王新坤,肖思強,樊二東,徐勝榮
?
滴灌毛管首部射流脈沖三通水力特性試驗研究
王新坤,肖思強,樊二東,徐勝榮
(江蘇大學(xué)流體機械工程技術(shù)研究中心,鎮(zhèn)江212013)
該文研究毛管射流脈沖三通水力特性并提出毛管脈沖三通水力設(shè)計方法。在脈沖三通2個出口端,安裝6組不同長度的毛管(30、40、50、60、70、80 m),在5種壓力條件下(5、6、8、10、12 m水頭),分別測試6組不同長度毛管的脈沖水力特性,建立描述射流脈沖三通的脈沖水力特性和水頭損失的非線性方程,以及脈沖特性和灌水均勻系數(shù)的非線性方程,經(jīng)驗證,擬合公式計算值與試驗值相對誤差不大于1.5%,表明得到的非線性方程可反映脈沖三通的水力特性與水頭損失及灌水均勻系數(shù)的變化規(guī)律。以此為基礎(chǔ),提出設(shè)計情況下脈沖三通進口壓力計算步驟,通過設(shè)計實例表明,基于水頭振幅和脈沖頻率獲得的灌水均勻系數(shù)分別為98.13%和98%,絕對誤差僅0.13%,可以簡便快速地確定不同需水作物條件下毛管脈沖三通的進口壓力,預(yù)測毛管的灌水均勻系數(shù)。該研究結(jié)果為射流脈沖三通滴灌系統(tǒng)水力設(shè)計提供計算方法。
壓力;流量;灌溉;射流脈沖三通;水力特性;滴灌
滴灌具有灌水均勻、高效節(jié)水節(jié)肥、改善作物品質(zhì)、增產(chǎn)增收等優(yōu)點,是中國大面積推廣應(yīng)用的高效節(jié)水灌溉方式之一[1-5]。隨著水資源的日趨緊張,作為能夠節(jié)能節(jié)水的灌溉技術(shù),低壓滴灌與地下滴灌將是今后滴灌技術(shù)發(fā)展的一個重要方向[6-8]。然而低壓滴灌與地下滴灌的毛管及灌水器內(nèi)流速較小,灌水器易堵塞,灌水均勻度易受到影響。因此,灌水均勻性與堵塞是低壓滴灌與地下滴灌技術(shù)的難點問題,也是影響其發(fā)展的瓶頸問題[9-14]。脈沖滴灌可在低壓工況下工作,毛管可鋪設(shè)地下和地表,且具有抗堵塞性能好、灌水均勻度高的特點[15-17],受到各國的廣泛關(guān)注與應(yīng)用。
王慶安[18]設(shè)計了一種主要由脈沖發(fā)生器及定量灌水管組成的脈沖滴灌系統(tǒng),其核心部件脈沖發(fā)生器由型芯、脈沖膠囊、殼體組成,通過脈沖膠囊儲水與脈沖的循環(huán)實現(xiàn)連續(xù)脈沖流。高勝國等[19]提出一種用單片機、變頻調(diào)速技術(shù)形成脈沖水流沖洗地下滴灌系統(tǒng),提高抗堵塞能力的技術(shù)方案。王聰?shù)萚20-21]基于可編程控制器和變頻器提出一種波動水壓灌溉系統(tǒng),并對波動水壓條件下灌水器的水力性能與抗堵塞性能進行了研究。這些脈沖發(fā) 生器一般通過電子脈沖、變頻裝置或橡膠、塑料膜、彈簧等彈性材料產(chǎn)生脈沖水流,造價較高,安裝、使用、維護較復(fù)雜,彈性材料易于疲勞損壞,可靠性、靈敏性及持久性難以保證。毛管射流脈沖三通能夠使流道內(nèi)的水流產(chǎn)生強烈紊動和渦流,并且結(jié)構(gòu)簡單,穩(wěn)定性好,造價低,低抗堵塞性能好、灌水均勻度高[22]。許鵬等[23]對毛管射流脈沖三通的結(jié)構(gòu)參數(shù)、內(nèi)部的流動機理、脈沖特性進行了研究。楊玉超[24]考察了射流三通的幾何尺寸和進口壓力的影響,研究了幾種因素對振蕩頻率、出口壓力、影響程度和可振性的影響,但未深入分析其射流三通的水頭損失、出口水頭等水力特性。本文對不同壓力下的毛管射流脈沖三通進行水力特征試驗,研究毛管射流脈沖三通的進口流量、脈沖頻率及水頭振幅與水頭損失間的關(guān)系,建立脈沖特性和灌水均勻系數(shù)的關(guān)系式,并提出毛管脈沖三通水力設(shè)計方法。
1.1 供試毛管射流脈沖三通
毛管射流脈沖三通是基于射流附壁與切換理論設(shè)計的一種脈沖發(fā)生器。脈沖三通的壁面限制射流卷吸的范圍,導(dǎo)致射流與壁面之間發(fā)生干涉。同時射流自身幾何結(jié)構(gòu)存在著微小不對稱性和水流紊亂,因而兩側(cè)壁面和射流之間產(chǎn)生的干涉效果存在不對稱,這將引起射流兩側(cè)產(chǎn)生壓力差,進而推動射流附壁與偏轉(zhuǎn)[25-27]。脈沖三通的主要結(jié)構(gòu)包括噴嘴、控制道、分流劈和輸出道等(圖1a)。楊玉超基于大棚草莓滴灌系統(tǒng)流量(滴頭流量2.2 L/h)及普通三通結(jié)構(gòu)(外徑16 mm正三通,萊蕪豐田節(jié)水器材股份有限公司),通過數(shù)值模擬和正交試驗,確定了能夠產(chǎn)生最佳脈沖水流的脈沖三通基本尺寸[24]。本研究對文獻[24]確定的尺寸進行加工,獲得脈沖三通成型產(chǎn)品(圖1b),其噴嘴寬度為4 mm;位差為2 mm;側(cè)壁傾角為10°;劈距為35 mm;控制管寬度為2.5 mm;控制管長度為 54 mm;分流劈半徑為3.5 mm;輸出道內(nèi)寬度為7 mm。
注:θ、S、W、H分別為側(cè)壁傾角(°)、位差長度、噴嘴寬度、劈距長度,mm。
1.2 水力特性試驗
2016年5月,試驗在江蘇大學(xué)噴灌試驗廳進行。試驗系統(tǒng)組成如圖2所示,主要由毛管射流脈沖三通、水箱、水泵、閥門、壓力表、渦輪流量計等組成。
圖2 試驗系統(tǒng)示意圖
毛管射流脈沖三通接入試驗系統(tǒng),調(diào)整進口閥門開度控制脈沖三通進口的壓力和流量,使脈沖三通在低壓條件下正常工作,為保證射流脈沖三通2個出口脈沖水流的對稱性和出口流動狀態(tài)的對稱性,采用6組不同長度的毛管代替閥門。本試驗采用內(nèi)鑲片式滴灌帶(萊蕪豐田節(jié)水器材股份有限公司),滴頭間距30 cm,內(nèi)徑16 mm。進行6組試驗,2個脈沖三通出口連接的毛管長度相同,單側(cè)毛管鋪設(shè)長度分別為30、40、50、60、70、80 m。前期試驗表明,射流三通結(jié)構(gòu)能使滴灌帶內(nèi)產(chǎn)生脈沖水流,對灌水器有間歇性的沖洗作用,試驗中射流三通在50~120 kPa下會產(chǎn)生脈沖水流,故每組試驗進口壓力分別設(shè)定為5、6、8、10、12 m水頭5個水平,并監(jiān)測記錄每組試驗5個壓力條件下的水力特性指標和毛管灌水均勻度。擬采用毛管鋪設(shè)長度為30、40、50、60、70 m的5組試驗數(shù)據(jù)擬合關(guān)系式,毛管鋪設(shè)長度80 m的數(shù)據(jù)進行公式驗證。
每次試驗時間設(shè)定為15 min,秒表計時,壓力表測試進出口水頭,渦輪流量計(紅旗儀表有限公司,0.5級)測試2個出口流量。在試驗前,記錄渦輪流量計的初始流量。試驗中,用JT-HD61E攝像機拍攝左右兩側(cè)壓力表擺動情況,并記錄壓力表擺動最大值和最小值。試驗后,記錄渦輪流量計最終流量。
1.3 測定與計算指標
射流脈沖三通及試驗系統(tǒng)都是對稱的,且左右兩側(cè)出口流量實測數(shù)據(jù)差異不明顯,相對誤差在1%以下,因此,水頭振幅取左側(cè)數(shù)據(jù)進行計算。根據(jù)試驗測試結(jié)果得到出口水頭的最大值和最小值,并通過計算得到進口流量、水頭損失、脈沖頻率、水頭損失、灌水均勻系數(shù)和流量偏差率。進口流量為左右兩側(cè)渦輪流量計計算值之和;單側(cè)渦輪流量計計算值為15 min后單側(cè)流量計數(shù)值減去試驗前流量計數(shù)值。射流脈沖三通水頭振幅為出口水頭脈沖最大最小值之差。水頭損失通過進口水頭減去出口水頭平均值獲得,出口水頭平均值是出口水頭最大最小值的平均值。
脈沖三通脈沖頻率通過拍攝到的壓力表擺動視頻確定,慢放后計數(shù)一定時間內(nèi)的壓力表指針擺動次數(shù),采用式(1)計算出射流脈沖三通的振蕩頻率:
=/(1)
式中為壓力表指針的頻率,即射流脈沖頻率,Hz;為一定時間內(nèi)壓力表指針的擺動數(shù),次;為讀取視頻的時間,s。
每分鐘脈沖次數(shù)即:
=60(2)
式中為每分鐘脈沖次數(shù),次/min。
脈沖三通進口流量與水頭損失關(guān)系采用灌水器流態(tài)指數(shù)公式表達,它反映灌水器內(nèi)水流的流態(tài)和流量對壓力變化的敏感程度[28]。射流脈沖三通進口流量與水頭損失h關(guān)系可用灌水器流態(tài)指數(shù)表示:
=kh(3)
式中為流量系數(shù);為流態(tài)指數(shù)。
滴灌灌水均勻性指標一般選擇灌水均勻系數(shù)、流量偏差率,文中灌水均勻系數(shù)使用Christiensen公式計算得出的流量均勻系數(shù)[29-31]。流量偏差率為滴頭最大流量和滴頭最小流量之差與滴頭平均流量的比值,%。
2.1 試驗結(jié)果
在5~12 m工作壓力下,6組單側(cè)毛管長度不同試驗得到的水頭損失、進口流量、水頭振幅、脈沖頻率、灌水均勻系數(shù)(96.58%~98.33%)和流量偏差率(12.50%~19.88%)如表1所示。從表中可以看出,隨著進口水頭增大,水頭損失和進口流量也逐漸增大,脈沖頻率和水頭振幅隨進口水頭的增大而增大。脈沖三通的脈沖特性是影響毛管灌水均勻度的主要誘因之一,5~12 m壓力下脈沖頻率均在200 Hz以上(203~278 Hz),水頭振幅在2.25 m以上(2.27~4.73 m),脈沖頻率遠高于由電子裝置控制供水的頻率在100 Hz以下的低頻發(fā)生器[21,32]。
表1 毛管射流脈沖三通試驗結(jié)果
2.2 水力特性與水頭損失的關(guān)系
2.2.1 進口流量與水頭損失的關(guān)系
根據(jù)水頭損失和進口流量的5組數(shù)據(jù),運用oringin 9.0繪圖軟件畫出兩者的關(guān)系曲線,并擬合關(guān)系式,2=0.98(<0.05),如圖3a所示。采用式(3)擬合進口流量與水頭損失的關(guān)系式,并將第6組進口流量數(shù)據(jù)代入圖3a中關(guān)系式進行驗證,計算結(jié)果如表2所示。由表2可知,試驗值與計算值的差值均小于14 L/h,且相對誤差均小于1.5%,表明擬合出的公式計算數(shù)據(jù)與試驗數(shù)據(jù)較吻合,能較好地描述進口流量與水頭損失的關(guān)系。
圖3 水頭損失與水力參數(shù)之間的關(guān)系
表2 擬合公式驗證
注:毛管長80 m。
Note: Lateral pipe length is 80 m.
2.2.2 脈沖頻率與水頭損失的關(guān)系
根據(jù)脈沖頻率及水頭損失的5組數(shù)據(jù),繪出兩者的關(guān)系曲線,如圖3b所示。根據(jù)圖3b分別用乘冪、指數(shù)及對數(shù)曲線擬合發(fā)現(xiàn)對數(shù)曲線擬合度最高(2=0.98,< 0.05)。將第6組脈沖頻率數(shù)據(jù)代入圖3b中關(guān)系式進行驗證,計算結(jié)果如表2所示。由表2可知,試驗值與計算值的差值均小于1.5 Hz,且相對誤差均小于0.5%,擬合出的公式計算數(shù)據(jù)與試驗數(shù)據(jù)較吻合,能較好地描述脈沖頻率及水頭損失的關(guān)系。在5~12 m工作壓力下,毛管中可觀測到穩(wěn)定的脈沖水流,水流在滴灌灌水器內(nèi)形成強烈的紊動與沖擊水流,有益于沖刷灌水器流道,增大抗堵塞能力和灌水均勻性。
2.2.3 水頭振幅與水頭損失的關(guān)系
根據(jù)水頭損失和水頭振幅的5組數(shù)據(jù),繪出兩者關(guān)系曲線,如圖3c所示。根據(jù)圖3c發(fā)現(xiàn)對數(shù)曲線擬合度最高(2=0.98,<0.05)。將第6組水頭振幅數(shù)據(jù)代入圖3c中關(guān)系式進行驗證,計算結(jié)果如表2所示。由表2可知,試驗數(shù)據(jù)與計算數(shù)據(jù)的差值均不大于0.06 m,且相對誤差均小于1.5%,擬合出的公式計算數(shù)據(jù)與試驗數(shù)據(jù)較吻合,能較好地描述水頭損失和水頭振幅的關(guān)系。水頭振幅對擾亂毛管中水流流態(tài)有重要影響,當水頭振幅較大時,水流紊動越強烈,脈沖在毛管中傳播的距離就越遠;同時,產(chǎn)生的水頭振幅越大,射流三通水頭損失越大,所需進口水頭就越大。
2.3 脈沖特性與灌水均勻系數(shù)的關(guān)系
脈沖特性提高毛管的灌水均勻度[33],根據(jù)表2中脈沖頻率、水頭振幅和灌水均勻系數(shù)數(shù)據(jù)擬合關(guān)系式。水頭振幅、脈沖頻率與灌水均勻系數(shù)繪制兩者的關(guān)系曲線,如圖4所示。
圖4 水頭振幅、脈沖頻率和灌水均勻系數(shù)的關(guān)系
水頭振幅、脈沖頻率與灌水均勻系數(shù)的擬合度,對數(shù)、乘冪曲線最高(2>0.95,<0.05)。由圖4可知,水頭振幅增大時,灌水均勻系數(shù)隨之增大,灌水均勻系數(shù)也隨著脈沖頻率增大而增大。其主要原因:在一定壓力條件下,脈沖三通特殊結(jié)構(gòu)能夠誘發(fā)形成脈沖水流,脈沖水流具有脈沖能和穩(wěn)定的頻率;脈沖能可以使水流沖擊力更大,水流沖擊力一方面能起到?jīng)_刷灌水器流道的作用,一方面可以增大在毛管中的傳播距離。
2.4 水力設(shè)計實例
對于灌水器的性能,許用水頭范圍應(yīng)滿足應(yīng)用的要求[34-35]。毛管管徑、長度及滴頭參數(shù)確定后,根據(jù)滴頭工作流量,得到毛管進口所需流量與壓力,通過脈沖三通流量與水頭損失關(guān)系式確定脈沖三通水頭損失,進而得出脈沖三通的進口壓力。試驗用的滴灌帶為內(nèi)鑲片式,滴頭間距30 cm,滴頭灌水器的壓力與流量關(guān)系式符合管道流公式,為=0.83700.528,為給定壓力下滴頭的流量,L/h;0為滴頭的入口壓力水頭,m。
以某田間作物滴灌帶供水為例,已知作物需水量可以得到單個滴頭的流量,假設(shè)滴頭需要工作流量為2.2 L/h,田間滴灌帶單側(cè)鋪設(shè)長度為60 m,計算出滴頭的個數(shù)為400個,所以脈沖三通的進口流量是880 L/h。已知滴頭流量,由=0.83700.528可以得到滴頭的入口壓力0為6.23 m。由脈沖三通進口流量880 L/h與水頭損失擬合公式(圖3),可以得出水頭損失為2.53 m。脈沖三通進口壓力等于入口壓力6.23 m和水頭損失2.53 m之和,即8.76 m。
通過獲得的水頭損失2.53 m,和水頭損失與脈沖頻率、水頭振幅的關(guān)系式(圖3),計算得到脈沖頻率是242 Hz,水頭振幅是4.29 m。再分別由擬合的脈沖頻率、水頭振幅與灌水均勻系數(shù)關(guān)系式(圖4),可以得出灌水均勻系數(shù)分別為98.13%和98%?;谒^振幅和脈沖頻率獲得的灌水均勻系數(shù)絕對誤差僅0.13%,差異很小??梢?,已知作物需水量和灌溉使用的滴灌帶性能及其參數(shù)時,可以由擬合得到的公式計算出脈沖三通的進口壓力;在實際運用中,調(diào)節(jié)進口壓力可以改變滴頭流量的大小,進而滿足作物的需水要求;并且可以由脈沖特性與灌水均勻系數(shù)的關(guān)系式預(yù)測出毛管的灌水均勻系數(shù)。
1)射流脈沖三通進口水頭5~12 m時,可以觀測到毛管內(nèi)的脈沖水流持續(xù)且強烈,脈沖頻率穩(wěn)定在203~278 Hz之間,水頭振幅在2.27~4.73 m之間,灌水均勻系數(shù)在96.58%~98.33%之間,流量偏差率在12.50%~19.88%之間。
2)分別建立了射流脈沖三通的進口流量、脈沖頻率、水頭振幅和水頭損失之間的非線性方程,以及脈沖特性和灌水均勻系數(shù)的非線性方程。脈沖三通進口流量與水頭損失的關(guān)系符合管道流冪函數(shù)關(guān)系,關(guān)系式的擬合度在0.95以上,計算精度滿足使用要求。滴頭工作流量和滴灌帶確定后,由擬合的關(guān)系式可以得到脈沖三通的進口壓力,并能預(yù)測毛管的灌水均勻系數(shù)。提出了射流脈沖條件下毛管的水力設(shè)計,可供微灌工程設(shè)計者試用。
還需要開展基于脈沖三通的脈沖滴灌系統(tǒng)田間試驗,觀測壓力、流量及脈沖特性在管道的分布特征,提出脈沖滴灌系統(tǒng)的水力設(shè)計方法,并進一步評價灌水均勻性及抗堵塞能力。
[1] 金宏智,嚴海軍,王永輝. 噴灌技術(shù)與設(shè)備在中國的適應(yīng)性分析[J]. 農(nóng)業(yè)工程學(xué)報,2011,4(1): 42-45. Jin Hongzhi, Yan Haijun, Wang Yonghui. Adaptability analysis of sprinkler irrigation technology and equipments in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 4(1): 42-45. (in Chinese with English abstract)
[2] 李世英. 對我國節(jié)水灌溉技術(shù)發(fā)展的幾點思考[J]. 排灌機械工程學(xué)報,2000,18(1): 6-8. Li Shiying. Reflections on the development of China's water- saving irrigation technology[J]. Drainage and Irrigation Machinery, 2000, 18(1): 6-8.
[3] 龔時宏,李久生,李光永. 噴微灌技術(shù)現(xiàn)狀及未來發(fā)展重點[J]. 中國水利,2012 (2): 66-70. Gong Shihong, Li Jiusheng, Li Guangyong. Present situation and development of sprinkler irrigation and micro-irrigation techniques[J]. China Water Resources, 2012(2): 66-70. (in Chinese with English abstract)
[4] 賀城,廖娜. 我國節(jié)水灌溉技術(shù)體系概述[J]. 農(nóng)業(yè)工程,2014,4(2):39-44. He Cheng, Liao Na. Overview of water-saving irrigation technology system in China[J]. Agricultural Engineering, 2014, 4(2): 39-44. (in Chinese with English abstract)
[5] 魏正英,苑偉靜,周興,等. 我國壓力補償灌水器的研究進展[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(1):94-101. Wei Zhengying, Yuan Weijing, Zhou Xing, et al. Research progress of pressure compensating emitters in micro- irrigation systems in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 94-101. (in Chinese with English abstract)
[6] 劉璐,牛文全,Bob Zhou. 細小泥沙粒徑對迷宮流道灌水器堵塞的影響[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(1):87-93. Liu Lu,Niu Wenquan,Bob Zhou. Influence of sediment particle size on clogging performance of labyrinth path emitters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 87-93. (in Chinese with English abstract)
[7] 王文娥,王福軍,牛文全,等. 滴頭流道結(jié)構(gòu)對懸浮顆粒分布影響的數(shù)值分析[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(5):1-6. Wang Wen'e, Wang Fujun, Niu Wenquan, et al. Numerical analysis of influence of emitter channel structure onsuspended granule distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 1-6. (in Chinese with English abstract)
[8] 牛文全,吳普特,喻黎明. 基于含沙量等值線的迷宮流道結(jié)構(gòu)抗堵塞設(shè)計與模擬[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(5): 14-18. Niu Wenquan, Wu Pute, Yu Liming. Anti-clogging experimental investigation and optimized design of micro- channels of emitter based on isoline of sand content[J] . Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(5): 14-18. (in Chinese with English abstract)
[9] 李剛,王曉愚,白丹. 地下滴灌中毛管水力計算的數(shù)學(xué)模型與試驗[J]. 排灌機械工程學(xué)報,2011,29(1):87-92. Li Gang, Wang Xiaoyu, Bai Dan. Experiment and mathematical model on hydraulic calculation of laterals in subsurface drip irrigation[J]. Drainage and Irrigation Machinery, 2011, 29(1): 87-92. ( in Chinese with English abstract)
[10] 王新坤,蔡煥杰. 微灌毛管水力解析及優(yōu)化設(shè)計的遺傳算法研究[J]. 農(nóng)業(yè)機械學(xué)報,2005,36(8):55-58. Wang Xinkun, Cai Huanjie. Study on genetic algorithms of hydraulic analysis and optimum design for micro-irrigation laterals[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(8): 55-58. (in Chinese with English abstract)
[11] 陳艷,白丹,任長江,等. 基于分形理論的地下滴灌灌水器水力特性研究[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(增刊):47-52. Chen Yan, Bai Dan, Ren Changjiang, et al. Research on the hydraulic properties of SDI emitter based on fractal theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(Supp.): 47-52. (in Chinese with English abstract)
[12] Lazarovitch N, Shani U, Thompson T L, et al. Soil hydraulic properties affecting discharge uniformity of gravity-fed subsurface drip irrigation systems[J]. Journal of Irrigation and Drainage Engineering-ASCE, 2006, 132(6): 531-536.
[13] 王曉愚,白丹,李占斌,等. 地下滴灌田間管網(wǎng)室內(nèi)試驗測試系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(4):88-90. Wang Xiaoyu, Bai Dan, Li Zhanbin, et al. Laboratory test system of field pipe network under subsurface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4): 88-90. (in Chinese with English abstract)
[14] 仵峰,李王成,范永申,等. 地下滴灌滴頭出口正壓試驗研究[J]. 灌溉排水學(xué)報,2003,22(2):48-52. Wu Feng, Li Wangcheng, Fan Yongshen, et al . Experimental study on positive pressure in area around emitter in subsurface drip irrigation[J]. Journal of Irrigation and Drainage, 2003, 22(2): 48-52. (in Chinese with English abstract)
[15] Bakeerm G A A, El-Ebabi F G, El-Saidi M T, et al. Effect of pulse drip irrigation on yield and water use efficiency of potato crop under organic agriculture in sandy soils[J]. Journal of Irrigation and Drainage, 2009, 26(2): 736-765.
[16] Assouline S, Moller M, Cohen S, et al. Soil-plant system response to pulsed drip irrigation and salinity: Bell pepper case study[J]. Soil Science Society of America Journal, 2006, 70(5): 1556-1568.
[17] Elmaloqlou S, Diamantopouos E. Wetting front advance patterns and water losses by deep percolation under the root zone as influenced by pulsed drip irrigation [J]. Agricultural Water Management, 2007, 90(1-2): 160-163.
[18] 王慶安. 脈沖滴灌系統(tǒng)結(jié)構(gòu)設(shè)計與工作原理[J]. 節(jié)水灌溉,2001(4):36-37. Wang Qingan. Structural design and working principle of pulse drip irrigation system[J], Water Saving Irrigation, 2001(4): 36-37. (in Chinese with English abstract) )
[19] 高勝國,黃修橋. 脈沖滴灌系統(tǒng):201110074154. 1 [P].
[20] 王聰,蘆剛,劉潔,等. 波動水壓滴灌系統(tǒng)設(shè)計與實驗分 析[J]. 中國農(nóng)村水利水電,2012(6):69-72. Wang Cong, Lu Gang, Liu jie, et al. Design of dynamic pressure drip irrigation system and experimental analysis[J], China Rural Water and Hydropower, 2012(6): 69-72. (in Chinese with English abstract) )
[21] 劉潔,王聰,魏青松,等. 波動水壓參數(shù)對灌水器水力性能影響試驗[J]. 河海大學(xué)學(xué)報自然科學(xué)版,2014,42(4):361-366. Liu Jie, Wang Cong, Wei Qingshong, et al. Experimental study of effect of fluctuating water pressure factors on hydraulic properties of drip emitters[J]. Journal of Hohai University:Natural Sciences, 2014, 42(4): 361-366. (in Chinese with English abstract) )
[22] 王新坤. 一種射流三通:CN103203293A [P].
[23] 許鵬,王新坤,高世凱,等. 射流振蕩三通與滴灌毛管脈沖初步試驗研究[J]. 節(jié)水灌溉,2014(3):1-4. Xu Peng, Wang Xinkun, Gao Shikai, et al. Preliminary test of jet oscillation tee and puise flow in drip irrigation lateral pipe[J]. Water Saving Irrigation, 2014(3): 1-4. (in Chinese with English abstract)
[24] 楊玉超. 射流脈沖三通振蕩特性影響因素研究[D]. 鎮(zhèn)江:江蘇大學(xué),2016. Yang Yuchao. Study on Influence Factors of Oscillation Performance of Jet-pulse Tee[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
[25] 汪志明,薛亮. 射流元件附壁與切換流動規(guī)律研究[J]. 水動力學(xué)研究與進展,2007,22(3):352-357. Wang Zhiming, Xue Liang. Study on the attached flow and alteration flow character in fluidic element of down hole pressure intensifier[J]. Journal of Hydrodynamics, 2007, 22(3): 352-357. (in Chinese with English abstract)
[26] 熊青山,殷琨,田海. 自由切換射流元件模擬試驗研究[J]. 液壓與氣動,2009(7):50-52. Xiong Qingsan, Yin Kun, Tian Hai. Analog test study of free switch efflux element[J]. Chinese Hydraulics & Pneumatics, 2009(7): 50-52. (in Chinese with English abstract)
[27] 辛利. 音波振蕩器振蕩性研究及應(yīng)用[D]. 大連:大連理工大學(xué),2010. Xin Li. Study on the Oscillation of Sonic Oscillator and Application[D]. Dalian: Dalian University of Technology, 2010. (in Chinese with English abstract)
[28] ?,撊A,牛文全,王維娟. 滴灌灌水器迷宮流道的內(nèi)部流體數(shù)值模擬與流動分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報自然科學(xué)版,2009,37(2):203-208. Chang Yinghua, Niu Wenquan, Wang Weijuan. Numerical simulation and flow analysis of labyrinth path of drip irrigation emitters[J]. Journal of Northwest A & F University: Natural Science Edition, 2009, 37(2): 203-208. (in Chinese with English abstract)
[29] 朱德蘭,吳普特,王劍. 滴頭制造偏差對灌水均勻度及毛 管造價的影響[J]. 排灌機械工程學(xué)報,2011,29(2):175-179. Zhu Delan, Wu Pute, Wang Jian. Effect of emitters manufacturing variation of micro-irrigation on uniformity and lateral cost [J]. Journal of Irrigation and Drainage, 2011, 29(2): 175-179. (in Chinese with English abstract)
[30] 牛文全,張若嬋,羅春艷. 考慮滴頭堵塞位置分布的灌水均勻度計算方法[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(6):147-152. Niu Wenquan, Zhang Ruochan, Luo Chunyan. Drip irrigation uniformity calculation considering distribution location of clogged emitters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 147-152. (in Chinese with English abstract)
[31] 鞠學(xué)良,吳普特,朱德蘭,等. 基于樣本流量偏差率的微灌灌水均勻度評價方法[J]. 排灌機械工程學(xué)報,2016(2):173-178. Ju Xueliang, Wu Pute, Zhu Delan, et al. Estimation of micro- irrigation water application uniformity based on sample emitter flow variation[J]. Journal of Irrigation and Drainage, 2016(2): 173-178. (in Chinese with English abstract)
[32] 曹偉,劉潔,朱月亭,等. 振動水壓下滴灌灌水器水力性能研究[J]. 節(jié)水灌溉,2015(9):1-6. Cao Wei, Liu Jie, Zhu Yueting, et al. Study on hydraulic properties of drip emitter under vibration pressure[J]. Water Saving Irrigation, 2015(9): 1-6. (in Chinese with English abstract)
[33] 楊玉超, 王新坤, 朱燕翔, 等. 基于射流脈沖三通的滴灌帶試驗研究[J]. 中國農(nóng)村水利水電, 2015(9): 111-114. Yang Yuchao, Wang Xinkun, Zhu Yanxiang, et al. An experimental study of the jet pulse tee based on drip irrigation pipes[J]. China Rural Water and Hydropower, 2015(9): 111-114. (in Chinese with English abstract)
[34] 魏正英,馬勝利,周興,等. 壓力補償灌水器水力性能影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(15):19-25. Wei Zhengying, Ma Shengli, Zhou Xing, et al. Influence factors on hydraulic performance of pressure-compensating emitter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 19-25. (inChinese with English abstract)
[35] 苑偉靜,魏正英,楚華麗,等. 分流式灌水器結(jié)構(gòu)優(yōu)化設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(17):117-124. Yuan Weijing, Wei Zhengying, Chu Huali, et al. Optimal design and experiment for divided-flow emitter in drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(17): 117-124. (in Chinese with English abstract)
Hydraulic performance experiment of lateral pipe jet-pulse tee
Wang Xinkun, Xiao Siqiang, Fan Erdong, Xu Shengrong
(212013,)
Previous studies show that pulse drip irrigation can work under low pressure, and has the characteristics of good anti-clogging performance and high irrigation uniformity. In this paper, the hydraulic performance experiment of the lateral pipe jet-pulse tee was studied. Furthermore, the design method of the lateral pipe jet-pulse tee was put forward, an experiment was carried out in the laboratory: 6 sets of different lengths of lateral pipe were installed at the 2 outlet ends of jet-pulse tee, the length of unilateral capillary laying was 30, 40, 50, 60, 70 and 80 m respectively, and the lateral pipe length linking with 2 outlet were same; in addition, the hydraulic characteristics of 6 groups of capillary tubes with different lengths were tested under 5 different inlet pressure conditions, which were 5, 6, 8, 10 and 12 m waterhead respectively in each group. Hydraulic characteristics were measured by a turbine flowmeter and a pressure gauge, including the inlet pressure, the inlet discharge, and the maximum and minimum of the outlet head. The head loss, the irrigation uniformity coefficient and deviation ratio of flow rate were calculated. And the irrigation uniformity coefficient was calculated using the Christiensen formula, the deviation rate of flow rate was the ratio of the difference between the maximum and the minimum flow of emitter and the average flow rate of the dripper. The results showed that continuous and strong pulsed water flow could be observed under 5-12 m inlet head in the lateral pipe, pulse frequency stabilized 203-278 Hz, head amplitude 2.27-4.73 m, irrigation uniformity coefficient 96.58%-98.33%, and deviation ratio of flow rate 12.50%-19.88%. The pulse frequency was much higher than the low frequency generator with a frequency of 100 Hz or less controlled by the electronic device. The nonlinear equation describing the pulsed hydraulic performance and head loss of jet-pulse tee was established, and the nonlinear equation of the pulse performance and the irrigation uniformity coefficient was established too. The fitting degrees of the equations were above 0.96. The calculated results were verified by experimental data, the relative error were less than 1.5%, indicating that the nonlinear equations could well reflect the variation of the hydraulic performance and the head loss and the irrigation uniformity coefficient. On the basis of this, the author put forward the steps of calculating the inlet pressure of jet-pulse tee. The uniform coefficients of irrigation, based on the head amplitude and pulse frequency, were 98.13% and 98%, respectively, the absolute error was only 0.13%. The inlet pressure of jet-pulse tee could be easily determined for crops with different water requirement, and the uniform coefficient of irrigation could be predicted. The results would promote the further development of drip irrigation system, and provided the calculation method and theoretical basis for the research of lateral pipe jet-pulse tee and drip irrigation pulse development platform. In the future research, it is also necessary to carry out field experiment of pulse drip irrigation system based on jet-pulse tee, observe the distribution of pressure, flow and pulse performance in pipeline, and put forward the hydraulic design method of pulse drip irrigation system and further evaluate irrigation uniformity and anti-clogging ability. In a word, this paper only studies the pulse capillary, the irrigation uniformity of pulse branch and pulse irrigation area will be studied deeply in the future, which not only extends the drip irrigation equipment, but also is an effective way to establish high-performance drip irrigation systems.
pressure; flow rate;irrigation; jet-pulse tee; hydraulic performance; drip irrigation
10.11975/j.issn.1002-6819.2017.12.015
S275.6
A
1002-6819(2017)-12-0116-06
2016-10-31
2017-04-10
國家自然科學(xué)基金(51579116);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金(CX(14)2100)
王新坤,男,陜西臨潼人,研究員,博士生導(dǎo)師,主要從事節(jié)水灌溉理論與新技術(shù)研究。鎮(zhèn)江 江蘇大學(xué)流體機械工程技術(shù)研究中心,212013。Email:xjwxk@126.com.
王新坤,肖思強,樊二東,徐勝榮. 滴灌毛管首部射流脈沖三通水力特性試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(12):116-121. doi:10.11975/j.issn.1002-6819.2017.12.015 http://www.tcsae.org
Wang Xinkun, Xiao Siqiang, Fan Erdong, Xu Shengrong. Hydraulic performance experiment of lateral pipe jet-pulse tee[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 116-121. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.015 http://www.tcsae.org