羅 紈,朱金城,賈忠華,周 萌,林嵩森,孫少江
(揚(yáng)州大學(xué)水利與能源動力工程學(xué)院,揚(yáng)州 225009)
排水溝塘分布特性及與農(nóng)田水力聯(lián)系對水質(zhì)凈化能力的影響
羅 紈,朱金城,賈忠華,周 萌,林嵩森,孫少江
(揚(yáng)州大學(xué)水利與能源動力工程學(xué)院,揚(yáng)州 225009)
濕地是一種能夠有效治理農(nóng)業(yè)非點(diǎn)源污染的生態(tài)設(shè)施;在一些無法建設(shè)人工濕地的地區(qū),現(xiàn)存的排水溝塘系統(tǒng)具有類似濕地的水質(zhì)凈化效果。為研究排水溝塘的分布以及其與農(nóng)田水力聯(lián)系對其水質(zhì)凈化能力的影響,該文以揚(yáng)州市江都區(qū)昭關(guān)灌區(qū)為例,首先通過實(shí)地調(diào)查,明確研究區(qū)不同形式溝塘的分布規(guī)律,確定溝塘與農(nóng)田逐級詳細(xì)水力聯(lián)系,然后建立理論分析模型,分別計(jì)算考慮與不考慮水力聯(lián)系2種情況下,溝塘的污染物去除能力。結(jié)果表明,考慮水力聯(lián)系后,污染物去除能力為不考慮水力聯(lián)系的 70%~84%;水質(zhì)凈化作用主要集中在一些面積較大的支溝和池塘。從農(nóng)田排水的角度考慮,尺寸較大溝塘?xí)霈F(xiàn)一定的水力冗余,但是從水質(zhì)改善的角度看,則有必要保留。研究區(qū)可通過較為簡單的工程措施來優(yōu)化水力聯(lián)系,提高其污染物的去除能力。
農(nóng)田;排水;濕地;溝塘;水力聯(lián)系;水質(zhì)凈化
羅 紈,朱金城,賈忠華,周 萌,林嵩森,孫少江. 排水溝塘分布特性及與農(nóng)田水力聯(lián)系對水質(zhì)凈化能力的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):161-167. doi:10.11975/j.issn.1002-6819.2017.10.021 http://www.tcsae.org
Luo Wan, Zhu Jincheng, Jia Zhonghua, Zhou Meng, Lin Songsen, Sun Shaojiang. Effect of distribution characteristic and field hydraulic connection of drainage ditches and ponds on water quality purification[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 161-167. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.10.021 http://www.tcsae.org
農(nóng)業(yè)排水中攜帶大量從農(nóng)田土壤中淋洗出來的化肥、農(nóng)藥等污染物,是農(nóng)業(yè)非點(diǎn)源污染的重要組成部分。因?yàn)檗r(nóng)業(yè)排水過程在時(shí)間上具有不確定性,空間具有分散性,所以對于農(nóng)業(yè)污染的控制與治理一直是世界范圍內(nèi)的難題。除了在污染物源頭以及輸出通道上進(jìn)行控制外,在排水末端利用濕地生態(tài)系統(tǒng)對污染物進(jìn)行降解是國際上較為推崇的一項(xiàng)生態(tài)措施[1-5]。濕地通過水力停留以及相應(yīng)的生物地球化學(xué)過程,對農(nóng)田排水中的污染物起到緩沖和降解作用。可用于農(nóng)業(yè)非點(diǎn)源污染治理的濕地生態(tài)系統(tǒng)形式多樣,包括農(nóng)田周圍的溝渠與池塘等滯留設(shè)施[6-8]。相關(guān)研究[9-10]顯示,各類濕地緩沖帶對于污染物都有一定的凈化效果,污染物去除率范圍從10%~100%不等。近年來,為了改善農(nóng)業(yè)生態(tài)環(huán)境,各地積極保護(hù)和建設(shè)可用于水質(zhì)凈化的濕地生態(tài)系統(tǒng)。由于濕地是非生產(chǎn)區(qū),一個(gè)關(guān)鍵問題是需要多大面積的濕地才能達(dá)到要求的水質(zhì)凈化效果。權(quán)威研究結(jié)果中推薦的濕地與農(nóng)田面積比最小為1~2%[11-12]、較大的為5%~7%[13-14]。一些實(shí)驗(yàn)室或小區(qū)示范研究則提出了范圍更大的面積比,如Asmussen等[15]采用的1:4,Mickelson等[16]提出的1:10到1:5;Arora等[17]提出的1:15到1:30。由于處理濕地需要占用農(nóng)田,在土地資源緊缺的國家和地區(qū)往往難以進(jìn)行推廣;而一種替代措施是利用那些具有濕地類似功能的設(shè)施,如處于排水通道上的溝塘水系[18-20]。這些地帶具備去除農(nóng)業(yè)污染物的功能和便利條件[9,21],可以發(fā)揮一定的水質(zhì)凈化作用。然而,溝塘的分布和狀態(tài)是由農(nóng)田排水需求決定的,與人工濕地系統(tǒng)相比,二者最大的差別在于:人工濕地系統(tǒng)可以將農(nóng)業(yè)排水集中導(dǎo)入處理區(qū),人為控制水力條件,根據(jù)需要處理的農(nóng)田排水量確定相應(yīng)的濕地面積,在某種程度上創(chuàng)造了“理想的水力條件”。而農(nóng)田周圍的溝塘系統(tǒng)除了農(nóng)溝等是經(jīng)過規(guī)劃設(shè)計(jì)修建的以外,一些分布隨機(jī)的池塘和溝道是因歷史或自然原因遺留下來的[22]。這些溝塘與農(nóng)田呈現(xiàn)交錯(cuò)分布的景觀,不僅存在農(nóng)田排水從多點(diǎn)進(jìn)入溝塘的現(xiàn)象,而且在不同的排水通道上,溝塘和農(nóng)田面積匹配也相差很大,即小面積農(nóng)田附近可能分布著較大的溝塘,或者相反。
已有研究結(jié)果表明,溝塘的空間分布可能影響他們對農(nóng)業(yè)污染物的去除效果[23]。一些針對溝渠系統(tǒng)生態(tài)環(huán)境功能的研究表明[24-27],農(nóng)業(yè)污染物在天然溝渠生態(tài)系統(tǒng)中被去除或稀釋的效果十分明顯,同時(shí)也受到很多環(huán)境因素影響[28-29]。但現(xiàn)有研究對于由于溝塘分布造成的復(fù)雜水力聯(lián)系關(guān)注不多,沒有考慮溝塘和農(nóng)田交錯(cuò)分布時(shí),不同田塊農(nóng)田排水,多點(diǎn)和多級進(jìn)入溝塘對溝塘水力和污染物負(fù)荷的影響;在確定水質(zhì)凈化效果時(shí),一般是以溝塘的總面積為凈化區(qū)域。這種簡化方法忽略了實(shí)際水力聯(lián)系,得到的計(jì)算結(jié)果可能存在較大的誤差,導(dǎo)致錯(cuò)誤評價(jià)農(nóng)業(yè)非點(diǎn)源污染。本文以江蘇揚(yáng)州沿運(yùn)灌區(qū)為例,通過實(shí)地調(diào)查和理論分析的手段,研究排水溝塘與農(nóng)田之間復(fù)雜的水力聯(lián)系對于農(nóng)業(yè)排水污染物凈化效果的影響,以期為優(yōu)化溝塘系統(tǒng)的污染物去除能力、改善農(nóng)業(yè)生態(tài)環(huán)境提供理論依據(jù)。
1.1 研究區(qū)概況
研究區(qū)位于江蘇省揚(yáng)州市江都區(qū)內(nèi)京杭大運(yùn)河?xùn)|側(cè)的昭關(guān)灌區(qū)(119°25¢E、32°22¢N),地勢平坦,土壤質(zhì)地黏重;年平均溫度14.9 ℃,降雨量約1 000 mm,生長季218 d左右;區(qū)內(nèi)普遍實(shí)行水稻與冬小麥輪作。研究區(qū)內(nèi)間距為100 m左右的排水溝將農(nóng)田分割成1 hm2方塊;水稻種植期間排水量較大,高峰流量大約0.5 cm/d。圖1顯示研究區(qū)的范圍以及農(nóng)田排水分區(qū)情況。白色邊框顯示的計(jì)算區(qū)是一個(gè)相對獨(dú)立的水文單元,農(nóng)田面積共計(jì)5.61 hm2,被排水農(nóng)溝劃分成大小相似的5塊;研究區(qū)的東、北兩側(cè)邊界為混凝土道路,東南到西北角邊界為灌區(qū)引水總渠。根據(jù)現(xiàn)場調(diào)查和測量結(jié)果,可將研究區(qū)的排水溝塘系統(tǒng)分為如下3類(如圖1所示)。
圖1 研究區(qū)排水分區(qū)示意圖以及溝塘的3種類型Fig.1 Layout of drainage zoning and 3 drainage ditches/ponds types in study area
1)排水農(nóng)溝:即人為建設(shè)的田間排水溝,作為接納農(nóng)田排水的第一場所,其分布相對規(guī)則,沿100 m′100 m的田塊周圍分布。這些農(nóng)溝一般得到較好的維護(hù),定期得到清淤和除草,以保證水流通暢。研究區(qū)田間排水溝的深度約50 cm,寬度約100 cm,稻田排水期水深一般在15 cm左右;
2)排水支溝:在研究區(qū)邊緣地帶分布了一些較大的天然溝道,其深度和寬度都遠(yuǎn)大于田間排水溝;一般寬度為8~10 m,水深維持在30~40 cm;因缺乏日常維護(hù),夏季大部分支溝內(nèi)都有生長茂密的植被。不過這些支溝與傳統(tǒng)意義上匯集農(nóng)溝排水的支溝不同,對排水系統(tǒng)只起到輔助作用,且分布十分不均;
3)池塘:研究區(qū)范圍內(nèi)分布有2個(gè)水面面積較大的池塘,其中大部分區(qū)域植被分布茂密,平均水深在50 cm左右。
這里有2點(diǎn)特殊情況需要說明:1)通常情況下,農(nóng)溝是接納排水的第一場所,但有些田塊一側(cè)沒有農(nóng)溝,這樣農(nóng)田會直接向接壤的支溝或池塘排水,此時(shí)按照農(nóng)田鄰近水體一側(cè)的長度分配排水量;2)位于右下方的部分農(nóng)田是后期填塘形成的,沒有建設(shè)排水農(nóng)溝,農(nóng)田產(chǎn)生的排水直接排入鄰近的支溝和池塘。
1.2 溝塘系統(tǒng)對農(nóng)田排水污染物凈化效果的評價(jià)方法
為了確定水力聯(lián)系對于溝塘系統(tǒng)去除排水污染物的作用,比較了如圖2所示考慮與不考慮水力聯(lián)系2種條件下,溝塘系統(tǒng)對污染物去除率的差別。
圖2 理想與實(shí)際水力情況下農(nóng)田與溝塘的關(guān)系Fig.2 Relationships between crop fields and ditches/ponds underideal and actual field hydraulic connections
1.2.1 將溝塘視為一整體的理想情況
不考慮溝塘之間的水力聯(lián)系,簡單地將所有的溝塘水面統(tǒng)計(jì)在一起,將其視為理想情況下,所用溝塘能夠同等、高效發(fā)揮作用時(shí),系統(tǒng)對污染物的最大可能去除率(簡稱為最大可能值)(圖2a和圖2b)。將所有溝塘區(qū)合并考慮后,污染物的水力停留時(shí)間(hydraulic retention time,HRT,d)可由下式計(jì)算:
式中V是溝塘的總體積,m3;Q為排水總流量,m3/d。溝塘水體中污染物濃度的變化可由水環(huán)境研究中普遍應(yīng)用的一級反應(yīng)方程[30]來描述:
式中c0和cT分別為進(jìn)入溝塘的排水中污染物初始濃度和出流濃度,mg/L;r為總體降解系數(shù),d–1。
如果排水期間沿途損失可以忽略,則通過溝塘系統(tǒng)后,污染物去除量(M,mg/d)為:
相應(yīng)的污染物最大可能削減率(ηT)為:
式中M0為排水入流中污染物總量,M0=Q·c0,mg/d。
在不考慮流量變化的情況下,ηT也可以表示為:
1.2.2 考慮溝塘系統(tǒng)水力聯(lián)系
與上述情況不同,在考慮溝塘系統(tǒng)詳細(xì)水力聯(lián)系時(shí),可跟蹤每一溝塘單元排水的入流和出流過程以及污染物濃度變化過程。這里利用圖2c和圖2d顯示一個(gè)簡單的例子,說明描述田間水力聯(lián)系的計(jì)算方法;其中,排水流動過程可概化為 1個(gè)水流網(wǎng)絡(luò),其水力要素包括水流路徑、入流和溝塘分布情況。圖 2c和圖 2d的網(wǎng)絡(luò)包括 2個(gè)路徑分支,1個(gè)支路只有1個(gè)2級,另外1個(gè)支路則有4級。農(nóng)田排水能夠根據(jù)實(shí)際情況從任何一點(diǎn)進(jìn)入系統(tǒng);而網(wǎng)絡(luò)中每個(gè)單元都具有相同的流量和水力特性,可以更為精確地計(jì)算污染物濃度變化。這里使用下標(biāo)`i’代表路徑分支,`j’代表支路中的單元,則通過某個(gè)單元的實(shí)際水力停留時(shí)間為:
式中vij和qij分別為所計(jì)算溝塘單元的水體體積(m3)和流量(m3/d);HRTi,j為通過該單元污染物的水力停留時(shí)間,d。
通過這個(gè)單元后,污染物的濃度變化為:
式中c0(i,j)為計(jì)算段水體入流中污染物濃度,mg/L。由于一個(gè)單元可能有來自上游單元的水流,因此其初始濃度需要根據(jù)所有上游來水以及直接來自農(nóng)田的排水計(jì)算得到:
式中qf為直接進(jìn)入該單元的農(nóng)田排水流量,m3/d;qk和ck分別為匯入該計(jì)算單元的上游溝塘流量(m3/d)和濃度(mg/L);N為上上游入流溝塘數(shù)量。
此時(shí)該單元的污染物去除量(mi,,j,mg/d)為
對于系統(tǒng)總體貢獻(xiàn)的去除率可表示為
在計(jì)算了所有的單元之后,考慮水力聯(lián)系條件下,整個(gè)系統(tǒng)對污染物的去除率ηH為
式中I和J分別為溝塘系統(tǒng)的支路及支路上的溝塘數(shù)量。
完成計(jì)算考慮和不考慮水力聯(lián)系 2種情況下溝塘系統(tǒng)對污染物的去除率以后,則可評價(jià)實(shí)際水力聯(lián)系對于污染物去除效果的影響。如果以不考慮水力聯(lián)系為理想情況,則定義實(shí)際情況的實(shí)現(xiàn)率ε為
同時(shí),計(jì)算出每個(gè)單元的污染物去除以后,可以統(tǒng)計(jì)沿任意排水支路的污染物去除率ηi
通過上述計(jì)算方法,就可以結(jié)合一條支路上農(nóng)田與溝塘分布,評價(jià)其對于整體污染物去除的貢獻(xiàn)。同理,也可以針對某一溝塘類型,統(tǒng)計(jì)其對于污染物去除的貢獻(xiàn),因此更有針對性地提出溝塘保護(hù)方案。在上面的計(jì)算式中,污染物去除效果與其在水體中的降解系數(shù)有關(guān)。也就是說,降解系數(shù)變化是影響污染物濃度變化的直接因素。在總結(jié)現(xiàn)有相關(guān)研究成果的基礎(chǔ)上,Vymazal等[9]指出,農(nóng)藥在排水系統(tǒng)中的降解系數(shù)變化范圍為 0.01~0.3 d–1, 氮、磷營養(yǎng)物為 0.06~0.15 d–1;Karpuzcu 等[31]得到的降解系數(shù)為0.03~0.15 d–1。因此,下文中采用降解系數(shù)為0.01~0.3 d–1,計(jì)算溝塘濕地系統(tǒng)對污染物的降解效果。
2.1 研究區(qū)溝塘分布及其與農(nóng)田的水力聯(lián)系
圖 3顯示研究區(qū)農(nóng)田以及溝塘的分布及水力聯(lián)系。表1列出所有溝塘的面積,總計(jì)0.80 hm2,占農(nóng)田面積的比例為 14.3%。溝塘共有 18個(gè)單元,包括 10條農(nóng)溝(0.09 hm2,占總面積12%)、6條較寬(8~10 m)的排水支溝(0.48 hm2,占總面積60%)、以及2 個(gè)池塘(0.23 hm2,占總面積的28%)。研究區(qū)排水溝塘面積相對較大,與農(nóng)田的面積比大于現(xiàn)有研究推薦的比例(小于10%)[10-16]。排水農(nóng)溝在田間基本均勻地分布,而排水支溝和池塘則集中在地塊邊緣。根據(jù)水稻種植期間測得的排水流量峰值0.5 cm/d計(jì)算,排水總流量為280 m3/d。根據(jù)調(diào)查,在排水高峰期間,農(nóng)溝水深為15 cm,支溝為35 cm,池塘為50 cm。圖3所示的溝塘網(wǎng)絡(luò)系統(tǒng)共有3個(gè)支路,但是沿各支路的農(nóng)田/溝塘分配十分不均勻。位于上部的支路1擁有占總面積58%的溝塘,與農(nóng)田面積的比例為79%;下部支路2擁有占總面積22%的溝塘,但與農(nóng)田面積的比例只有2%;而排入支路3的溝塘面積占總面積的20%,與農(nóng)田面積比例為19%。整個(gè)溝塘系統(tǒng)中,支路1流程較長,包括6個(gè)單元;其余2個(gè)支路的流程很短,都未經(jīng)過農(nóng)溝而直接排入池塘和支溝。
圖3 研究區(qū)溝塘水流方向及計(jì)算圖Fig.3 Ditches/ponds distribution and flow direction, and computation flow network
表1列出各級排水網(wǎng)絡(luò)的HRT。系統(tǒng)總的HRT為8.57 d,包括農(nóng)溝內(nèi)的0.50 d,排水支溝內(nèi)4.02 d,以及池塘內(nèi)的4.05 d。農(nóng)溝面積占總溝塘面積的12%,但因水深很小,其HRT貢獻(xiàn)只有6%。由此可見污染物在整個(gè)網(wǎng)絡(luò)系統(tǒng)的水力停留時(shí)間主要集中在排水支溝和池塘。
表1 研究區(qū)溝塘數(shù)量、面積以及相應(yīng)的水力停留時(shí)間Table 1 Number, area and hydraulic retention time (HRT) of ditches/ponds in study area
2.2 水力聯(lián)系對污染物去除能力的影響
圖4顯示考慮與不考慮水力聯(lián)系2種情況下,通過理論計(jì)算得到的溝塘系統(tǒng)中污染物的去除率以及實(shí)現(xiàn)率(ε,即與理想水力條件下的去除率比值)。考慮溝塘濕地與農(nóng)田的水力聯(lián)系后,水質(zhì)凈化效果只相當(dāng)于將其作為整體考慮的70%~84%。ε隨降解系數(shù)增加的變化趨勢為末端平坦的’U’形,其即在降解系數(shù)很小的情況下(0.01d-1)時(shí),ε最高達(dá)到了0.84,而后當(dāng)降解系數(shù)為0.08 d-1時(shí)降低到最小,ε僅為0.70;然后隨著降解系數(shù)增大到0.3 d-1時(shí),ε又緩慢增大到了0.8。相應(yīng)地,在計(jì)算條件下,實(shí)際情況的污染物的去除率也受到很大影響。在降解系數(shù)很小的情況下(0.01 d–1),考慮水力聯(lián)系得到的污染物去除率為8%,而理想情況為10%;當(dāng)降解系數(shù)增加到0.1 d–1時(shí),考慮水力聯(lián)系得到的污染物去除率為46%,理想最大值則為65%;當(dāng)降解系數(shù)增加到0.3 d–1時(shí),實(shí)際污染物的去除率僅為76%,而理想去除率高達(dá)96%。所以,在現(xiàn)有研究提出的降解系數(shù)范圍內(nèi),如果按照理想情況計(jì)算,污染物會得到顯著的削減;而考慮具體的水力聯(lián)系后,污染物去除率則會降低??梢姡欠窨紤]水力聯(lián)系,對于溝塘濕地系統(tǒng)去除污染物效果的評價(jià)具有十分顯著的影響。
圖4 考慮與不考慮水力聯(lián)系時(shí)溝塘對污染物去除率和實(shí)現(xiàn)率隨降解系數(shù)的變化Fig.4 Change in pollutant removal rates and realization factors of ditches/ponds with and without considering hydraulic connection with degradation rate
由于排水溝塘系統(tǒng)的分布不均以及與農(nóng)田的交錯(cuò)分布特性,造成其污染物去除能力受到一定程度的限制。雖然由于各種客觀和自然條件限制,這一結(jié)論很難得到直接驗(yàn)證,但是通過一些研究得到的污染物去除率的差異可以間接驗(yàn)證這種現(xiàn)象。如Burchell等[32]與彭世彰等[3]針對優(yōu)化后的溝塘系統(tǒng)的研究,得到的N和P的降解系數(shù)為0.3~0.4 d–1。而現(xiàn)有研究中,處在自然狀態(tài)下的溝塘系統(tǒng)的降解系數(shù)則普遍較低,如王沛芳等[33]對 3次降雨過程得到的降解系數(shù)最高僅為 0.16 d–1,最低值則為0.02 d–1,夏霆等[34]得到的N和P的降解系數(shù)只有0.06~0.12 d–1。其中彭世彰等[3]和王沛芳等[33]的研究都處在于本研究相同的地區(qū),因此,處在自然狀態(tài)下的溝塘的污染物去除率明顯低于優(yōu)化后,說明水力聯(lián)系改善對提高溝塘污染物降解能力的重要性。
表 2列出了研究區(qū)溝塘系統(tǒng)不同支路對于污染物去除效果的相對貢獻(xiàn)。在降解系數(shù)很低的情況下,各支路貢獻(xiàn)率幾乎與溝塘面積分布成正比;而當(dāng)降解系數(shù)增加時(shí),溝塘面積比最大的支路 3的相對貢獻(xiàn)率卻出現(xiàn)了降低的現(xiàn)象。例如,當(dāng)降解系數(shù)為0.01 d–1時(shí),擁有58%溝塘面積的支路1對污染物去除的貢獻(xiàn)率為58%,擁有22%溝塘面積的支路2對污染物去除的貢獻(xiàn)率為22%;擁有20%溝塘面積的支路3對污染物去除的貢獻(xiàn)率為19%;而當(dāng)降解系數(shù)增加到0.1 d–1時(shí),支路1的貢獻(xiàn)達(dá)到了69%,支路2維持在27%,而支路3卻降低到5%。出現(xiàn)這種情況的主要原因是支路 3溝塘面積相對其他支路較大,當(dāng)降解系數(shù)增大時(shí),水體中污染物很快削減到很低水平,其貢獻(xiàn)率也就相應(yīng)地降低;而支路1、2中的污染物濃度則持續(xù)降低,其相對貢獻(xiàn)率就隨之提高。換句話說,在污染物降解系數(shù)很低,污染物整體削減水平不高的情況下,各個(gè)排水支路的貢獻(xiàn)是溝塘控制的,而當(dāng)污染物削減水平提高,一些支路對污染物的削減則受制于污染物的降解特性。如果將同處于研究區(qū)下游的支路2和支路3放在一起考慮,二者共擁有將近一半的溝塘面積(42%),而其控制的農(nóng)田面積只有 21%,在大多數(shù)情況下(降解系數(shù)大于0.05 d–1),對系統(tǒng)污染物去除的貢獻(xiàn)率之和僅為30%左右。因此,從污染物凈化效果上考慮,研究區(qū)農(nóng)田面積和溝塘面積匹配上極不平衡,存在很大的優(yōu)化空間。
表2 不同排水支路及溝塘類型對污染物去除的相對貢獻(xiàn)Table 2 Relative contributions of different drainage branches and ditch/pond types to pollutant removals %
為了評價(jià)不同溝塘類型對污染物的降解作用,表 2還列出了研究區(qū)溝塘系統(tǒng)不同級別或類型對于系統(tǒng)污染物總?cè)コЧ呢暙I(xiàn)率。大約 2/3~3/4的污染物去除發(fā)生在排水支溝,1/5在池塘內(nèi);而農(nóng)溝對污染物去除的貢獻(xiàn)率很小,只有6%~15%。造成農(nóng)溝對污染物去除效果差的主要因素是溝內(nèi)的水深較小,觀測期間僅為15 cm。提高農(nóng)溝對污染物的凈化效果,可采取水位調(diào)控的措施來增加水深,強(qiáng)化對污染物的降解作用[35-36]。表 2的結(jié)果還顯示,農(nóng)溝的污染物去除貢獻(xiàn)有隨著降解系數(shù)增加而提高的趨勢,這主要是由于農(nóng)溝直接接納了農(nóng)田排水,會維持較高的去除效率;而一些下游溝塘?xí)S著入流的濃度降低出現(xiàn)絕對去除量降低的現(xiàn)象,即上文提到的污染物限制作用。
研究區(qū)排水溝塘面積相對較大,與農(nóng)田的面積比大于現(xiàn)有研究的推薦比例(小于10%);但這些溝塘對污染物的去除能力受到水力條件的限制,本文通過比較分析發(fā)現(xiàn):1)溝塘濕地與農(nóng)田的水力聯(lián)系對于污染物的去除能力影響顯著,考慮溝塘濕地與農(nóng)田的水力聯(lián)系后,水質(zhì)凈化效果只相當(dāng)于將其作為整體考慮的70%~84%;2)大約2/3~3/4的污染物去除發(fā)生在排水支溝,1/5在池塘內(nèi);而農(nóng)溝對污染物去除的貢獻(xiàn)率很小,只有6%~15%左右??梢姡娣e較大的排水溝和池塘是農(nóng)田污染物降解的主要場所,這些區(qū)域的水質(zhì)凈化功能是狹長的排水農(nóng)溝難以取代的。單純從排水功能上看,這些較大的溝塘存在水力上的冗余,但是從其水質(zhì)功能考慮,保持其現(xiàn)有的形態(tài)是必要的。
研究區(qū)的地形十分平坦,改變溝渠水流方向的困難不大。在不增加溝塘面積的前提下,可通過較簡單的工程措施,改善其水力條件,更好地匹配農(nóng)田和溝塘面積。此外,針對目前農(nóng)溝水質(zhì)凈化作用較差的情況,可以通過一些田間水管理措施(如水位調(diào)控)來增加溝道水深,或者適當(dāng)加大排水溝寬度,增加其水面面積,提高其水質(zhì)改善功能。
本文計(jì)算中采用了一級反應(yīng)方程來描述農(nóng)田排水中污染物的降解過程;這雖然是一種簡化處理,但是對于污染物濃度相對較低的農(nóng)業(yè)污染,可以很好地描述污染物的動態(tài)變化。另外,本文沒有涉及溝塘系統(tǒng)的其他功能;而作為平原河網(wǎng)地區(qū)景觀的一個(gè)重要環(huán)節(jié),溝塘系統(tǒng)的分布及形態(tài)對其生態(tài)功能的影響也值得進(jìn)一步研究。
[1]Vollee R, Sylvie D, David B. Water resilience time and pesticide removal in pilot-scale wetlands[J]. Ecol Eng, 2015,85(12): 76-84.
[2]彭世彰,楊士紅,徐俊增. 控制灌溉對稻田CH4和N2O綜合排放及溫室效應(yīng)的影響[J]. 水科學(xué)進(jìn)展,2010a,21(2):235-240.Peng Shizhang, Yang Shihong, Xu Junzheng. The effect of controlled irrigation on releasing of CH4and N2O and from rice field and greenhouse effect[J]. Adva of Wat Sci, 2010a,21(2): 235-240. (in Chinese with English abstract)
[3]彭世彰,高煥芝,張正良. 灌區(qū)溝渠濕地對稻田排水中氮磷的原位削減效果及機(jī)理研究[J]. 水利學(xué)報(bào),2010,41(4):406-411.Peng Shizhang, Gao Huanzhi, Zhang Zhengliang. Removal and mechanism of N and P from rice field drainage water by ditch wetlands[J]. J Hydr Engi, 2010, 41(4): 406-411. (in Chinese with English abstract)
[4]Gregoire C, Elsaesser D, Huguenot D, et al. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems[J]. EnviChem Let, 2009, 7(3): 205-231.
[5]Bromilow R, De Carvalho R F, Evans A A. Behavior of pesticides in sediment/water systems in outdoor mesoscosms[J]. J Envi Sci Heal Bull, 2006(1), 41: 1-6.
[6]Clarke S J. Conserving freshwater biodiversity: The value,status and management of high quality ditch systems[J]. J Nat Cons, 2015, 24(4): 93-100.
[7]Fremier A, Kiparsky K, Gmur M, et al. A riparian conservation network for ecological resilience[J]. Biol Cons, 2015, 191(11):29-37.
[8]Katayama N, Baba G, KusumotoY, et al. A review of postwar changes in rice farming and biodiversity in Japan[J].AgriSyst, 2015, 132(1): 73-84.
[9]Vymazal J, Brezinova T. The use of constructed wetlands for removal of pesticide from agricultural runoff and drainage: A review[J]. Envi Inter, 2015, 75(2): 11-20.
[10]Kay P, Edwards A, Foulger M. A review of the efficacy of contemporary agricultural stewardship measures for ameliorating water pollution problems of key concern to the UK water industry[J]. Agri Syst, 2009, 99(2/3): 67-75.
[11]Moreno-Mateos D, Mander ü, Comin F A, et al. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments[J]. J Envi Qual, 2008, 37:2170-2180.
[12]Mitsch W J, Day J W, Gilliam W, et al. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: strategies to counter a persistent ecological problem[J]. BioScience, 2001, 51(11/12): 373–388.
[13]Verhoeven J T A, Arheimer B, Yin C, et al. Regional and global concerns overwetlands and water quality[J]. Trends Ecol Evol, 2006, 21(2): 96-103.
[14]Fink D, Mitsch W. Seasonal and storm event nutrient removal by a created wetland in an agricultural watershed[J].EcolEng, 2004, 23(4/5): 313–325.
[15]Asmussen L E, White A, Hauser E, et al. Reduction of 2,4–D load in surface runoff down a grassed waterway[J]. J Env Qual, 1977, 6(2): 159–162.
[16]Mickelson S K, Baker J L, Ahmed S I. Vegetative Filter Strips for Reducing Atrazine and Sediment RunoffTransport[J].J Soil Wat Cons, 2003, 58(6): 359-367.
[17]Arora K, Mickelson S K, Baker J L. Effectiveness of vegetative buffer strips in reducing pesticides transport in simulated runoff[J]. Trans ASAE, 2003, 46(6): 2155-2162.
[18]Jia Z, Luo W, Xie J, et al. Salinity dynamics of wetland ditches receiving drainage from irrigated agricultural land in arid and semi-arid regions[J]. Agri Wat Man, 2011, 100(1):9-17.
[19]Wu J, Cheng X, Xiao H, et al. Agricultural landscape change in China’s Yangtze Delta, 1942-2002: A case study[J]. Agri Ecos Envi, 2009, 129(4): 523-533.
[20]Kr?ger R, Moore MT, Locke M A, et al. Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches[J]. Agri Wat Man, 2009,96(s1): 1175-1179.
[21]Shore M, Jordan P, Mellander P, et al. An agricultural drainage channel classification system for phosphorus management[J]. Agri Ecos Envir, 2015, 199(1): 207-215.
[22]Jia Z,Wu Z,Luo W, et al. The impact of improving irrigation efficiency on wetland distribution in an agricultural landscape in the upper reaches of the Yellow River in China[J]. Agri Wat Mana, 2013, 121(4): 54-61.
[23]Campo-Bescós M, Mu?oz-Carpena R, Kiker G, et al. Watering or buffering? Runoff and sediment pollution control from furrow irrigated fields in arid environments[J]. Agri Ecos Envi, 2015, 205(7): 90-101.
[24]李山,羅紈,賈忠華,等. 反滲條件下排水溝與農(nóng)田水鹽交換關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào). 2015,31(2):94-101.Li Shan, Luo Wan, Jia Zhonghua, et al. The exchange of water and salts between drainage ditches and crop field under reversed infiltration conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE). 2015, 31(2): 94-101. (in Chinese with English abstract)
[25]潘延鑫,羅紈,賈忠華,等. 鹽堿地排水溝蓄水后底泥與水體鹽分交換試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(2):81-87.Pan Yanxin, Luo Wan, Jia Zhonghua, et al. Experiment on salt exchange between sediments and ponded water in drainage ditches[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(2): 81-87. (in Chinese with English abstract)
[26]潘延鑫,羅紈,賈忠華,等. 鹽堿地排水溝水體鹽分變化規(guī)律[J]. 排灌機(jī)械工程學(xué)報(bào),2013,31(9):811-815.Pan Yanxin, Luo Wan, Jia Zhonghua, et al. Water salinity dynamics of drainage ditches from salt-laden crop fields[J]. J Drain Irri Mach, 2013, 31(9): 811-815. (in Chinese with English abstract)
[27]姜翠玲,范曉秋,章亦兵. 非點(diǎn)源污染物在溝渠濕地中的累積和植物吸收凈化[J]. 應(yīng)用生態(tài)學(xué)報(bào),2005,16(7):1351-1354.Jiang Cuiling, Fan Xiaoqiu, Zhang Yibing. The cumulation,dsorption and purification of non-point source pollutants in ditch wetlands[J]. Appl Ecol, 2005, 16(7): 1351-1354. (in Chinese with English abstract)
[28]Mahali S, Spanoghe P. Mitigation of two insecticides by wetlands plants: Feasibility study for the treatment of agricultural runoff in Suriname (South America)[J]. Wat Air Soil Poll, 2014, 225(s1): 1171.
[29]王雅麗. 龔道新. 6種常見水生植物對農(nóng)田退水中的殘留苯醚甲環(huán)銼的去除效果研究[J]. 農(nóng)藥管理與科學(xué),2011,322(2):38-42.Wang Yali, Gong Xindao. The removal of residual difenoconazole in agricultural return flow by 6 common aquatic plants[J]. Agri Pest Mana Sci, 2011, 322(2): 38-42.(in Chinese with English abstract)
[30]Kadlec R, Knight R. Treatment Wetlands[M]. New York:Lewis Publishers, CRC Press, 1996.
[31]Karpuzcu M, Stringfellow W. Kinetics of nitrate removal in wetlands receiving agricultural drainage[J]. Ecol Eng, 2012,42(5): 295–303.
[32]Burchell M, Skaggs R, Evans R, et al. Substrate organic matter to improve nitrate removal in surface-flow constructed wetlands[J]. J Envir Qual, 2007, 36(1): 194–207.
[33]王沛芳,王超,徐海波. 自然水塘濕地系統(tǒng)對農(nóng)業(yè)非點(diǎn)源氮的凈化截留效應(yīng)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2006,25(3):782-785.Wang Peifang, Wang Chao, Xu Haibo. Study on nitrogen removal by natural pond wetland system from agricultural non-point sources[J]. J Agri Envi Sci, 2006, 25(3): 782-785.(in Chinese with English abstract)
[34]夏霆,郭巖. 自然溝塘系統(tǒng)對有機(jī)農(nóng)業(yè)面源污染的削減效果研究[J]. 廣東農(nóng)業(yè)科學(xué),2010,12(15):155-157.Xia Ting, Guo Yan. Study on the effect of natural ditch/pond system on the reduction of non-point source pollution from organic agriculture[J]. Guang Dong Agri Sci, 2010, 12(15):155-157. (in Chinese with English abstract)
[35]Luo W, Jia Z, Fang S, et al. Outflow reduction and salt and nitrogen dynamics at controlled drainage in the YinNan Irrigation District, China[J]. Agri Wat Man, 2008, 95(7): 809-816.
[36]Skaggs R W, Breve M A, Gilliam J W. Predicting effects of water table management on loss of nitrogen from poorly drained soils[J]. Eur J Agron, 1995, 4(4): 441-451.
Effect of distribution characteristic and field hydraulic connection of drainage ditches and ponds on water quality purification
Luo Wan, Zhu Jincheng, Jia Zhonghua, Zhou Meng, Lin Songsen, Sun Shaojiang
(College of Water Resources and Hydro- Power Engineering, Yangzhou University, Yangzhou225009,China)
Wetlands have been recognized as a functional ecological measure that can reduce agricultural non-point source pollution economically and effectively. Water quality benefit can be achieved by utilizing drainage ditches and ponds that possess certain wetland functions. Different from the constructed wetlands that are designed with optimum hydraulic conditions, the primary functions of drainage ditches and ponds are to provide timely drainage from crop fields for high crop yields. Thus, ditches and ponds are often distributed in a mixed pattern with crop fields, or randomly located within farmlands.Such distribution produces far more complicated hydraulic conditions than the artificial constructed wetland systems, making it difficult to assess the actual pollution reduction capacity of these ditches and ponds. This study was to investigate the effect of distribution and complicated hydraulic connections of drainage ditches and ponds on water quality improvement. The study area was located in Zhaoguan Irrigation Area along the Grand Canal in Yangzhou, China (119°25¢E, 32°22¢N). In the area,drainage ditches with 100-m interval were divided into squares in 1 hm2. During the growing season of rice, the drainage flow had a peak about 0.5 cm/d. The area was 5.61 hm2in total. By investigation, the study area had 3 types of drainage ditch/pond:field ditch, delivery ditch and pond. The pollutant removal rate of ditch/pond system was calculated under 2 conditions. One was ideal hydraulic connection. The drainage was assumed to be concentrated or the crop fields had the area matched with ditches and ponds. In the other condition, the complicated hydraulic connections among every ditch and pond unit were considered as mixed distribution of fields and ditch/pond. The flow was generalized in the latter condition. The detailed flow relationship of drainage ditches and ponds was generalized. Methods for calculating hydraulic retention time and pollutant removal rate under the 2 conditions were proposed. The realization rate was the ratio of the pollutant removal rate by considering hydraulic connections to that with ideal hydraulic connection. The results showed that the total ditch/pond area in this area was 0.80 hm2, which was 14.3% of the agricultural field area. The ditch/pond included 18 units: 10 field ditch, 6 delivery ditch and 2 ponds. The field ditch was evenly distributed while the pond and the delivery ditch were around the edge of the fields. A total of 3 branches were in the ditches/ponds system and their distribution was not even. The branch 1 located above the field had 58% ditch/pond area, and the branch 2 accounted for 22% ditch/pond area, and the branch 3 was 20%ditch/pond area. The ratio of ditch/pond to field area was 79% for branch 1, 2% for branch 2 and 19% for branch 3. The branch 1 had longer path and the others had shorter path. The total pollutant retention time was 8.57 d in the system including 0.50 d in the field ditch, 4.02 d in the delivery ditch and 4.05 d in the pond. The contribution of the field ditch to the total retention time was only 6%. As the degradation rate of pollutant increased from 0.01 to 0.3 d-1, the realization rate decreased from 0.84 to 0.70. The pollutant removal rate considering the hydraulic connections was 70%-84% of that with ideal hydraulic connection. It indicated that the current simplified model for evaluating ditch wetlands may overestimate pollutant retention capacity. The contribution of drainage branches to pollutant removal was different. When the pollutant degradation rate was low, the contribution was nearly positively correlated with ditch/pond area distribution. For the pollutant degradation rate 0.01 d-1, the branch 1 with 58% ditch/pond area contributed to 58% of the pollutant removal and the branch 2 with 22% ditch/pond area contributed to 22% of the pollutant removal. About 2/3-3/4 of the pollutant was removed in the delivery ditch and 1/5 in pond. The field ditch had the small contribution of 6%-15%. In sum, the ditch and pond with a large area were the main area for pollutant degradation. Findings from this research may provide support for conserving and improving ecological functions of ditches and ponds in agricultural landscape.
fields; drainage; wetlands; ditches and ponds; hydraulic connection; water quality
10.11975/j.issn.1002-6819.2017.10.021
TE991.2;S276
A
1002-6819(2017)-10-0161-07
2016-09-26
2017-04-10
國家自然科學(xué)基金資助項(xiàng)目(51279159);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(PAPD);江蘇省水利科技項(xiàng)目(2016049)
羅 紈,女,新疆霍城人,博士,教授,從事水資源與農(nóng)業(yè)與環(huán)境保護(hù)研究。揚(yáng)州 揚(yáng)州大學(xué)水利與能源動力工程學(xué)院,225009。
Email:luowan@yzu.edu.cn