女视频一区二区三区在线观看| 国产精品爽爽久久久久久竹菊| 在线看片无码永久免费aⅴ| 久久国产精品国产精品久久 | 国产亚洲av无码av男人的天堂|