鄧國孫,李鎮(zhèn)伽
?
·基礎醫(yī)學· ·論著·
miRNA-10a對小鼠肝纖維化細胞增殖及TGFβ1/Smads信號轉導通路表達的影響
鄧國孫,李鎮(zhèn)伽
目的 通過觀察肝纖維化(hepatic fibrosis,HF)小鼠肝組織TGFβ1/Smads信號轉導通路的表達與HF進展的關系,探討微小RNA(microRNA,miRNA)-10a對于HF的作用機制。方法 選用9周齡健康雄性小鼠(C57BL6/J)40只,按照數字表法隨機分為對照組和HF模型組(觀察組),對照組生理鹽水5 μl/g腹腔注射,每周2次,注射8周;觀察組10% CCL4橄欖油5 μl/g腹腔注射,每周2次,注射8周,制作小鼠HF模型。RT-PCR法檢測HF細胞中miRNA-10a表達后,將觀察組HF細胞進行培養(yǎng)及miRNA-10a模擬物轉染(轉染組),CCK-8法檢測HF細胞增殖能力,Western blotting檢測HF細胞中TGFβ1、Smad7的表達水平。結果 與對照組比較,觀察組miRNA-10a表達水平明顯增加(P<0.05);與對照組比較,轉染組肝細胞miRNA-10a表達水平明顯降低(P<0.05);與對照組相比,低表達miRNA-10a明顯降低觀察組TGFβ1的表達水平,提高Smad7的表達水平(均P<0.05)。結論 小鼠HF細胞中低表達miRNA-10a,轉染miRNA-10a模擬物可明顯促進小鼠HF細胞增殖,其作用機制是通過miRNA-10a調控TGFβ1/Smads信號轉導通路促進小鼠HF。
肝纖維化;轉化生長因子β1;Smad7蛋白;TGFβ1/Smads信號轉導通路
肝纖維化(hepatic fibrosis,HF)是機體對各種原因誘發(fā)的慢性肝細胞損傷后的一種自我修復反應。有研究[1]顯示,HF是一個可逆的病理生理過程,消除相關致病因素或有效的早期干預治療可改善HF程度,反之則可進展為終末失代償期肝硬化。微小RNA(microRNA,miRNA)是一類大小為18~22個核苷酸的內源性非編碼單鏈小分子RNA,通過與靶mRNA完全或不完全互補配對,引起mRNA降解或翻譯抑制,從而能在轉錄后水平調控機體基因的表達[2]。有研究[3]顯示,一些miRNA在肝細胞內表達相對豐富,并在疾病的進展中表達有明顯差異,從而影響肝臟疾病的發(fā)生發(fā)展。也有研究[4-5]表明,miRNA-10a參與造血細胞的分化、腫瘤的發(fā)生發(fā)展、免疫功能的調節(jié)等多個病理生理過程。在博萊霉素所致的肺纖維化小鼠肺組織中,發(fā)現了161個差異表達的miRNA,其中miRNA-10a通過調節(jié)TGF-β信號通路參與調控纖維母細胞激活和膠原沉著[6]。有文獻[7]報道,肝星狀細胞(hepatic stellate cell,HSC)的激活或表型轉化為成纖維細胞是HF形成的中心環(huán)節(jié),轉化生長因子β1(transforming growth factor beta 1,TGFβ1)是公認的最強致HF的細胞因子之一[8],Smad蛋白是TGFβ1關鍵的作用底物[9],可誘發(fā)HSC激活,啟動膠原基因表達,從而導致HF的發(fā)生。TGFβ1/Smads信號轉導通路的激活及引起的相應病理變化, 在HF的發(fā)生發(fā)展中具有非常重要的意義[10]。本研究探討miRNA-10a調控HF的分子機制,并將miRNA-10a作為HF藥物靶點,從而指導HF的診斷與治療。
1.1 主要材料與試劑 Pronase E購于美國Merck公司,Collagenase II購于美國Sigma公司,淋巴細胞分離液購自中科院生工所,DMEM培養(yǎng)液及干粉購于GIBCO公司,胎牛血清購于杭州四季青公司,Interferin siRNA轉染劑購自Polypus公司,miRNA分析系統(tǒng)購自Applied 公司,PrimeScript RT-PCR反轉錄試劑盒購自TOYOBO公司,miRNA-10購于廣東銳博公司,各類單抗均購于美國Abcam公司,細胞裂解液CLB購自Cell Signaling T公司。
1.2 建立HF小鼠模型 選用9周齡健康雄性小鼠(C57BL6/J)40只,體質量19~22 g,按照隨機數字表法分為對照組和HF模型組(觀察組),對照組生理鹽水5 μl/g腹腔注射,每周2次,注射8周;觀察組10% CCL4橄欖油5 μl/g腹腔注射,每周2次,注射8周,制作小鼠HF模型。
1.3 制備標本 實驗小鼠禁食12 h,在乙醚麻醉下,斷頭取血,部分肝臟組織采用10%中性甲醛固定,備制病理切片,其余肝組織液氮快速冷凍,置于-80 ℃冰箱保存,備用。
1.4 HSC分離 75%酒精消毒腹部皮膚后,2%戊巴比妥鈉(40 mg/kg)小鼠腹腔注射,十字切口開腹,充分暴露小鼠心臟和下腔靜脈,18號套管針連接輸液瓶,從左心室進針注入灌注液,下腔靜脈放血,10 ml/min流速肝臟灌流,直至肝臟變?yōu)橥咙S色,隨后采用酶灌注液繼續(xù)灌流14~18 min,直至肝臟呈現爛泥狀,取肝臟,生理鹽水沖洗后,剔除肝臟包膜及結締組織,剪碎后加入振蕩消化液,37 ℃振蕩20 min,200×g離心5 min,細胞懸液經300目鋼網過濾后,收集于2個30 ml離心管中,1 400×g離心5 min,棄上清,D-Hanks液重懸沉淀,取上清進行梯度分離。采用淋巴細胞分離液鋪梯度,上層加充分消化的單細胞懸液,25 ℃,1 500×g離心25 min,平拋離心后的分離細胞,小心吸出中層少量白色液體,即為HSC。DMEM制備,1 400 ×g離心10 min,洗滌2次,以1.0×106個細胞接種于100 ml塑料培養(yǎng)瓶中24 h,靜置培養(yǎng)72 h后換成含10%胎牛血清DMEM培養(yǎng)液,每3 d更換培養(yǎng)液1次。采用臺盼藍進行染色,計算細胞成活率,以2組小鼠HSC成活率均達到90%以上表示分離成功。
1.5 Real-time PCR檢測miRNA-10a表達 采用TRIzol試劑,提取2組肝組織總RNA,利用SYBR Premix ExTaq熒光定量PCR試劑盒及LightCycler儀器,進行操作及分析。miRNA-10a逆轉錄引物序列:5’-GTCGTATC-CAGCAGGGTCCGTATTCGCACTGGATACGACACA-3’;miRNA-10a定量引物上游序列:5’-ACGTACCTGTAGATCCG-3’,引物下游序列:5’-GTG-CAGGTCCGAGGT-3’。U6逆轉錄引物序列:5’-CGCTCACGAATTTGCGTGTAT-3’;U6定量引物上游序列:5’-CTCGCTTCGCAGCACA-3’,引物下游序列:5’-AACGCTTCACGAATTTCGT-3’。按3步法進行DNA擴增,反應條件:95 ℃、20 s;94 ℃、25 s;55 ℃、15 s;75 ℃、10 s;40次循環(huán)條件:72 ℃、10 min。每次Real-timePCR被測標本的Ct值減去對應樣品中U6Ct值,即為ΔCt,HF細胞中miRNA-10a的表達量采用2-ΔΔCt計算,HF組織標本中miRNA-10a表達量采用log22-ΔΔCt計算。
1.6 HF細胞培養(yǎng)和miRNA-10a模擬物轉染 小鼠HF細胞置于含10%胎牛血清的DMEM培養(yǎng)液中,37 ℃、5%CO2飽和濕度培養(yǎng)箱進行傳代培養(yǎng)。將處于對數期生長的HF細胞接種于12孔板,每孔細胞密度為3×105個,當細胞生長融合度至50%時,再將其分為2組,一組為miRNA-10a模擬物轉染組,一組為對照組,分別用含有miRNA-10a模擬物和對照miRNAOpti-MEM培養(yǎng)基轉染細胞,同時加入Interferin提高轉染率。轉染時每孔miRNA-10a模擬物或對照miRNAOpti-MEM的終濃度均為20 nmol/L,Interferin為4 μl,轉染72 h。本實驗重復3次。
1.6 CCK-8法檢測HF細胞的增殖能力 根據CCK-8試劑盒說明書操作,HF細胞轉染miRNA-10a模擬物或對照miRNA Opti-MEM 72 h后,將2組細胞根據每孔2×104個,接種于96孔培養(yǎng)板中,并各設置3個平行孔,3~5 h后細胞貼壁,加入100 μl 1640培養(yǎng)液、10 μl CCK-8,置于37 ℃、5%CO2培養(yǎng)箱培養(yǎng)2 h,酶標儀測定光密度(D)值。本試驗重復3次。
1.7 Western blotting檢測HF細胞中TGFβ1、Smad 7蛋白的表達 HF細胞轉染72 h后,收集轉染組和對照組待測細胞,細胞裂解液裂解,BCA法測定蛋白濃度,取50 μg蛋白經8% SDS-PAGE分離后,轉至PVDF膜,25 ℃封閉1 h,分別加入TGFβ1抗體(1∶2 000)、Smad 7抗體(1∶2 000)、β-actin抗體(1∶1 000),4 ℃孵育過夜,洗膜后加過氧化物酶標記的二抗,25 ℃孵育1h,洗膜后ECL法顯影,Gene gnome采集圖片,利用Image J軟件進行灰度分析。本試驗重復3次。
1.8 統(tǒng)計學處理 采用SPSS 18.0統(tǒng)計學軟件,數據以均數±標準差(x±s)表示,組間比較采用t檢驗,P<0.05表示差異有統(tǒng)計學意義。
2.1 miRNA-10a在小鼠HF中高表達 Real-time PCR檢測觀察與對照組中miRNA-10a相對表達量,結果顯示,觀察組HF組織中miRNA-10a表達量明顯高于對照組[(-7.84±1.38)vs(-9.97±1.59),P<0.05]。
2.2 轉染miRNA-10a模擬物后HF細胞miRNA-10a的表達 Real-time PCR檢測轉染組及對照組中miRNA-10a的相對表達量,結果(圖1)顯示,轉染組(miRNA-10a mimics)HF細胞miRNA-10a表達量明顯低于對照組(P<0.01)。
注:與對照組比較aP<0.01圖1 Real-time PCR檢測2組肝細胞miRNA-10a表達水平
2.3 低表達miRNA-10a促進HF細胞增殖 為了研究低表達miRNA-10a對HF細胞增殖的影響,利用CCK-8法檢測轉染組及對照組HF細胞的增殖水平,結果(圖2)顯示,與對照組相比,低表達miRNA-10a的HF細胞增殖水平明顯提高(P<0.05)。
注:與對照組比較aP<0.05圖2 CCK-8法檢測轉染組及對照組HF細胞的增殖情況
2.4 miRNA-10a調控TGFβ1/Smads信號轉導通路 Western blotting檢測轉染miRNA-10a模擬物后HF細胞中TGFβ1、Smad 7蛋白的表達,結果(圖3)顯示,與對照組比較,轉染組TGFβ1蛋白的表達量明顯降低(P<0.05),顯示miRNA-10a上調HF細胞中TGFβl表達,而轉染組Smad 7蛋白的表達量顯著增多(P<0.05),顯示miRNA-10a下調Smad 7蛋白的表達。
注:與對照組比較aP<0.05圖3 Western blotting檢測miRNA-10a對TGFβ1/Smads表達的影響
有研究顯示[11-12],TGFβ1及其Smad信號轉導通路與HF的發(fā)生發(fā)展密切相關,其中TGFβ1為雙硫鍵結構的二聚體堿性蛋白,是激活HF細胞的主要細胞因子,也是最強的HF促進劑[13];Smad蛋白是目前發(fā)現的TGFβ家族受體激酶的關鍵作用底物之一,根據其結構和功能的不同分為3類,其中抑制型Smad蛋白中的Smad 7主要功能為抑制TGFβ的轉導通路。Smad 7可與活化的TGFβ1受體結合,抑制Smad蛋白磷酸化;進入胞漿Smad 7,使Smad蛋白不能與其受體相結合,在TGFβ信號轉導中形成負反饋環(huán)路,從而發(fā)揮抗HF作用[14]。
研究[15-17]顯示,miRNA參與HF的發(fā)生發(fā)展,但關于miRNA調控HF的分子機制還不是很清楚。miRNA-10a作為miRNA家族中成員之一,本研究顯示,miRNA-10a在小鼠HF組織中高表達,并且低表達miRNA-10a能夠促進HF細胞增殖,進一步表明miRNA-10a在HF中發(fā)揮著促纖維化因子的作用。本研究同時發(fā)現,與對照組相比,轉染組TGFβ1蛋白表達明顯降低,表明miRNA-10a上調TGFβ1的表達;而轉染組Smad 7蛋白表達顯著增多,表明miRNA-10a能夠下調Smad 7表達,說明miRNA-10a通過調控TGFβ1/Smads信號轉導通路發(fā)揮促HF作用,這為HF的治療提供了潛在的治療靶點。
[1] Lee YA, Friedman SL. Reversal, maintenance or progression: what happens to the liver after a virologic cure of hepatitis C[J]. Antiviral Res, 2014, 107(1): 23-30. DOI:10.1016/j.antiviral.2014.03.012.
[2] van der Ree MH, de Bruijne J, Kootstra NA, et al. MicroRNAs: role and therapeutic targets in viral hepatitis[J]. Antivir Ther (Lond), 2014, 19(6): 533-541. DOI:10.3851/IMP2766.
[3] Kim KM, Kim SG. Autophagy and microRNA dysregulation in liver diseases[J]. Arch Pharm Res, 2014, 37(9): 1097-1116. DOI:10.1007/s12272-014-0439-9.
[4] Havelange V, Ranganathan P, Geyer S, et al. Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML[J]. Blood, 2014, 123(15): 2412-2415. DOI:10.1182/blood-2013-10-532374.
[5] Ohuchida K, Mizumoto K, Lin C, et al. MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene[J]. Ann Surg Oncol, 2012, 19(7): 2394-2402. DOI:10.1245/s10434-012-2252-3.
[6] Xie T, Liang J, Guo R, et al. Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation[J]. Physiol Genomics, 2011, 43(9): 479-487. DOI:10.1152/physiolgenomics.00222.2010.
[7] Uemura M, Swenson ES, Gamna MD, et al. Smad 2 and Smad 3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization[J]. Mol Biol Cell, 2005, 16(9): 4214-4224. DOI:10.1091/mbc.E05-02-0149.
[8] Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice[J]. Gut, 2006, 55(3): 415-424. DOI:10.1136/gut.2005.071118.
[9] Heldin CH, Miyazono K, Dijke P. TGF-beta signalling from cell membrane to nucleus through Smad proteins[J]. Nature, 1997, 390(6659): 465-471. DOI:10.1038/37284.
[10] Schnabl B, Kweon YO, Frederick JP, et al. The role of Smad3 in mediating mouse hepatic stellate cell activation[J]. Hepatology, 2001, 34(1): 89-100. DOI:10.1053/jhep.2001.25349.
[11] Martinez FE, Lopez CL, Regordan C, et al. Meningitis by Cryptococcus neoformans in patients with HIV infection[J]. Neurologia, 1999,14(5):218-223.
[12] Paradis V, Dargere D, Bonvoust F, et al. Effects and regulation of connective tissue growth factor on hepatic stellate cells[J]. Lab Invest, 2002, 82(6): 767-774. DOI:10.1097/01.lab.0000017365.18894.d3.
[13] Long J, Wang G, Matsuura I, et al. Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3)[J]. Proc Natl Acad Sci USA, 2004, 101(1): 99-104. DOI:10.1073/pnas.0307598100.
[14] Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf 2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation[J]. Mol Cell, 2000, 6(6): 1365-1375. DOI:10.1016/s1097-2765(00)00134-9.
[15] Roderburg C, Luedde M, Vargas CD, et al. miR-133a mediates TGF dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis[J]. J Hepatol, 2013, 58(4): 736-742. DOI:10.1016/j.jhep.2012.11.022.
[16] Kumar V, Mahato RI. Delivery and targeting of miRNAs for treating liver fibrosis[J]. Pharm Res, 2015, 32(2): 341-361. DOI:10.1007/s11095-014-1497-x.
[17] Chen SL, Zheng MH, Shi KQ, et al. A new strategy for treatment of liver fibrosis: letting microRNA do the job[J]. Bio Drugs, 2013, 27(1): 25-34. DOI:10.1007/s40259-012-0005-2.
(本文編輯:王映紅)
Effects of miRNA-10a on the proliferation of hepatic fibrosis cells and the expression of TGF beta 1/Smads signal transduction pathway in mice
DengGuosun,LiZhen′ga
(DepartmentofGastroenterology,ChongmingBranch,XinhuaHospitalAffiliatedtoShanghaiJiaotongUniversity,Shanghai202150,China)
Objective To investigate the possible mechanism involved in the effect of micro RNA-10a(miRNA)on hepatic fibrosis (HF), through the observation on the expression of TGFβ1/Smads signal transduction pathway in mice with HF and its correlation with the development of hepatic fibrosis.Methods Forty healthy male mice with an age of 9 weeks (C57BL6/J) were randomly divided into the control group and the HF model group (or the observation group). The animals in the control group were given normal saline abdominally at a dosage of 5 μl/g, twice a week, for a succession of 8 weeks, while the animals in the observation group received 10% CCL4 olive oil also at a dosage of 5 μl/g with the same frequency and for the same length of time to develop the model of hepatic fibrosis. The expression of miRNA-10a was detected by RT-PCR. HF cells were cultured in the animals of the observation group and miRNA-10a mimics were transfected (the transfection group). CCK-8 method was used to detect the proliferation of HF cells, and the expression levels of TGFβ1 and Smad 7 in the HF cells were detected by Western-blotting. Results As compared with that of the control group, the expression level of miRNA-10a in the observation group was increased significantly (P<0.05); and as compared with that of the control group, the expression level of miRNA-10a in the transfection group were significantly decreased (P<0.05); and furthermore, as compared with that of the control group, the lower expression of miRNA-10a significantly decreased the expression level of TGFβ1 and increased the expression level of Smad 7(P<0.05).Conclusion The expression of miRNA-10a in the HF cells was lower, and the transfected miRNA-10a mimics could significantly promote the proliferation of HF cells, the possible mechanism of which might be associated with the regulation of TGFβ1/Smads signal transduction pathway in HF promotion.
Hepatic fibrosis; Transforming growth factor β1; Smad 7 protein; TGFβ1/Smads signal pathway
202150 上海,上海交通大學附屬新華醫(yī)院崇明分院消化內科(鄧國孫);南昌大學醫(yī)學院第二附屬醫(yī)院普外科(李鎮(zhèn)伽)
R575.3
A
10.3969/j.issn.1009-0754.2017.03.013
2016-10-27)