肖宏儒,趙 映,丁文芹,梅 松,韓 余,張 園,閆懷江,宋志禹
(1. 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014;2. 徐州農(nóng)機(jī)技術(shù)推廣站,徐州 221006)
1KS60-35X型果園雙螺旋開溝施肥機(jī)刀軸設(shè)計與試驗
肖宏儒1,趙 映1,丁文芹1,梅 松1,韓 余1,張 園2,閆懷江2,宋志禹1
(1. 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014;2. 徐州農(nóng)機(jī)技術(shù)推廣站,徐州 221006)
針對目前果園開溝施肥存在耕作阻力大、功耗過高、攪肥不均勻,該文研制了1KS60-35X果園型雙螺旋施肥機(jī),采用前軸破土、后軸攪土施肥設(shè)計方案,并建立作業(yè)過程破土與攪土刀軸阻力矩方程,分析了螺旋葉片參數(shù)對耕作阻力影響,進(jìn)一步研究了螺旋刃線成型參數(shù)方程,通過經(jīng)驗設(shè)計與理論設(shè)計計算確定破土與攪土施肥軸螺旋葉片參數(shù),并運(yùn)用PROE軟件建立刀軸與整機(jī)三維參數(shù)化數(shù)字模型,并完成樣機(jī)試制工作。樣機(jī)的開溝、施肥田間試驗結(jié)果表明,該機(jī)開溝溝深472~510 mm,平均溝深496 mm,平均推土高度120 mm,開溝深度穩(wěn)定系數(shù)98.2%,開溝寬度一致性99.2%;土壤團(tuán)粒直徑多在3~6 mm之間,全土層與地表100 mm土層團(tuán)粒直徑范圍5~40 mm,取樣結(jié)果全土層與地表100 mm土層土壤團(tuán)粒平均直徑分別為6.75與6.86 mm,碎土合格率分別為98.7%與97.9%;顆粒肥料堆積現(xiàn)象較少,重心距離5~20 mm之間,重心水平與垂直平均距離分別15.53與16.24 mm,且各土層段施肥性能較穩(wěn)定,滿足果園施肥農(nóng)藝要求,可為果園、桑園、茶園等開溝施肥作業(yè)提供參考。
農(nóng)業(yè)機(jī)械;果園;試驗;雙螺旋;開溝施肥;設(shè)計
肖宏儒,趙 映,丁文芹,梅 松,韓 余,張 園,閆懷江,宋志禹. 1KS60-35X型果園雙螺旋開溝施肥機(jī)刀軸設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(10):32-39. doi:10.11975/j.issn.1002-6819.2017.10.005 http://www.tcsae.org
Xiao Hongru, Zhao Ying, Ding Wenqin, Mei Song, Han Yu, Zhang Yuan, Yan Huaijiang, Song Zhiyu. Design and experiment on blade shaft of 1KS60-35X type orchard double-helix trenching and fertilization machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 32-39. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.10.005 http://www.tcsae.org
果園的種植和管理過程中,開深溝施底肥是一個很重要的過程,對以后果園的產(chǎn)量、甜度、品相等都有著至關(guān)重要的作用[1]。果園開溝施肥一般是用開溝機(jī)在果園內(nèi)順著果樹行向,每行開一條寬30 cm和深40~50 cm左右的長方形溝,然后人工進(jìn)行施肥、覆土[2]。果園開溝施肥主要有鏵式犁開溝方式;鏈傳動開溝方式,經(jīng)改進(jìn)后有單鏈輪、雙鏈輪、多鏈輪等系列產(chǎn)品;旋轉(zhuǎn)開溝機(jī),經(jīng)改進(jìn)后的有單層切削旋耕、雙層切削旋耕開溝方式;圓盤開溝方式,經(jīng)改進(jìn)后的有單圓盤或多圓盤開溝作業(yè),或?qū)⑿栋惭b圓盤上進(jìn)行開溝作業(yè);螺旋開溝方式,經(jīng)改進(jìn)后有單螺旋或多層螺旋等方式進(jìn)行開溝作業(yè)。相比較而言,螺旋開溝方式具有節(jié)能省功,開溝、施肥聯(lián)合作業(yè),攪肥均勻等優(yōu)勢[3]。
針對果園施肥要求,國內(nèi)學(xué)者也開始了果園開溝、施肥機(jī)具的相關(guān)研究,研制機(jī)具結(jié)構(gòu)多為單螺旋開溝,機(jī)具耕作功耗、碎土效果、攪肥均勻性與雙螺旋開溝機(jī)具存在一定差距。如馬愛麗等[4]設(shè)計研究了一種雙變距柱螺旋式果園開溝機(jī),功率僅8.8 kW,開溝寬度 300 mm,開溝深度達(dá)100~400 mm,雖然開出溝形整齊,但機(jī)具僅能開溝作業(yè)。葉強(qiáng)等[5]設(shè)計制造了一種驅(qū)動型葡萄園小型開溝機(jī),該機(jī)為旋耕刀以反轉(zhuǎn)方式進(jìn)行開溝工作。性能試驗結(jié)果表明:該開溝機(jī) 2 次作業(yè)開出的溝深可達(dá)500 mm 左右,溝寬超過200 mm??到鞯萚6]為探明土壤條件和工作參數(shù)對圓盤式開溝機(jī)作業(yè)功耗的影響規(guī)律,采用光滑離子流體動力學(xué)方法構(gòu)建了土壤-開溝刀盤的有限元模型,利用 ANSYS軟件中的顯示動力模塊LS-DYNA對開溝刀盤土壤切削過程進(jìn)行仿真分析,得出開溝刀盤對土壤切削過程功耗的變化規(guī)律。上述學(xué)者對圓盤開溝功耗過程,單螺旋開溝、雙旋耕開溝機(jī)具整機(jī)設(shè)計與試驗方面取得較大技術(shù)突破。但針對雙螺旋開溝切削力學(xué)模型與螺旋參數(shù)影響規(guī)律及整機(jī)性能系統(tǒng)試驗暫無報道。
因此,為提升雙螺旋開溝性能[7-11],有必要進(jìn)行螺旋葉片對土壤銑削力學(xué)進(jìn)行分析,設(shè)計雙螺旋開溝、施肥機(jī)具并系統(tǒng)進(jìn)行整機(jī)性能試驗。
1.1 工作原理
果園施肥傳統(tǒng)方案一般是開溝、倒肥、覆土作業(yè)順序,主要存在:1)不能聯(lián)合作業(yè),效率低下;2)溝底層肥料堆積,不利于果樹根系吸收;3)開溝方式一般以圓盤開溝方式為主,與雙螺旋方式比較所需耕作阻力矩較大,需配置較大段位功率拖拉機(jī),不利于低矮密植果園田間行走。1KS60-35X果園型雙螺旋施肥機(jī)采用雙軸設(shè)計方案,該方案可實現(xiàn)破土刀軸1與攪土刀軸3參數(shù)最優(yōu)化設(shè)計,節(jié)省耕作阻力,耕作原理如圖1a所示。破土刀軸對板結(jié)土壤進(jìn)行銑銷破土,攪土刀軸對破碎后土壤團(tuán)粒進(jìn)行高速銑銷,攪土刀軸中間采用通孔設(shè)計,攪土、施肥聯(lián)合作業(yè),保證土壤施肥均勻性,利于果樹根系對肥料吸收。
圖1 1KS60-35X型果園雙螺旋開溝施肥機(jī)Fig.1 1KS60-35X type orchard double-helix trenching and fertilization machine
1.2 樣機(jī)結(jié)構(gòu)
1KS60-35X果園雙螺旋開溝機(jī)主要由破土刀軸1、攪土刀軸 3、機(jī)架 7、減速器 8、錐齒輪組合 9、肥箱總成10、齒輪組合11、箱體總成12等組成[12],如圖1b所示。該機(jī)具主要針對行距3.5 m標(biāo)準(zhǔn)化低矮密植果園設(shè)計,能適宜寬30 cm 和深 40~50 cm長方形溝,開溝、施肥、攪肥聯(lián)合作業(yè),能滿足化肥、復(fù)合肥、粉碎后有機(jī)肥等顆粒類肥料,整機(jī)螺旋破土刀組合、螺旋攪土刀組合、施肥裝置總成采用可拆式機(jī)構(gòu),一機(jī)多配,配套刀具能適宜不同田塊、不同溝寬、耕深要求田間作業(yè)。
機(jī)具采用三點(diǎn)懸掛結(jié)構(gòu)配套 29.4 kW 以上輪式帶爬行檔拖拉機(jī),作業(yè)時拖拉機(jī)萬向節(jié)通過減速器總成減速后傳遞給輸出錐齒輪,輸出錐齒輪通過錐齒輪將動力輸送至破土刀軸,螺旋破土刀組合、螺旋攪土刀組合刀軸可拆換,平行安裝于箱體總成,刀軸之間通過漸開線齒輪組合進(jìn)行動力傳送,設(shè)計過程中破土刀軸與攪土刀軸旋向可以相同也可以相反,二者轉(zhuǎn)速可以調(diào)節(jié)。轉(zhuǎn)向時,停止萬向節(jié)輸出,液壓提升油缸將機(jī)具整體提起后,借助倒檔與驅(qū)動輪轉(zhuǎn)向、調(diào)頭,機(jī)具長時間不用,螺旋破土刀軸與螺旋攪土刀軸可拆卸。
1.3 主要技術(shù)參數(shù)
現(xiàn)代標(biāo)準(zhǔn)化低矮密植果園是栽培發(fā)展趨勢[13-14],主要是2000年以后建立起立的現(xiàn)代果園,以蘋果為例,行距3.5 m,株距1.5 m,在果樹栽培注重樹冠形狀控制,掛果后樹冠形狀基本統(tǒng)一,樹冠高度3 m左右,掛果層6~7層,基本不會出現(xiàn)樹冠郁層,株間枝組交叉現(xiàn)象。針對果園低矮種植農(nóng)藝特點(diǎn),結(jié)合相關(guān)行業(yè)標(biāo)準(zhǔn),設(shè)計確定的開溝機(jī)主要技術(shù)參數(shù)如表1所示。
表1 1KS60-35X型果園雙螺旋開溝施肥機(jī)主要技術(shù)參數(shù)Table 1 1KS60-35X type orchard double-helix trenching and fertilization machine main technical parameters
2.1 雙軸螺旋開溝力學(xué)模型建立
雙軸螺旋開溝與單軸螺旋開溝方式基本相同如圖 1a所示,破土刀軸旋轉(zhuǎn)對土壤進(jìn)行挖掘破土,攪土刀軸進(jìn)行施肥攪土。機(jī)具前進(jìn)過程中破土刀軸螺旋刃面對土壤進(jìn)行擠壓或剪切破土,破碎土壤團(tuán)粒經(jīng)刀軸螺旋絞龍旋轉(zhuǎn)輸送至攪土刀軸,攪土刀軸采用通孔設(shè)計,顆粒肥經(jīng)通孔排出,攪土刀軸對土壤、顆粒肥進(jìn)行高速攪土拌肥。
工作過程中破土刀軸主要阻力為土壤破土阻力與攪土阻力;攪土刀軸主要阻力為攪土阻力。取螺旋刃面微段ds(見圖2),螺旋角(螺旋刃面與刀軸空間夾角)為θ(°),破土過程土塊作用于螺旋刃面微ds的力分別為F1(N)和F2(N)。
圖2 刃面微分段與刃面剖切圖Fig.2 Blade differential section and blade cutting figure
機(jī)具前進(jìn)過程中在螺旋刃面正前方的土壤由于受螺旋面的擠壓、旋轉(zhuǎn)剪切作用而發(fā)生破壞,忽略刃面與土壤間的摩擦對土壤應(yīng)力狀態(tài)的影響,則最大主應(yīng)力σ1(Pa)可通過應(yīng)力極限圓求出[15]。
式中C為土壤內(nèi)聚力系數(shù),N/m2; 為土壤內(nèi)摩擦角,(°)。作用于螺旋微分段ds上的法向力F1與土壤與刀具螺旋刃面微分段的摩擦力F2可表示為:
式中 為土壤與刀具金屬材料表面摩擦系數(shù),t為刀具每轉(zhuǎn)平均進(jìn)刀量(m)。
F1和F2對破土刀軸阻力矩dM可表示為
式中R為螺旋葉片外徑,或稱平均半徑(m)。
于是對dM積分可得破土刀軸的挖掘阻力矩M,由于螺旋刃面僅在半周范圍內(nèi)進(jìn)行土壤剪切、擠壓,所以開溝機(jī)實際承受的挖土阻力矩M1可表示為
破土后,攪土刀軸及破土刀軸后面半周范圍內(nèi)對破碎土壤進(jìn)行攪土、碎土,微小土塊的運(yùn)動與受力關(guān)系如圖3所示。
圖3 攪土過程微小土塊受力分析Fig.3 Force analysis of tiny clump during soil stirring process
則土壤攪土阻力dF為土塊克服周圍土壁摩擦后dF3阻力及上升土塊與刃面摩擦阻力dF4之和,可表示為
式中μ0為微小土塊與周圍土壁摩擦系數(shù),vt為土塊沿刃線切向速度,m/s。
式中g(shù)為重力加速度,m/s2。
則破土刀軸后面半周范圍內(nèi)阻力矩dM2與M2可表示為
根據(jù)破土刀軸后面半周范圍內(nèi)阻力矩分析過程,攪土刀軸與上述過程相同,攪土刀軸阻力矩dM3與M3可表示為
式中Fg為攪土刀軸阻力,N;vt1為土塊垂直刀軸分速度,m/s;1q¢為攪土刀軸螺旋角,(°);R1為攪土刀軸半徑,m;δ1為微小土塊摩擦角度,(°);μ1為微小土塊與周圍土壁摩擦系數(shù)。
則雙軸螺旋開溝機(jī)刀具阻力矩MZ可表示為
2.2 雙軸螺旋開溝減阻因素分析
影響土壤開溝阻力,主要與土壤硬實度、開溝深度、開溝寬度、行走速度等因素相關(guān)[16-17]。雙螺旋開溝過程中刀軸阻力矩MZ主要由挖土阻力矩M1、破土刀軸后面半周范圍內(nèi)阻力矩M2、攪土刀軸阻力矩M33部分組成。機(jī)具開溝作業(yè)過程中破土阻力為工作主要阻力,雙軸螺旋開溝機(jī)與傳統(tǒng)單軸螺旋開溝機(jī)相比較,單軸螺旋開溝機(jī)挖土、攪土是一個軸完成,雙軸螺旋開溝前軸破土刀軸對土壤進(jìn)行挖掘破土,后軸攪土刀軸對破碎土壤進(jìn)行粉碎、攪土作用,主要有以下幾個方面減阻及優(yōu)勢。
1)同等溝寬、溝深,雙螺旋破土刀軸設(shè)計時開溝深度、螺旋葉片外徑、刀具刃線等參數(shù)相對較小,可減少挖掘破土阻力。
2)與單軸螺旋開溝比較,雙軸螺旋前后軸轉(zhuǎn)速、旋向可不同;設(shè)計時前方破土刀軸一般轉(zhuǎn)速、開溝深度、刀具刃線、平均半徑、螺旋葉片外徑等參數(shù)較小,螺旋角較大,減小破土刀阻耕作阻力;由于破損后土壤硬實度較小,攪土刀軸轉(zhuǎn)速、開溝深度、刀具刃線、平均半徑等參數(shù)較大,螺旋角較小,耕作阻力仍然較小。
3)攪土刀軸轉(zhuǎn)速較大或與破土刀軸旋向相反,在同等耕作能耗情部下對土壤攪肥均勻性、土壤細(xì)膩度均有較大提高,也是減少刀具磨損,增加刀具使用壽命。
3.1 螺旋刃線方程建立
螺旋刀具是立式螺旋開溝機(jī)最核心部件,其刀軸轉(zhuǎn)速、刀軸平均半徑R、螺旋角α等參數(shù),及土壤硬度、耕深、耕寬等條件與土壤切削能耗的大小有直接關(guān)系。而螺旋刀具的螺旋葉片是耕作時對土壤擠壓、剪切的直接部件,其結(jié)構(gòu)性能優(yōu)劣直接影響切土的功耗大小及碎土、攪土性能好壞[18-20]。1KS60-35X果園型雙螺旋開溝施肥機(jī)采用雙軸螺旋設(shè)計方案,破土刀軸與攪土刀軸性能參數(shù)根據(jù)土壤性能指標(biāo)獨(dú)立設(shè)計,而螺旋葉片實際上是變螺距螺旋面,它是由變螺距螺旋線的無數(shù)條切線所構(gòu)成的。如圖4b所示。
圖4 螺旋線形成過程Fig.4 Forming process of helix line
當(dāng)圓柱的母線繞z軸等速旋轉(zhuǎn),母線上一動點(diǎn)K沿z軸做等加速運(yùn)動時,動點(diǎn)K的運(yùn)動軌跡就是一條變螺距螺旋線。如果將圓柱在zoy平面內(nèi)展平,變螺距螺旋線就變成了一條拋物線見圖4b。在圖4a中,螺旋線的初始螺旋角(E處螺旋角)為2πrn1,當(dāng)螺旋線上升了h,即母線繞z軸轉(zhuǎn)過2πrn1弧度時,動點(diǎn)K到達(dá)F(P1為F點(diǎn)在螺旋展開線上的對應(yīng)點(diǎn))處,螺旋線的上升高度為h,由r,a0,n1,h確定螺旋線方程。
式中r為刀軸半徑,m;n為螺旋線圈數(shù);h為徑向高度,m;n1為P1位置螺旋線圈數(shù);h1為P1位置徑向高度,m;α為螺旋角度,(°);α0為E處螺旋角度,(°);a為展開線方程二次項系數(shù)。
3.2 破土刀軸設(shè)計
立式螺旋開溝機(jī)的結(jié)構(gòu)設(shè)計多參照螺旋挖坑機(jī),螺旋開溝機(jī)的主要工作面為螺旋葉片外緣對土壤進(jìn)行剪切、擠壓銑銷作用。由于果園開溝機(jī)所開溝槽多為寬30 cm和深40~50 cm左右的長方形溝,為了使開溝機(jī)破土刀軸能滿足工作要求,且功耗最小,螺旋刀具應(yīng)該設(shè)計成柱形螺旋刀具,且刀具的直徑和高度應(yīng)該滿足作業(yè)要求;為避免工作時土壤擁堵,擠壓螺旋葉片,螺旋葉片的導(dǎo)程應(yīng)該由下而上逐漸變大;螺旋刀具的轉(zhuǎn)速應(yīng)該大于土壤只隨葉片旋轉(zhuǎn)而不向上提升的臨界轉(zhuǎn)速[21-23]。1KS60-35X果園型雙螺旋開溝施肥機(jī)采用雙軸螺旋耕作方式,以減少土壤耕作阻力及功耗,作業(yè)時破土刀軸先對板結(jié)土壤進(jìn)行破土作業(yè),破土刀軸選擇轉(zhuǎn)速、刀具刃線、開溝深度、螺旋葉片外徑等參數(shù)較小,螺旋角θ較大,同時結(jié)合公式(16)、(17)等進(jìn)行螺旋刃面參數(shù)設(shè)計如圖5a所示,破土刀軸具體參數(shù)如表2所示。
圖5 刀軸結(jié)構(gòu)圖Fig.5 Blade shaft structure diagram
表2 破土、攪土刀軸主要性能參數(shù)Table 2 Main performance parameters of soil breaking and stirring blade shaft
3.3 攪土刀軸設(shè)計
破土刀軸對板結(jié)土壤層破土后,土壤層變?yōu)樯Ⅲw顆?;驂K狀土塊,作業(yè)中攪土刀軸高速旋轉(zhuǎn)對土壤散體顆粒進(jìn)行二次銑削、剪切作用,攪土刀軸采用中間通孔方案,顆料肥料從中間通孔丟入溝間;該設(shè)計方案能減少土壤層與攪土刀軸螺旋刀具刃面摩擦,增加土壤與肥料混合均勻性。果園開溝機(jī)所開溝槽多為寬30 cm和深40~50 cm左右的長方形溝,對螺旋刀具的結(jié)構(gòu)參數(shù)和運(yùn)動參數(shù)的設(shè)計應(yīng)滿足農(nóng)藝基本條件。刀具的直徑和高度應(yīng)該滿足作業(yè)要求,土層破壞后,攪土刀軸耕作阻力大幅減少,為保證土壤粉碎細(xì)膩及攪肥均勻性,攪土刀軸轉(zhuǎn)速、刀具刃線、螺旋葉片外徑等參數(shù)可設(shè)計較大,開溝深度、螺旋角可設(shè)計較小,同時結(jié)合公式(16)、(17)等進(jìn)行螺旋刃面參數(shù)設(shè)計如圖5b所示,攪土刀軸具體參數(shù)如表2所示。
4.1 試驗條件與材料
1KS60-35X果園型雙螺旋開溝施肥機(jī)設(shè)計并制造完成后,于 2015-07-20日在江蘇省徐州市豐縣金陽陸號現(xiàn)代果園試驗田進(jìn)行了試驗,試驗用地為行距3.5 m,株距1.5 m標(biāo)準(zhǔn)化現(xiàn)代蘋果園,試驗地土壤類型為黑土,試驗測得土壤含水率為19.6%,土壤取樣深度0~40 cm平均堅實度為975 kPa,土壤表層有草皮。試驗地測區(qū)長度為50 m,兩端預(yù)備區(qū)長度為20 m。測試時間正值夏天,表層土壤含水率低且堅實度較大。測試區(qū)為蘋果園行間區(qū)域,表層覆蓋5~10 cm植被層,樣機(jī)試驗如圖6所示。試驗主要用卷尺、秒表、深度測試儀、轉(zhuǎn)速表、直尺等來測量開溝機(jī)作業(yè)長度、時間、溝深、溝面寬、溝底寬,播肥均勻性,上層浮土厚度、拋土寬度,刀輪軸轉(zhuǎn)速等,相關(guān)數(shù)據(jù)測定方法參照國標(biāo)[24-25]。
圖6 樣機(jī)田間試驗Fig.6 Field tests for protype
4.2 試驗方法
4.2.1 溝深穩(wěn)定性及溝寬一致性測試
在50 cm×30 cm測區(qū)內(nèi),對角線上取5點(diǎn),用耕深尺或標(biāo)尺測定,測定方法:測出溝底到地表面的垂直距離,分別計算出30 、50、80、100 m行程的平均溝深變異系數(shù)CV和穩(wěn)定性系數(shù)U,計算公式分別如式(18)、(19)、(20)、(21)所示,溝寬一致性與溝深穩(wěn)定性計算方式與此相同。
4.2.2 碎土率測試
每行程測定1點(diǎn),沿開溝方向取樣。在0.5 m×0.5 m面積內(nèi),分別測定地表以下 100 mm內(nèi)土塊最長邊小于40 mm的土塊質(zhì)量及土塊總質(zhì)量、全層土塊最長邊小于80 mm的土塊質(zhì)量及土塊總質(zhì)量,按式(22)、(23)計算出碎土率。
1)地表100 mm內(nèi)
式中C10為地表100 mm內(nèi)碎土率,%;Gs10為地表100 mm內(nèi)小于40 mm土塊總質(zhì)量,kg;G10為地表100 mm 內(nèi)土塊總質(zhì)量,kg。
2)全土層
式中C為全層碎土率,%;Gs為全層小于80 mm土塊質(zhì)量,kg;G為全層土塊總質(zhì)量,kg。
4.2.3 土壤膨松度測試
每一行程測定一點(diǎn),作業(yè)前后,用耕層斷面測繪儀在垂直于機(jī)組前進(jìn)方向的同一位置上先后畫出未作業(yè)地表線、已作業(yè)地表線和深松溝底線,求出作業(yè)前地表至理論溝底的橫斷面積和作業(yè)后地表至理論溝底橫斷面積,按式(24)計算出土壤膨松度。
式中p為土壤膨松度,%;Ah為作業(yè)后地表至理論溝底的橫斷面積,cm2;Aq為作業(yè)前地表至理論溝底的橫斷面積,cm2。
4.2.4 播肥均勻性測試
施肥覆土后,扒開土層,測定肥料上方覆蓋土層的厚度,在預(yù)先交錯選定好的 5個小區(qū)內(nèi)進(jìn)行,各小區(qū)內(nèi)每行測5點(diǎn),將結(jié)果計入試驗報告。將土層橫斷面切開,測出土層與肥料相隔的土層厚度,以及肥料與肥料之間的水平和垂直距離。
4.3 試驗結(jié)果
4.3.1 整機(jī)試驗結(jié)果
經(jīng)測得主要作業(yè)性能指標(biāo)試驗結(jié)果如表3,各參數(shù)含義見圖7。由表3可見,破土刀軸轉(zhuǎn)速、攪土刀軸轉(zhuǎn)速、前進(jìn)速度均與設(shè)計時設(shè)定的參數(shù)吻合,整機(jī)開溝、施肥一次作業(yè),工作效率可達(dá)到235 m/h。試驗過程中,機(jī)具性能穩(wěn)定,入土、開溝、施肥性能穩(wěn)定,土壤團(tuán)粒直徑多在3~6 mm之間,拋出的碎土堆積在溝的兩旁,且隨著開溝深度的增加拋土距離越來越短,機(jī)具在各土層段施肥均勻,保證果園根系對肥料的充分吸收。
4.3.2 溝深及穩(wěn)定性試驗結(jié)果
在5次開溝試驗測定中,開溝溝深472~510 mm,平均溝深496 mm,平均推土高度120 mm,開溝深度穩(wěn)定系數(shù)98.2%,開溝寬度一致性99.2%,具體詳見表4,各項性能指標(biāo)滿足設(shè)計與農(nóng)藝要求[26-28]。溝深及穩(wěn)定性試驗檢測相關(guān)參數(shù)合格率,沿開溝方向隨機(jī)取樣測量并與農(nóng)藝要求進(jìn)行對比,按式(25)計算出。
表3 樣機(jī)性能試驗測試結(jié)果Table 3 Test results of prototype performance
圖7 開溝尺寸Fig.7 Ditching dimension
表4 溝深及穩(wěn)性試驗結(jié)果Table 4 The depth of ditch and stability test results
式中Q為測量合格率,%;n1為符合農(nóng)藝測量次數(shù);n2測量總次數(shù)。
4.3.3 碎土率試驗結(jié)果
在5次開溝試驗測定中,土壤團(tuán)粒直徑多在3~6 mm之間,全土層與地表 100 mm 土層團(tuán)粒直徑范圍 5~40 mm,取樣結(jié)果全土層與地表100 mm土層土壤團(tuán)粒平均直徑分別為6.75與6.86 mm,碎土合格率按式(25)計算,分別為98.7%與97.9%,基本滿足農(nóng)藝要求。
4.3.4 播肥均勻性試驗結(jié)果
在 5次開溝施肥試驗結(jié)束后,扒開地表土層,各土層段施肥均勻,顆粒肥料堆積現(xiàn)象較少,重心距離 5~20 mm之間,重心水平與垂直平均距離分別 15.53與16.24 mm,且各土層段施肥性能較穩(wěn)定,滿足果園種植農(nóng)藝要求,適宜果園根系對肥料的充分吸收。
1)提出雙螺旋開溝、施肥方式;破土刀軸破土,攪土刀軸攪土施肥,整機(jī)結(jié)構(gòu)合理,以破土刀軸、攪土刀軸分別建立了雙軸螺旋開溝力學(xué)模型,得到了其阻力矩方法,定量分析刀軸一般轉(zhuǎn)速、開溝深度、刀具刃線、螺旋葉片外徑、螺旋角等參數(shù)對其影響;進(jìn)一步建立螺旋刃線參數(shù)方程,為刀具螺旋葉片設(shè)計提供參考;
2)所設(shè)計的1KS60-35X果園型雙螺旋開溝施肥機(jī),實現(xiàn)了低矮密植標(biāo)準(zhǔn)化果園開溝、施肥聯(lián)合作業(yè),滿足果園種植農(nóng)藝要求。改變傳統(tǒng)先開溝,后倒肥,再覆土作業(yè)方式,機(jī)具開溝、施肥、覆土一次作業(yè),且播肥均勻,土層銑削后團(tuán)粒直徑均勻,改良果園土壤結(jié)構(gòu),促進(jìn)果樹根系對肥料吸引,能有效的減少作業(yè)次數(shù),提高作業(yè)效率。
3)在5次開溝試驗測定中,開溝溝深472~510 mm,平均溝深496 mm,平均推土高度120 mm,開溝深度穩(wěn)定系數(shù)98.2%,開溝寬度一致性99.2%,滿足開溝各項農(nóng)藝要求。
4)土壤團(tuán)粒直徑多在3~6 mm之間,全土層與地表100 mm土層團(tuán)粒直徑范圍5~40 mm,取樣結(jié)果全土層與地表100 mm土層土壤團(tuán)粒平均直徑分別為6.75 mm與6.86 mm,碎土合格率分別為98.7%與97.9%。
5)顆粒肥料堆積現(xiàn)象較少,重心距離5~20 mm之間,重心水平與垂直平均距離分別 15.53 mm與 16.24 mm,且各土層段施肥性能較穩(wěn)定,滿足果園施肥農(nóng)藝要求。
[1]Sanders K F. Orange harvesting systems review[J].Biosystems Engineering, 2005, 90(2): 115-125.
[2]常有宏,呂曉蘭,藺經(jīng),等. 我國果園機(jī)械化現(xiàn)狀與發(fā)展思路[J]. 中國農(nóng)機(jī)化學(xué)報,2013,34(6):21-26.Chang Youhong, Lü Xiaolan, Lin Jing, et al. Present state and thinking about development of orchard mechanization in China[J]. Journal of Chinese Agricultural Mechanization,2013, 34(6): 21-26. (in Chinese with English abstract)
[3]付乾坤,薦世春,賈洪雷,等. 玉米滅茬起壟施肥播種機(jī)的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(4):9-16.Fu Qiankun, Jian Shichun, Jia Honglei, et al. Design and experiment on maize stubble cleaning fertilization ridging seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 9-16.(in Chinese with English abstract)
[4]馬愛麗,廖慶喜,田波平,等. 螺旋式果園開溝裝置的設(shè)計及土槽試驗[J]. 湖北農(nóng)業(yè)科學(xué),2009,48(7):1747-1750.Ma Aili, Liao Qingxi, Tian Boping, et al. Design on spiral orchard ditching equipments and test in the soil bin[J]. Hubei Agricultural Sciences, 2009, 48(7): 1747-1750. (in Chinese with English abstract)
[5]葉強(qiáng),謝方平,孫松林,等. 葡萄園反轉(zhuǎn)雙旋耕輪開溝機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(3):9-15.Ye Qiang, Xie Fangping, Sun Songlin, et al. Development of vineyard ditcher with reversal twin rotary tillage wheels[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 9-15.(in Chinese with English abstract)
[6]康建明,李樹君,楊學(xué)軍,等. 圓盤式開溝機(jī)作業(yè)功耗分析及試驗驗證[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(13):8-15.Kang Jianming, Li Shujun, Yang Xuejun, et al. Experimental verification and simulation analysis on power consumption of disc type ditcher[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(13): 8-15. (in Chinese with English abstract)
[7]夏俊芳,賀小偉,余水生,等. 基于ANSYS/LS-DYNA的螺旋刀輥土壤切削有限元模擬[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(10):34-41.Xia Junfang, He Xiaowei, Yu Shuisheng, et al. Finite element simulation of soil cutting with rotary knife roller based on ANSYS/LS-DYNA software[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 34-41. (in Chinese with English abstract)
[8]王志山,夏俊芳,許綺川,等. 水田高茬秸稈旋耕埋覆裝置功耗測試方法[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(2):119-123.Wang Zhishan, Xia Junfang, Xu Qichuan, et al. Power consumption testing system of high stubble buried device in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011,27(2): 119-123. (in Chinese with English abstract)
[9]高建明,周鵬,張兵,等. 基于光滑粒子流體動力學(xué)的土壤高速切削仿真系統(tǒng)開發(fā)及試驗[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(8):20-26.Gao Jianming, Zhou Peng, Zhang Bing, et al. Development and test of high speed soil-cutting simulation system based on smooth particle hydrodynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(8): 20-26. (in Chinese with English abstract)
[10]蔣建東,高潔,趙穎娣,等. 基于ALE有限元仿真的土壤切削振動減阻[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(增刊1):33-38.Jiang Jiandong, Gao Jie, Zhao Yingdi, et al. Numerical simulation on resistance reduction of soil vibratory tillage using ALE equation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 28(Supp.1): 33-38. (in Chinese with English abstract)
[11]葉強(qiáng),謝方平,孫松林,等. 葡萄園反轉(zhuǎn)雙旋耕輪開溝機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(3):9-15.Ye Qiang, Xie Fangping, Sun Songlin, et al. Development of vineyard ditcher with reversal twin rotary tillage wheels[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 9-15.(in Chinese with English abstract)
[12]肖宏儒.一種雙螺旋立式開溝施肥機(jī):201420765262.2[P].2015-05-27.
[13]盧林瑞,王慶喜,仵大偉.農(nóng)藝與農(nóng)機(jī)相結(jié)合的探討[J].吉林農(nóng)業(yè)大學(xué)學(xué)報,1994,16(2):93-95.Lu Linrui, Wang Qingxi, Wu Dawei. Research on farm mechine combination with agronomy[J]. Journal of Jilin Agricultural university, 1994, 16(2): 93-95.(in Chinese with English abstract)
[14]張保軍,韓思明,楊文平,等.新世紀(jì)農(nóng)藝與農(nóng)機(jī)結(jié)合的思考[J]. 西北農(nóng)林科技大學(xué)學(xué)報,2002(3):69-73.Zhang Baojun, Han Siming, Yang Wenping, et al.Reflections on the combination of agronomy with farming machinery in new century[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2002(3): 69-73. (in Chinese with English abstract)
[15]馬占新. 1K-40-40型葡萄施肥開溝機(jī)[J]. 農(nóng)業(yè)機(jī)械,2002(3):53.Ma Zhanxin. 1K-40-40 type grape fertilizer ditching machinery[J]. Farm Machinery, 2002(3): 53. (in Chinese with English abstract)
[16]錢家歡. 土力學(xué)[M]. 南京:河海大學(xué)出版社,1990:183.
[17]呂正泮. 降低立式螺旋開溝機(jī)功率消耗的途徑[J]. 農(nóng)業(yè)機(jī)械學(xué)報,1994,25(2):78-83.Lü Zhengpan. The way of vertical spiral ditcher power consumption reduction[J]. Transactions of the Chinese Society for Agricultural Machinery, 1994, 25(2): 78-83. (in Chinese with English abstract)
[18]呂正泮. 轉(zhuǎn)葉式切土刀助推效果的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2001,32(4):25-27.Lü Zhengpan. Study on driving effect of rotary blade[J].Transactions of the chinese society for agricultural machinery,2001, 32(4): 25-27. (in Chinese with English abstract)
[19]王慶杰,李洪文,何進(jìn),等. 螺旋刀型壟臺清理裝置的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(6):109-113.Wang Qingjie, Li Hongwen, He Jin, et al. Design and experiment on twist type ridge-clear device[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(6): 109-113. (in Chinese with English abstract)
[20]康建明,李樹君,楊學(xué)君,等. 圓盤式開溝機(jī)作業(yè)功耗仿真分析及試驗驗證[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(13):8-15.Kang Jianming, Li Shujun, Yang Xuejue, et al. Experimental verification and simulation analysis on power consumption of disc type ditcher[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(13): 8-15. (in Chinese with English abstract)
[21]李金琦.旋轉(zhuǎn)開溝機(jī)[M]. 北京:中國農(nóng)業(yè)機(jī)械出版社,1984:152-170.
[22]張守勤,馬旭,左春檉,等. 圓盤開溝部件的受力及計算機(jī)模擬[J]. 農(nóng)業(yè)工程學(xué)報,1995,11(4):52-56.Zhang Shouqin, Ma Xu, Zuo Chuncheng, et al. Forces acting on disk colter and computer simulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1995, 11(4): 52-56. (in Chinese with Englishabstract)
[23]韓永俊,尹大慶,馮江,等. 1KL-100 型立式螺旋開溝機(jī)的設(shè)計[J]. 農(nóng)機(jī)化研究,2000(4):66-68.Han Yongjun, Yin Daqing, Feng Jiang, et al. Design on 1KL-100 type vertical spiral ditcher[J]. Journal of Agricultural Mechanization Research, 2000(4): 66-68.(in Chinese with English abstract)
[24]全國農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)化技術(shù)委員會農(nóng)機(jī)化分技術(shù)委員.中華人民共和國農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn):NY/T 740-2003[S/OL]. 北京:中國標(biāo)準(zhǔn)出版社,2004:1-16[2016-5-4]. https://www. ama zon.cn/圖書/dp/B00AZHKKYO.
[25]全國農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)化技術(shù)委員會.機(jī)械工業(yè)耕作機(jī)械產(chǎn)品質(zhì)量檢測中心.中華人民共和國工業(yè)和信息化部. JB/T 11908-2014[S/OL]. 北京:機(jī)械工業(yè)出版社,2004:3-5[2014-10-1]. http://www.bjstandard.com/standard/283898.html.
[26]李寶筏. 農(nóng)業(yè)機(jī)械學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,2003,31-33.
[27]中國農(nóng)業(yè)機(jī)械科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計手冊(上)[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007,237-238.
[28]高煥文,李問盈,李洪文.中國特色保護(hù)性耕作技術(shù)[J].農(nóng)業(yè)工程學(xué)報,2003,19(3):1-4.Gao Huanwen, Li Wenying, Li Hongwen. Conservation tillage Technology with Chinese characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2003, 19(3): 1-4. (in Chinese with English abstract)
Design and experiment on blade shaft of 1KS60-35X type orchard double-helix trenching and fertilization machine
Xiao Hongru1, Zhao Ying1, Ding Wenqin1, Mei song1, Han Yu1, Zhang Yuan2, Yan Huaijiang2, Song Zhiyu1
(1.Nanjing Research Institute for Agricultural Mechanization, Ministry of Agricultural, Nanjing210014,China;2. Xuzhou Agricultural Machinery Technology Extending Stations, Xuzhou221006,China)
The traditional orchard fertilization scheme is the sequence of trenching, fertilization and covering soil. In the process of orchard planting and management, trenching deeply is a key link, which has a great impact on the yield of orchard as well as the sweetness and quality of the orchard fruit. However, at present, orchard trenching and fertilization machine has a series of problems, such as great cultivation resistance, high power consumption and uneven mixing fertilizer, and there is a great need to develop a new kind of fertilization machine. So a double-helix fertilization machine named 1KS60-35X was designed, which used the front axle to break the ground while used the rear axle to mix the soil and fertilizer. The resistance torque equation of the rotary shaft used for breaking and mixing the soil was established,which could be used to quantitatively analyze the effect of screw blade parameters on tillage resistance. Furthermore, on the basis of the research on the parametric equation of spiral cutting edge, as well as by means of experience and theory calculation, the helical blade parameters of ground soil fertilization shaft were determined. Then the 3D (threedimensional) parametric models of the cutter shaft and the whole machine were established using Pro/E. On this foundation, the prototype of a double-helix fertilization machine was completed. Afterwards, a series of trenching and fertilization field experiments were carried out, and the results showed that the ditching depth of this machine could achieve from 472 to 510 mm, and meanwhile the average depth could reach 496 mm and the average soil pushing height could attain 120 mm. In addition, the planting depth stability coefficient could achieve 98.2% and the planting width consistency could reach 99.2%. The soil aggregate diameters were mostly between 3 and 6 mm; the soil aggregate diameter in the whole soil and 100 mm surface soil ranged from 5 to 40 mm, while those from the sampling results were 6.75 and 6.86 mm, respectively. So the qualified rates of broken soil were 98.7% and 97.9%, respectively. The situation of granular fertilizer accumulation occurred less by using this machine, the vertical and horizontal distances of the centers of gravities were 16.24 and 15.53 mm, respectively, and the fertilization performance of each soil layer was relatively stable. This new designed machine abandoned the traditional operation mode of first trenching, then fertilization, and then covering the soil, while adopted the new operation mode that trenching, fertilization and covering the soil were carried out at the same time. So the number of operations could be effectively reduced. Therefore, with this new machine, the fertilization can be uniform and reduce the waste of fertilizer. What’s more, it can improve the soil structure and promote the root system of the fruit trees, which is beneficial to fruit growth. This new designed machine not only meets the agronomic requirements of orchard fertilization, but also provides a reference for the trenching and fertilization operation in mulberry field and tea garden.
agricultural machinery; orchards; experiments; double helix; trenching and fertilization; design
10.11975/j.issn.1002-6819.2017.10.005
S223.2+4
A
1002-6819(2017)-10-0032-08
2016-07-26
2017-04-01
江蘇省農(nóng)業(yè)科技自主創(chuàng)新項目“低地隙果園多功能機(jī)械化復(fù)式作業(yè)裝備創(chuàng)制”(CX(14)2109),“自走式多功能小型果園空間管理機(jī)”
(CX(15)1046);江蘇省農(nóng)業(yè)三新工程“基于設(shè)施園藝的高效施肥技術(shù)及裝備應(yīng)用開發(fā)”(NJ2014-05);中國農(nóng)科院創(chuàng)新工程-果蔬茶收獲;江蘇省科技計劃產(chǎn)學(xué)研合作“遙控駕駛型多功能茶園作業(yè)機(jī)及其配套機(jī)具研究與開發(fā)”(BY2015014-01)
肖宏儒,男(漢族),研究員,主要從事果蔬茶收獲裝備研究,南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014,Email:xhr2712@sina.com