亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        分子印跡電化學(xué)傳感器制備及在蛋白質(zhì)檢測上的應(yīng)用

        2017-07-18 11:48:35劉艷麗李小軍賀曉榮李延斌李紅朝
        化工進(jìn)展 2017年7期
        關(guān)鍵詞:印跡電化學(xué)電極

        劉艷麗,李小軍,賀曉榮,李延斌,李紅朝

        ?

        分子印跡電化學(xué)傳感器制備及在蛋白質(zhì)檢測上的應(yīng)用

        劉艷麗1,李小軍2,賀曉榮1,李延斌1,李紅朝1

        (1中北大學(xué)化學(xué)系,山西太原 030051;2中國五環(huán)工程有限公司,湖北武漢430223)

        分子印跡電化學(xué)傳感器是分子印跡技術(shù)與分析傳感器技術(shù)相結(jié)合的一種先進(jìn)技術(shù),它結(jié)合分子印跡的優(yōu)點(diǎn),避免了傳統(tǒng)傳感器的缺點(diǎn),提高了電化學(xué)傳感器的選擇性和靈敏度,并且縮短了響應(yīng)時(shí)間,更因其設(shè)計(jì)簡單、經(jīng)濟(jì)實(shí)用等優(yōu)點(diǎn)受到越來越多領(lǐng)域的歡迎。本文介紹了分子印跡傳感器的5種常用的制備方法,包括涂層法、原位聚合法、電聚合法、溶膠-凝膠法和自組裝法以及這5種方法在實(shí)際中的應(yīng)用,重點(diǎn)介紹了4種分子印跡傳感器(MIPs電容/阻抗型、MIPs電導(dǎo)型、MIPs電位型、MIPs電流型)在蛋白質(zhì)檢測上的應(yīng)用,并且其檢測方式以及時(shí)間都達(dá)到了預(yù)期的效果,相信隨著技術(shù)的更新發(fā)明與創(chuàng)造,分子印跡電化學(xué)傳感器的檢測領(lǐng)域會拓展到更多的領(lǐng)域。

        分子印跡;電化學(xué)傳感器;蛋白質(zhì)

        分子印跡技術(shù)作為近年迅速發(fā)展起來的一門新的化學(xué)分析技術(shù),主要過程就是形成與目標(biāo)分子的化學(xué)功能互補(bǔ)的人工識別元素或者腔體[1]。如圖1所示,一個(gè)分子印跡的基本過程主要包括3個(gè)步驟:①形成功能單體——模板復(fù)合物;②功能單體間的聚合及交聯(lián);③將模板分子從聚合物中脫去。多次實(shí)驗(yàn)結(jié)果表明,分子印跡技術(shù)在不同的條件下都表現(xiàn)出其易制備、選擇性及穩(wěn)定性良好的特點(diǎn),并且可以建立特異的結(jié)合主位點(diǎn)[2],從而在傳感器[3]、色譜[4]、藥物的釋放[5]以及固相萃取[6]等方面有廣泛的應(yīng)用,同時(shí)在化學(xué)和生物交叉的學(xué)術(shù)領(lǐng)域中得到了快速的發(fā)展和應(yīng)用。

        分子印跡電化學(xué)傳感器是將分子印跡技術(shù)應(yīng)用在傳感器上,該技術(shù)綜合二者的顯著優(yōu)點(diǎn),在對生物大分子的分析檢測上,已經(jīng)表現(xiàn)出擁有簡單、低成本的設(shè)計(jì)以及合理的準(zhǔn)確度和精密度等優(yōu)點(diǎn)[7-13]。而且與其他技術(shù)相比,電化學(xué)傳感器低敏感性的特征使其在檢測過程中減少了由于衍生化和提取步驟的時(shí)間,更加縮短了響應(yīng)時(shí)間[14]。1990年電化學(xué)傳感器的出現(xiàn),更加引起人們對將分子印跡技術(shù)應(yīng)用于蛋白質(zhì)[15-17]、DNA[1,18-21]等關(guān)于生命的生物大分子研究的關(guān)注。而蛋白質(zhì)是人身體組織、器官的重要構(gòu)成,直接影響并參與大部分生命活動[22]。隨著社會進(jìn)步、人類生命質(zhì)量的提高以及科學(xué)技術(shù)的進(jìn)步,各類有關(guān)蛋白質(zhì)的檢測技術(shù)包括電泳、離子交換色譜法、高效液相離子交換層析(HPLC)、硼酸親和層析、免疫分析法等都快速推進(jìn),但這些方法都存在特異性差、穩(wěn)定性不足、測定時(shí)間長等劣勢。因此建立一種具有高效、專一、特異性強(qiáng)、方便快速的檢測方法也成為重點(diǎn)研究的對象。而分子印跡傳感器的出現(xiàn),不僅解決了傳統(tǒng)方法的缺陷,更是對醫(yī)學(xué)上蛋白質(zhì)檢測的發(fā)展提供了更適宜的技術(shù)[23]。近幾年來,分子印跡技術(shù)與傳感器的結(jié)合已經(jīng)開始逐漸成為蛋白質(zhì)檢測的可行的替代方案[24-28],且該新技術(shù)在保質(zhì)期、穩(wěn)定性、穩(wěn)健性、成本以及制備工藝方面有著更為突出的優(yōu)點(diǎn)[29]。然而,蛋白質(zhì) 這種大型的生物大分子因其本身易受各類因素 的影響,形成的諸多不穩(wěn)定的可變構(gòu)象對印跡過程提出了各種挑戰(zhàn)[28,30-32]。這是由于在分子印跡合成的過程中,大尺寸的蛋白質(zhì)和分子印跡網(wǎng)的密度一起影響著在本體和表面上的形成的分子印跡聚 合物[33]。

        1 分子印跡電化學(xué)傳感器的制備方法

        分子印跡電化學(xué)傳感器的制備方法主要有涂附分子印跡聚合物法、原位引發(fā)聚合法、電聚合法、溶膠-凝膠法以及自組裝5種方法。

        1.1 涂附分子印跡聚合法

        涂層法是指通過蘸涂、滴涂、旋涂的方法將制備好的分子印跡聚合物修飾到電極表面上,待其表面溶劑蒸發(fā)掉后就在電極表面形成了分子印跡聚合物敏感膜。這種方法作為最簡單的制備方法不需要額外加入交聯(lián)劑和引發(fā)劑。FANG等[34]利用該方法在金電極的表面均勻涂附上光敏聚合物,待金電極表面溶劑蒸發(fā)以后就形成可以檢測葡萄糖的分子印跡電化學(xué)傳感器,但是該傳感器的選擇性略差,所以在實(shí)際制備中應(yīng)用的較少。

        1.2 原位引發(fā)聚合法

        原位引發(fā)聚合法是指利用光或熱的作用下,將含有單體、模板分子、引發(fā)劑的混合溶液涂附到傳導(dǎo)裝置,并且在傳導(dǎo)裝置上引發(fā)聚合,然后在其表面形成分子印跡膜。例如,BAI等[35]利用原位聚合法以丙烯酰胺(AM)為功能單體,乙二醇二甲基丙烯酸酯(EGDMA)為交聯(lián)劑,在石墨烯表面修飾玻碳電極制作出青蒿素分子印跡膜(ART-MIMS),在最優(yōu)條件下優(yōu)化制作出的分子印跡傳感器ART-MIM/G/GCE在測定青蒿素以及青蒿素的類似物例時(shí)有較高的選擇性、靈敏性和抵抗性。RIBEIRO等[36]利用原位熱聚合法,以綠原酸為模板,將多壁碳納米管(MWCNT)與改性過后玻碳極與分子印跡硅氧烷結(jié)合起來,所制備的傳感器可以從一些高等植物如水果、蔬菜、紅茶或者某些中藥中檢測出綠原酸,其檢出限高達(dá)0.035μmol/L。

        1.3 電化學(xué)聚合法

        電化學(xué)聚合法是直接在傳感器的表面上制作分子印跡膜的一個(gè)過程,起初傳感器是充當(dāng)一個(gè)模板的作用[37],隨后模板去除后就形成了與模板分子互補(bǔ)的分子印跡結(jié)合位點(diǎn)[38-39]。其中印跡膜的厚度控制著電荷的轉(zhuǎn)移,溶劑和電解質(zhì)的選擇影響著表面形態(tài),而膜的剛性和孔隙度是由溶劑的溶脹度和電解質(zhì)中離子含量的多少決定的[40]。例如YANG 等[41]以速滅威為模板,用電化學(xué)聚合法氧化還原氨基苯甲酸(P-ABA),通過結(jié)合有序介孔材料(CMK-3)提高修飾電極的結(jié)構(gòu)促進(jìn)電荷的轉(zhuǎn)移,并以普魯士藍(lán)(PB)作為固有的電化學(xué)活性探針,制備出具有三維結(jié)構(gòu)的分子印跡電化學(xué)傳感器,見圖2。該傳感器具有高表面多孔結(jié)構(gòu),對目標(biāo)分子——速滅威具有穩(wěn)定良好的特異性選擇吸附,其快速響應(yīng)和可重復(fù)性利用的特點(diǎn)也使其在環(huán)境和安全檢測方面有很好的應(yīng)用。龍芳等[42]在磁性石墨烯修飾的碳電極表面以辛基酚為模板分子,多巴胺為功能單體,利用電化學(xué)聚合法制備出對辛基酚有高靈敏度和高選擇性的分子印跡電化學(xué)傳感器,與傳統(tǒng)傳感器相比,該傳感器有較寬的線性范圍和檢出限,同時(shí)其磁性石墨烯的利用提高了穩(wěn)定性和重現(xiàn)性,為以后的制備技術(shù)提供了更好的思路。

        1.4 溶膠-凝膠法

        分子印跡溶膠-凝膠法制備出來的分子印跡聚合膜最顯著的特點(diǎn)是該膜除了具有特異性識別的膜之外,其孔大的特點(diǎn)允許無機(jī)或有機(jī)分子在里面自由穿透,并且剛性的結(jié)構(gòu)在面對強(qiáng)酸、強(qiáng)堿、高溫、高壓時(shí)不易被破壞。該方法結(jié)合了分子印記技術(shù)和溶液-溶膠技術(shù)的基本上所有的優(yōu)點(diǎn),使得該傳感器技術(shù)有更高的選擇特異性,并且大大消除了分子印跡技術(shù)在穩(wěn)定性、惰性和剛性方面的缺點(diǎn)。SANTOS等[43]用咖啡因和其他類似分子為模板,利用溶膠-凝膠技術(shù)將用多層碳納米管和乙烯基三甲氧基硅烷修飾的玻碳電極與分子印跡硅氧烷結(jié)合起來,其制備的傳感器對咖啡因及其他類似分子的檢出限達(dá)0.22μmol/L。DING等[44]通過該技術(shù)在Ru2+修飾后的玻碳電極表面沉積聚合成ECL-MIP(電化學(xué)發(fā)光分子印跡)傳感器,該傳感器可成功快速檢測到L-苯基丙氨酸,檢出限高達(dá)3.1×10–12mol/L。

        1.5 自組裝法

        自組裝法主要特點(diǎn)是借助單體和印跡分子之間以非共價(jià)鍵、氫鍵、范德華力、螯合力等弱作用力以及模板分子與功能單體之間的自組織排列,自發(fā)形成具有多重作用位點(diǎn)的單體模板分子復(fù)合物,經(jīng)交聯(lián)聚合后這種作用保存下來。該方法形成的傳感器具有穩(wěn)定性強(qiáng)、構(gòu)造簡單且不受基地材料影響的特點(diǎn)[45]。例如PAN等[46]研究出以甲氟磷酸異丙基酯為模板,用環(huán)糊精自組裝的方法制作出具有高度選擇性和靈敏性的分子印傳感器,該傳感器在不同的溫度下都能夠檢測到低濃度的沙林。此外,該技術(shù)還可以與其他制備方法相結(jié)合,如張燕等[47]將自組裝法和電化學(xué)聚合法結(jié)合起來,在金電極的表面制備了對一種選擇性檢測鹽酸阿霉素的分子印跡電化學(xué)傳感器。LUO等[48]將分子自組裝法和分子印跡技術(shù)結(jié)合起來,以撲息通為模板分子,將納米粒子嵌入模板形成分子印跡的電活性納米顆粒后,在其表面形成一層穩(wěn)定的分子印跡膜的同時(shí)聚合一個(gè)咔唑單元,在移除模板撲息通模板分子以后,就形成一個(gè)對撲息通有選擇性的電化學(xué)傳感器,同時(shí)該傳感器優(yōu)越的穩(wěn)定性和重復(fù)性已經(jīng)能夠應(yīng)用于藥物和人類尿液的檢測上,檢出限高達(dá)0.3μmol。

        GCE—玻碳電極;CMK-3/GCE—介孔有序材料玻碳電極;PB-CMK—3/GCE-普魯士藍(lán)-介孔有序材料-玻碳電極

        1.6 5種制備方法的優(yōu)缺點(diǎn)

        通過對5種制備方法的內(nèi)容及應(yīng)用的分析,其優(yōu)缺點(diǎn)的歸納如表1所示。

        表1 5種方法的優(yōu)缺點(diǎn)

        2 分子印跡電化學(xué)傳感器的應(yīng)用

        分子印跡電化學(xué)傳感器有MIPs電容/阻抗型、MIPs電導(dǎo)型、MIPs電位型、MIPs電流型4種電化學(xué)傳感器。其中MIPs電流型傳感器的應(yīng)用最為 廣泛。

        2.1 MIPs電容/阻抗型傳感器在蛋白質(zhì)檢測上的應(yīng)用

        該類型的傳感器不需要加入試劑或探針,以印跡膜識別前后電容或者阻抗的與慕白哦分析物的變化關(guān)系作為識別信號,操作簡單并且靈敏度高。在實(shí)際生產(chǎn)中制造超薄和超高的絕緣性能分子印跡薄膜是該類傳感器制造過程中的關(guān)鍵技術(shù)。CAI等[49]以苯酚為基體,在玻璃基板上生長碳納米管陣列,嵌入SU8-2002聚合材料,用以檢測人體鐵蛋白阻抗型傳感器。KHAN等[50]發(fā)明了一種檢測蛋白的阻抗型電化學(xué)傳感器,在制備過程中,先將單壁碳納米管放置在絲網(wǎng)印刷電極上用于制備分子印跡聚合物,然后再用循環(huán)伏安法以蛋白為模板,聚合3-對氨基苯酚里制備具有高選擇和高精確度的阻抗型傳感器,其中電化學(xué)阻抗譜會記錄隨著蛋白的濃度所引起的工作電極點(diǎn)特性的變化,檢出限高達(dá)16.3nmol/L。

        2.2 MIPs電導(dǎo)型傳感器在蛋白質(zhì)檢測上的應(yīng)用

        該類型的傳導(dǎo)器只需簡單地將分子印跡膜固化在探頭表面,以被測分子與印跡膜鍵和引起的導(dǎo)電性能的變化作為識別信號。在實(shí)際應(yīng)用中,盡量減少微量雜質(zhì)的含量,以減少在膜的制備和沖洗過程中引起的電導(dǎo)性能的變化。LI等[51]采用光聚合法在絲網(wǎng)印刷電極表面原位聚合制備出含有琥珀酸氯霉素(ns—CAP)分子印跡位點(diǎn)的分子印跡膜。將修飾有分子印跡膜的絲網(wǎng)印刷電板與電導(dǎo)分析儀相連接,組裝可檢測牛奶蛋白樣品中氯霉素的電導(dǎo)型傳感器,結(jié)果表明,傳感器對該分子具有良好的特異性識別能力。檢出限高達(dá)0.05mg/L。

        2.3 MIPs電位型傳感器在蛋白質(zhì)檢測上的應(yīng)用

        該類型的傳導(dǎo)器對印跡分子的大小沒有限制,探針無需經(jīng)過印跡膜直接利用分子在短暫的識別過程前后電極電位的變化作為識別信號,其化學(xué)修飾后用于導(dǎo)入的電極直接影響著對目標(biāo)物種的選擇性和靈敏度[52]。MOREIRA等[53]通過在硅珠表面自組裝有機(jī)硅烷單分子膜制備了對肌紅蛋白特異性選擇的電位型分子印跡傳感器。WANG等[54]用類似方法,在Au涂層表面自組裝多羥基硫醇單分子膜,建立起的電位型分子印跡傳感器對肌紅蛋白和血紅蛋白都有優(yōu)異的選擇性。

        2.4 MIPs電流型傳感器在蛋白質(zhì)檢測上的應(yīng)用

        該類型的傳感器是目前應(yīng)用最多的一類傳感器,可以直接測定含有電活性的物質(zhì),通過底物分子特異性識別前后,印跡分子的濃度和固定電位下的響應(yīng)電流的變化作為識別信號,也可以將沒有活性的物質(zhì)在加入電活性物質(zhì)如鐵氰化鉀[55]作為探針后再進(jìn)行特異性識別后間接測定。目前該類傳感器經(jīng)常與納米材料相結(jié)合來提高對蛋白質(zhì)的識別與測定[56]。LI等[57]就將二者結(jié)合起來,在玻璃電極表面加入了金納米顆粒和普魯士藍(lán)離子用來提高電化學(xué)傳感器的敏感性,在模板蛋白存在的基礎(chǔ)下通過電化學(xué)聚合的方法氧化還原丙烯酰胺。模板提取蛋白質(zhì)后,印跡腔可以選擇性地重新綁定血紅蛋白,并且作為電極通道影響著普魯士藍(lán)的電流峰值,檢出限高達(dá)0.05mg/L。VICTORIA等[58]制備了一種可檢測人類血清中肌紅蛋白的分子印跡電化學(xué)傳感器,傳感器的制備方法如圖3所示,其血紅蛋白的濃度直接影響著電流的大小,檢出限高達(dá)9ng/mL,該檢測也可直接用于檢測心肌梗塞患者和健康的捐贈者血清中含有的血紅蛋白的多少,在醫(yī)學(xué)方面將會有更廣泛的應(yīng)用領(lǐng)域。

        3 結(jié)語

        分子印跡電化學(xué)傳感器的高度特異性和對蛋白質(zhì)的高親和性以及良好的穩(wěn)定性為其在其他生物大分子測定中的應(yīng)用奠定了扎實(shí)的基礎(chǔ)。但是分子印跡電化學(xué)傳感器還存在很大的進(jìn)步空間,比如將來更多的信號不單單只局限在二維上,應(yīng)該更多地產(chǎn)生三維圖像,隨著該類技術(shù)的日益成熟,分子印跡電化學(xué)傳感器將不再只局限在蛋白質(zhì)一類物質(zhì)的測定上,還會應(yīng)用在其他的一些大分子如核酸、DNA、多糖等分子上的測定。而且新型材料的應(yīng)用,例如石墨烯、熒光技術(shù)、MOF等材料與磁性材料、納米材料的結(jié)合應(yīng)用也會對該傳感器的性能產(chǎn)生更大的提升空間。

        -PD—鄰苯二胺;Mb—肌紅蛋白;Poly--PD—聚鄰苯二胺

        [1] Luan J,Liu K K,Tadepalli S,et al. PEGylated artificial antibodies:plasmonic biosensors with improved selectivity[J]. ACS Applied Materials & Interfaces,2016,8(36):23509-23516.

        [2] Pesavento M,D’Agostino G,Biesuz R,et al. Ion selective electrode for dopamine based on a molecularly imprinted polymer[J]. Electroanalysis,2012,24(4):813-824.

        [3] Nezhadali A,Mojarrab M. Fabrication of an electrochemical molecularly imprinted polymer triamterene sensor based on multivariate optimization using multi-walled carbon nanotubes[J]. Journal of Electroanalytical Chemistry,2015,744:85-94.

        [4] Zhang Y,Li Y,Hu Y,et al. Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomermicrowave heating initiated polymerization and their application to trace analysis of auxins in plant tissues[J]. Journal of Chromatography A,2010,1217(47):7337-7344.

        [5] Chasta H,Goyal R N. Molecularly imprinted sensor based on o-aminophenol for the selective determination of norepinephrine in pharmaceutical and biological samples[J]. Talanta,2014,125:167-173.

        [6] Sarafraz-Yazdi A,Razavi N. Application of molecularly- imprinted polymers in solid-phase microextraction techniques[J]. TrAC Trends in Analytical Chemistry,2015,73:81-90.

        [7] Molaakbari E,Mostafavi A,Beitollahi H,et al. Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa[J]. Analyst,2014,139(17):4356-4364.

        [8] Beitollahi H,Mostafavi M. Nanostructured base electrochemical sensor for simultaneous quantification and voltammetric studies of levodopa and carbidopa in pharmaceutical products and biological samples[J]. Electroanalysis,2014,26(5):1090-1098.

        [9] Foroughi M M,Beitollahi H,Tajik S,et al. Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode:application to determination of hydroxylamine in water samples[J]. Int. J. Electrochem,2014,9:2955.

        [10] Karimi-Maleh H,Biparva P,Hatami M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4- ethylbenzene-

        1,2-diol as a mediator for simultaneous determination of cysteamine,nicotinamide adenine dinucleotide and folic acid[J]. Biosensors and Bioelectronics,2013,48:270-275.

        [11] Ensafi A A,Karimi-Maleh H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator[J]. Journal of Electroanalytical Chemistry,2010,640(1):75-83.

        [12] Hajian R,Mehrayin Z,Mohagheghian M,et al. Fabrication of an electrochemical sensor based on carbon nanotubes modified with gold nanoparticles for determination of valrubicin as a chemotherapy drug:valrubicin-DNA interaction[J]. Materials Science and Engineering:C,2015,49:769-775

        [13] Shahmiri M R,Bahari A,Karimi-Maleh H,et al. Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen[J]. Sensors and Actuators B:Chemical,2013,177:70-77.

        [14] ?ZKüTüK E B,Diltemiz S E,Avcl ?,et al. Potentiometric sensor fabrication having 2D sarcosine memories and analytical features[J]. Materials Science and Engineering:C,2016,69:231-235.

        [15] CAI D,REN L,ZHAO H,et al. A molecular-imprint nanosensor for ultrasensitive detection of proteins[J]. Nature Nanotechnology,2010,5(8):597-601.

        [16] Moreira F T C,Sharma S,Dutra R A F,et al. Smart plastic antibody material(SPAM)tailored on disposable screen printed electrodes for protein recognition:application to myoglobin detection[J]. Biosensors and Bioelectronics,2013,45:237-244.

        [17] OUYANG R,LEI J,JU H. Surface molecularly imprinted nanowire for protein specific recognition[J]. Chemical Communications,2008 (44):5761-5763.

        [18] Ogiso M,Minoura N,Shinbo T,et al. Detection of a specific DNA sequence by electrophoresis through a molecularly imprinted polymer[J]. Biomaterials,2006,27(22):4177-4182.

        [19] Ogiso M,Minoura N,Shinbo T,et al. DNA detection system using molecularly imprinted polymer as the gel matrix in electrophoresis[J]. Biosensors and Bioelectronics,2007,22(9):1974-1981.

        [20] Ratautaite V,Topkaya S N,Mikoliunaite L,et al. Molecularly imprinted polypyrrole for DNA determination[J]. Electroanalysis,2013,25(5):1169-1177.

        [21] Slinchenko O,Rachkov A,Miyachi H,et al. Imprinted polymer layer for recognizing double-stranded DNA[J]. Biosensors and Bioelectronics,2004,20(6):1091-1097.

        [22] Whitcombe M J,Chianella I,Larcombe L,et al. The rational development of molecularly imprinted polymer-based sensors for protein detection[J]. Chemical Society Reviews,2011,40(3):1547-1571.

        [23] Reddy S M,Sette G,Phan Q. Electrochemical probing of selective haemoglobin binding in hydrogel-based molecularly imprinted polymers[J]. Electrochimica Acta,2011,56(25):9203-9208.

        [24] Zhou H,Baldini L,Hong J,et al. Pattern recognition of proteins based on an array of functionalized porphyrins[J]. Journal of the American Chemical Society,2006,128(7):2421-2425.

        [25] Chen H J,Zhang Z H,Cai R,et al. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection[J]. Talanta,2013,115:222-227.

        [26] Khadro B,Sanglar C,Bonhomme A,et al. Molecularly imprinted polymers(MIP)based electrochemical sensor for detection of urea and creatinine[J]. Procedia Engineering,2010,5:371-374.

        [27] Kan X,Xing Z,Zhu A,et al. Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition[J]. Sensors and Actuators B:Chemical,2012,168:395-401.

        [28] Reddy S M,Hawkins D M,Phan Q T,et al. Protein detection using hydrogel-based molecularly imprinted polymers integrated with dual polarisation interferometry[J]. Sensors and Actuators B:Chemical,2013,176:190-197.

        [29] Piletsky S A,Turner N W,Laitenberger P. Molecularly imprinted polymers in clinical diagnostics—Future potential and existing problems[J]. Medical Engineering & Physics,2006,28(10):971-977.

        [30] Byrne M E,Salian V. Molecular imprinting within hydrogels II:progress and analysis of the field[J]. International Journal of Pharmaceutics,2008,364(2):188-212.

        [31] Verheyen E,Schillemans J P,vanWijk M,et al. Challenges for the effective molecular imprinting of proteins[J]. Biomaterials,2011,32(11):3008-3020.

        [32] El-Sharif H F,Phan Q T,Reddy S M. Enhanced selectivity of hydrogel-based molecularly imprinted polymers(HydroMIPs) following buffer conditioning[J]. Analytica Chimica Acta,2014,809:155-161.

        [33] Ge Y,Turner A P F. Too large to fit? Recent developments in macromolecular imprinting[J]. Trends in Biotechnology,2008,26(4):218-224.

        [34] Fang C,Yi C,Wang Y,et al. Electrochemical sensor based on molecular imprinting by photo-sensitive polymers[J]. Biosensors and Bioelectronics,2009,24(10):3164-3169.

        [35] Bai H,Wang C,Chen J,et al. A novel sensitive electrochemical sensor based onpolymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination[J]. Biosensors and Bioelectronics,2015,64:352-358.

        [36] Ribeiro C M,Miguel E M,Silva J S,et al. Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples[J]. Talanta,2016,156:119-125.

        [37] Lakshmi D,Bossi A,Whitcombe M J,et al. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element[J]. Analytical Chemistry,2009,81(9):3576-3584.

        [38] Li J,Zhao J,Wei X. A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol[J]. Sensors and Actuators B:Chemical,2009,140(2):663-669.

        [39] Petcu M,Karlsson J G,Whitcombe M J,et al. Probing the limits of molecular imprinting:strategies with a template of limited size and functionality[J]. Journal of Molecular Recognition,2009,22(1):18-25.

        [40] Wang Z,Li F,Xia J,et al. An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin[J]. Biosensors and Bioelectronics,2014,61:391-396.

        [41] Yang Y,Cao Y,Wang X,et al. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor[J]. Biosensors and Bioelectronics,2015,64:247-254.

        [42] 龍芳,張朝暉,王晶,等. 磁性石墨烯修飾辛基酚印跡傳感器制備及應(yīng)用研究[J]. 分析化學(xué),2016,44(6):908-914.

        LONG Fang,ZHANG Zhaohui,WANG Jing,et al. Magnetic graphene modified imprinted electrochemical sensor for detection of 4-octylphenol[J]. Chinese Journal of Analytical Chemistry,2016,44(6):908-914.

        [43] Santos W J R,Santhiago M,Yoshida I V P,et al. Electrochemical sensor based on imprinted sol-gel and nanomaterial for determination of caffeine[J]. Sensors and Actuators B:Chemical,2012,166:739-745.

        [44] Ding Z Y,Li C Y,Song Q J. Determination of 1-phenylalanine with a molecularly imprinted electrochemiluminescence sensor[J]. Chin. J. Anal. Chem.,2013,41:1543-8.

        [45] 陳志強(qiáng),李建平,張學(xué)洪,等. 分子印跡電化學(xué)傳感器敏感膜體系的構(gòu)建及其研究進(jìn)展[J]. 分析測試學(xué)報(bào),2010,29(1):97-104.

        CHEN Zhiqiang,LI Jianping,ZHANG Xuehong,et al. Molecularly imprinted electrochemical sensor sensitive membrane system construction and its research progress[J]. Journal of Analysis Test,2010,29(1):97-104

        [46] Pan Y,Mu N,Shao S,et al. Selective surface acoustic wave-based organophosphorus sensor employing a host-guest self-assembly monolayer of β-cyclodextrin derivative[J]. Sensors,2015,15(8):17916-17925.

        [47] 張燕,鄭晶,王娟,等. 鹽酸阿霉素分子印跡傳感器的制備及識別特性[J]. 高等學(xué)校化學(xué)學(xué)報(bào),2016,37(5):860-866.

        ZHANG Yan,ZHENG Jing,WANG Juan,et al. Preparation and identification of doxorubicin hydrochloride molscularly imprintrd sensor features[J]. Journal of High School Chemistry,2016,37(5):860-866.

        [48] Luo J,Ma Q,Wei W,et al. Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection[J]. ACS Applied Materials & Interfaces,2016,8(32):21028-21038.

        [49] Cai D,Ren L,Zhao H,et al. A molecular-imprint nanosensor for ultrasensitive detection of proteins[J]. Nature Nanotechnology,2010,5(8):597-601.

        [50] Khan M A R,Moreira F T C,Riu J,et al. Plastic antibody for the electrochemical detection of bacterial surface proteins[J]. Sensors and Actuators B:Chemical,2016,233:697-704.

        [51] Li X,Zhang L,Wei X,et al. A sensitive and renewable chlortoluron molecularly imprinted polymer sensor based on the gate:controlled catalytic electrooxidation of H2O2on magnetic nano-NiO[J]. Electroanalysis,2013,25(5):1286-1293.

        [52] Kiss L,David V,David I G,et al. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples[J]. Talanta,2016,160:489-498.

        [53] Moreira F T C,Dutra R A F,Noronha J P C,et al. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction[J]. Biosensors and Bioelectronics,2011,26(12):4760-4766.

        [54] Wang Y,Zhou Y,Sokolov J,et al. A potentiometric protein sensor built with surface molecular imprinting method[J]. Biosensors and Bioelectronics,2008,24(1):162-166.

        [55] Li L,Yang L,Xing Z,et al. Surface molecularly imprinted polymers-based electrochemical sensor for bovine hemoglobin recognition[J]. Analyst,2013,138(22):6962-6968.

        [56] Novoselov K S,Geim A K,Morozov S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.

        [57] Li Y,Li Y,Hong M,et al. Highly sensitive protein molecularly imprinted electro-chemical sensor based on gold microdendrites electrode and prussian blue mediatedamplification[J]. Biosensors and Bioelectronics,2013,42:612-617.

        [58] Shumyantseva V V,Bulko T V,Sigolaeva L V,et al. Electrosynthesis and binding properties of molecularly imprinted poly--phenylenediamine for selective recognition and direct electrochemical detection of myoglobin[J]. Biosensors and Bioelectronics,2016,86:330-336.

        The fabrication of molecularly imprinted electochemical sensorand its application in protein detection

        LIU Yanli1,LI Xiaojun2,HE Xiaorong1,LI Yanbin1,LI Hongchao1

        (1Department of Chemistry,North University of China,Taiyuan 030051,Shanxi,China;2China Rings Engineering Co.,Ltd.,Wuhan 430223,Hubei,China)

        Molecular imprinting electrochemical sensor is a combination of molecular imprinting technology and analytical sensor technology,which possess the advantages of molecular imprinting technique,avoids the disadvantages of traditional sensors,improves the electrochemical sensor sensitivity and selectivity,and shortens the response time. Because of its simple design,economical and practical advantages,this technology becomes popular in more and more areas. In this paper,five commonly used preparation methods for molecular imprinting sensors include coating method,polymerization method,electric polymerization method,sol-gel method and self-assembly method are introduced,and the application of these five methods are discussed. The application of four molecular imprinted sensors(MIPs capacitance/impedance type,MIPs conductivity type,MIPs potential type,MIPs current type)in protein detection was introduced,and its detection methods and time to achieve the desired results. Believe that with the technical update of the invention and creation,molecular imprinting electrochemical sensor detection field will be expanded to more areas.

        molecular imprinting;electrochemical sensors;protein

        TQ317

        A

        1000–6613(2017)07–2533–07

        10.16085/j.issn.1000-6613.2016-2080

        2016-11-14;

        2017-03-17。

        國家自然科學(xué)基金青年基金項(xiàng)目(21404093)。

        劉艷麗(1990—),女,碩士研究生。E-mail:707933269@qq.com。

        聯(lián)系人:李延斌,博士,副教授。E-mail:lyb2010@nuc.edu.cn。

        猜你喜歡
        印跡電化學(xué)電極
        馬 浩
        陶瓷研究(2022年3期)2022-08-19 07:15:18
        走進(jìn)大美滇西·探尋紅色印跡
        電化學(xué)中的防護(hù)墻——離子交換膜
        關(guān)于量子電化學(xué)
        成長印跡
        電化學(xué)在廢水處理中的應(yīng)用
        Na摻雜Li3V2(PO4)3/C的合成及電化學(xué)性能
        三維電極體系在廢水處理中的應(yīng)用
        三維鎳@聚苯胺復(fù)合電極的制備及其在超級電容器中的應(yīng)用
        Ti/SnO2+Sb2O4+GF/MnOx電極的制備及性能研究
        av高清视频在线麻豆免费观看| 成 人 免费 黄 色 视频| 久久久无码一区二区三区| 国产成人亚洲合集青青草原精品| 国产一区二区三区特区| 婷婷久久国产综合精品| 欧美成人精品午夜免费影视| 婷婷开心深爱五月天播播| 99久久久久久亚洲精品| 亚洲一区二区三区日韩在线观看| 欧美成人看片一区二区三区尤物| www插插插无码免费视频网站| 手机色在线| 亚洲av永久一区二区三区| 热99re久久精品这里都是精品免费 | 亚洲av天堂在线免费观看| 亚洲av色影在线| 中文字幕亚洲情99在线| 久久与欧美视频| 精品人妻av一区二区三区四区| 亚洲av精品一区二区三区| 最新亚洲人成无码网站| 人妻精品一区二区免费| 一区二区三区国产内射| 国产日产综合| 日韩中文网| 熟妇人妻丰满少妇一区| 亚洲欧洲免费无码| 国产免费av片在线观看播放| 亚色中文字幕| 国产久色在线拍揄自揄拍| 免费看男女做羞羞的事网站| 一区二区三区在线免费av| 国产av剧情刺激对白| 区二区三区玖玖玖| 无码成人片一区二区三区| 亚洲一区二区三区av天堂| 午夜爽爽爽男女免费观看影院 | baoyu网址国产最新| 蜜桃传媒网站在线观看| 少妇太爽了在线观看免费视频|