曲曉娟,李昭燕,宋倩,王夢偉,趙博生
(1.山東理工大學 生命科學學院,山東 淄博 255049;2.淄博實驗中學,山東 淄博 255000)
基于線粒體DNA序列分析研究泰山赤鱗魚的分類和進化
曲曉娟1,李昭燕2,宋倩1,王夢偉1,趙博生1
(1.山東理工大學 生命科學學院,山東 淄博 255049;2.淄博實驗中學,山東 淄博 255000)
泰山赤鱗魚作為一種古老而分布特異的鯉科魚種,其分類和進化地位尚存在很多爭議.利用PCR方法克隆了泰山赤鱗魚線粒體DNA的12 S, 16 S rRNA、細胞色素b和ATP酶8/6基因序列,分析了堿基組成變異和核苷酸序列差異,并與鯉科其它屬種的同源序列進行比較,發(fā)現(xiàn)所有基因都是(A + T)% >(G + C)%.蛋白編碼基因在第三位點是G缺失基因,并集中在第三位點發(fā)生替換突變. 利用最小進化法(ME)和鄰接法(NJ)構建了系統(tǒng)進化樹.結果表明,泰山赤鱗魚不屬于突吻魚屬,而是更接近倒刺鲃屬和鲃屬. 利用細胞色素b序列計算并推斷泰山赤鱗魚可能起源于1 600萬年前的中新世中期.
泰山赤鱗魚;12S rRNA;16S rRNA;細胞色素b;ATP合成酶8/6;系統(tǒng)發(fā)育
泰山大約形成于三千萬年前的新生代中期,是我國最為古老的山體之一.泰山赤鱗魚是生活在泰山海拔270m到800m溪流底部的冷水中,以水生昆蟲為食的一種小型珍貴魚種.由于其有限的分布、固有的繁殖能力低、生長和成熟緩慢等生物學特性,泰山赤鱗魚的數量增長受到了極大限制,或將瀕臨滅絕,是農業(yè)部設立的國家級水產種質資源重點保護魚種[1];地理隔離限制了泰山赤鱗魚的遺傳成分改變,是古老而遺傳保守的魚種. 根據形態(tài)特征和行為特征,泰山赤鱗魚被認為屬于鯉科、鲃亞科、突吻魚屬的多鱗鏟頜魚(Varicorhinus macrolepis)[2]. 然而,從分子系統(tǒng)分類方面闡釋泰山赤鱗魚的系統(tǒng)發(fā)育至今未見報道. 動物線粒體DNA與核DNA相比具有不同的特性,比如,線粒體DNA的快速進化速率、重組缺失、母性遺傳等[3-4]. 近年來,線粒體DNA的不同基因片段作為分子標記被廣泛應用于魚類的系統(tǒng)發(fā)育和進化研究,尤其是鯉科魚類[5]. 研究發(fā)現(xiàn),線粒體DNA序列可以作為分子鐘分析遺傳變異來確定演化關系,作為分子標記來辨別動物的遺傳多樣性[6-10]. 本文通過對泰山赤鱗魚12S rRNA, 16S rRNA, Cyt b和 ATPase 8/6基因部分片段序列比較,構建分子系統(tǒng)樹,以期為泰山赤鱗魚的系統(tǒng)發(fā)育提供初步的遺傳學證據.
1.1 材料來源
10尾泰山赤鱗魚(雌雄各5尾)樣品購自山東農業(yè)大學的漁場,在連續(xù)通氣的培養(yǎng)器皿中進行培養(yǎng). 將樣品無菌條件下饑餓處理3d,所有組織固定和保存在80%乙醇中.
1.2 線粒體DNA擴增和測序
肌肉組織通過標準蛋白酶K / SDS進行消化,氯仿萃取,乙醇沉淀,獲得總DNA[11].將12S rRNA、16S rRNA、細胞色素b(Cyt b)、ATP酶8/6 (ATPase 8/6)基因片段通過聚合酶鏈反應(PCR)進行擴增. 擴增的引物和各自的退火溫度如表1所示.25μL PCR反應體系中包括10 ~100 ng的模板DNA,2.5μL 10倍PCR緩沖(Takara),2.0μL dNTP,1.5μL MgCl2(25 nmol/L),1.0μL引物(10μmol/L)和0.125μL 5 U /μL Taq (TaKaRa).用Ver. 2.0 (TaKaRa) DNA純化試劑盒進行PCR產物純化,純化產物由上海博尚生物技術公司測序,并利用GenBank中的其他序列校準.
表1 PCR引物和退火溫度
基因引物序列(5' 3')退火溫度/℃12SRNA12S-5'AGCAACTGCGATTACATACCCCACTAT12S-3'AATGGAGAGTGACGGGCGGTCTGT5816SrRNAARCGCCTGTTTATCAAAAACATBRCCGGTCTGAACTCAGATCACGT42CytbC1ATGGCAAGCCTACGAAAAACC2TCTCCTCATGGAAGGACGTACytb5'GCCTCTATTACGGGTCCTACCTTTACytb3'GGCTCATTGGAGTGCTTTATTTTC5552.5ATPase6ATPase8A-5'CCGAACTCCTGTAGTGAAATGCCandATPase8A-3'AGATAGGGATGTGCTTGGTGGG57.5
1.3 序列分析
將泰山赤鱗魚線粒體DNA基因序列和GenBank中鯉形目同源基因序列利用CLUSTAL X1.83 進行比對,并列用MEGA 7.0軟件進行分析[12],發(fā)現(xiàn)核苷酸組成和變異量的數量變化(可變和簡并位點的數量),計算轉換和顛換的絕對數字以及它們之間的比例.基于Kimura雙參數堿基替換模型, 通過MEGA構建了最小進化樹(ME)鄰接樹(NJ),并利用最大似然法(ML)進行了驗證. 系統(tǒng)樹分支的可靠性由1000次bootstrap來檢驗.
2.1 序列特征
泰山赤鱗魚的線粒體DNA共有2945 bp組成,包括414 bp 的 12S rRNA,560 bp 的16S rRNA片段, 1129 bp的Cyt b和842 bp ATPase 8/6 基因。這些基因的堿基組成通過MEGA 7.0進行計算表明(表2), 除了12S rRNA基因外,其他序列的核苷酸成分中(A + T)% >(G + C)%。在rRNA序列中, 有一些不同水平的插入和刪除,也沒有編碼蛋白.通過對比線粒體DNA片段評估核苷酸的替換,發(fā)現(xiàn)在12S和16S rRNA片段中, 基因替換發(fā)生頻率比蛋白編碼基因要低。與其他物種一樣,大多數的替換是轉換,Cyt b中的替換主要集中在第三位點.在核苷酸組成上這與蛋白編碼序列對于G的偏好性一致,尤其是在第三位點.ATPase 8 和 ATPase 6有7個核苷酸序列的重疊,哺乳動物中ATPase 8 和 ATPase 6重疊40~46 bp[13],因此,這是一個常見的脊椎動物的特性. 泰山赤鱗魚被認為是分布在山東省唯一的鲃亞科淡水魚種[14]. 線粒體DNA的核苷酸組成,除了12S rRNA外,多個片段序列全部為A + T豐富,這樣的核苷酸組成模式已被廣泛報道在其他幾個魚類研究中[7,15]. 這可能與(G + C)%低于(A + T)%有關,因為A + T不太穩(wěn)定,更容易發(fā)生突變. 研究表明,蛋白質編碼基因的替換主要集中在第三位點,這可能與蛋白質編碼基因的核苷酸不偏愛G有關,特別是在第三位點[16].
表2 赤鱗魚線粒體DNA基因的分子表征
項目12SrRNA16SrRNACytbATPase8/6長度/bp4145601129842G/%T/%C/%A/%(A+T)/%(C+G)/%22.920.327.629.249.550.522..322.124.231.453.546.514.527.529.029.056.543.512.226.629.032.258.841.2保守位點/%67.860.753.155.9可變位點/%30.537.046.944.1信息簡并/%16.525.841.428.6單個位點/%13.811.05.515.4完全相同對/%87.860.786.387.9過渡對第一位點 第二位點 第三位點 總計 ———28(6.68%)———26(5.09%)24589118(10.45%)10482078(9.26%)橫向對第一位點 第二位點 第三位點 總計 ———9(2.15%)———16(3.13%)313438(3.37%)418424(2.85%)Ti/Tv3.11.73.13.2
2.2 系統(tǒng)發(fā)育分析
基于包括泰山赤鱗魚在內的鯉科魚線粒體DNA的12S、16S rRNA和Cyt b、ATPase8/6序列,用MEGA不同方法構建ME和NJ進化樹,并利用ML法進行了驗證,發(fā)現(xiàn)所有結果具有類似的系統(tǒng)發(fā)育拓撲結構(本文只列出ME進化樹),表明泰山赤鱗魚屬于鲃亞科(圖1-圖4).12S rRNA分析顯示,泰山赤鱗魚與鲃屬(Barbus)聚群,e-值為87% (圖1).16S rRNA和ATPase 8/6分析表明,鲃屬和倒刺鲃屬(Spinibarbus)、管臀魚屬(Aulopyge)聚群于同一分支,而泰山赤鱗魚則位于分支的基部(圖2、圖3).細胞色素b分子系統(tǒng)分析表明,泰山赤鱗魚與倒刺鲃屬、鲃屬、管臀魚屬二須鲃屬(Capoeta)聚于同一分支(圖4),以上系統(tǒng)發(fā)育結果說明,赤鱗魚可能不屬于突吻魚屬(Varicorhinus),而是屬于鲃屬或倒刺鲃屬. 泰山赤鱗魚一直被認為是突吻魚屬的多鱗鏟頜魚,分子系統(tǒng)分類是能夠從分子水平和進化層面闡釋動物分類地位的主要研究方法,基于部分線粒體DNA序列分子系統(tǒng)進化分析表明,泰山赤鱗魚可能更接近鲃屬或倒刺鲃屬,為今后分類和進化研究奠定了基礎。
圖1 基于線粒體12S rRNA基因序列構建的進化樹注:GenBank中的序列號:Barbodes gonionotus (NC_008655); Barbus barbus (AB238965); Barbus trimaculatus (AB239600); Cyprinus carpio (X61010); Puntius jerdoni (AF521938); Puntius sarana (AF520831); Puntius tetrazona (AF521932); Puntius titco (AF508078); Puntius sp. (AF520835); Spnibarbus hollandi (AY050545); Tor khudree (AF520820); Tor malabaricus (DQ520909); Tor putitora (AM778102).
圖2 基于線粒體16S rRNA基因序列構建的進化樹
注:GenBank中的序列號:Barbodes gonionotus (NC_008655); Barbus barbus (AB238965); Barbus fluviatilis (AJ247065); Barbus meridionalis (AJ247061); Barbus trimaculatus (AB239600); Cyclocheilichthys apogon (DQ464918); Cyclocheilichthys repasson (DQ464911); Cyprinus carpio (X61010); Hampala macrolepidota (DQ464916); Neolissochilus stracheyi (DQ464915); Puntius bandula (AY708203); Puntius bimaculatus (AY708216); Puntius brevis (DQ464912); Puntius chola (AY708202); Puntius collingwoodii (AY925190); Puntius cumingii (AY708208); Puntius dorsalis (AY708220); Puntius fasciatus (AY708222); Puntius filamentosus (AY925189); Puntius mahecola (AY708197); Puntius martenstyini (AY708225); Puntius nigrofasciatus (AY708206); Puntius pleurotaenia (AY708226); Puntius singhala (AY925187); Puntius sp. (AY708236); Puntius srilankensis (AY708230); Puntius titco (AY708209); Puntius titteya (AY708233); Puntius vittatus (AY708237); Spnibarbus denticulatus (DQ464906); Spnibarbus hollandi (DQ464919); Tor douronensis (DQ464925); Tor khudree (DQ520915); Tor malabaricus (DQ520917); Tor tambroides (AY973160).
圖3 基于線粒體ATPase8/6基因序列構建的進化樹注:GenBank中的序列號:Aulopyge huegelii (AF287359); Barbodes gonionotus (NC_008655); Barbus albanicus (AY004690); Barbus barbus (AB238965); Barbus caninus (AF287369); Barbus cyclolepis (AF287377); Barbus graecus (AF317396); Barbus guiraonis (AF317397); Barbus haasi (AY004687); Barbus meridionalis (AF287386); Barbus microcephalus (AF317398); Barbus petenyi (AF287398); Barbus plebejus (AY004717); Barbus prespensis (AF287400); Barbus sclateri (AF317400); Barbus setivimensis (AF317412); Cyprinus carpio (X61010); Puntius conchoninus (AY004718); Puntius titco (AB238969); Varicorhinus maroccanus (AF287413).
表3 Cyt b序列的遺傳距離矩陣
物種123456781.Sprinibarbus2.Capoeta4.8513.Barbus4.2021.9814.Aulopyge7.1287.5276.9445.Chi-linfish7.2399.9829.39711.3106.Sinocyclocheilus2.4235.5204.7409.4019.6677.Cyprinus6.9959.1548.95812.15612.1566.6358.Varicorhinus4.1287.3416.65910.0339.3984.2958.322
圖4 基于線粒體Cyt b基因序列構建的進化樹
注:GenBank中的序列號:Acrossocheilus yunnanensis (AF051857); Aulopyge huegelii (AF287415); Barbodes gonionotus (NC_008655); Barbodes laticeps (AY854739); Barbodes schwanenfeldii (AF180823); Barboides britzi (EF151089); Barbus albanicus (AY004723); Barbus antinorii (AY015990); Barbus barbus (AB238965); Barbus biscarensis (AY004726); Barbus brachycephalus (AY004729); Barbus callensis (AF045974); Barbus capito (AF145940); Barbus comizo (AF334050); Barbus cyclolepis (AF287428); Barbus graecus (AF145941); Barbus longiceps (AF145942); Barbus magniatlantis (AY004747); Barbus microcephalus (AF334085); Barbus moulouyensis (AY004742); Barbus nasus (AY004744); Barbus peloponnesius (AF287438); Barbus sclateri (AJ698696); Barbus trimaculatus (AB239600); Capoeta capoeta (AF145951); Capoeta semifasciolata (AF309505); Capoeta trutta (AF145949); Cyprinus carpio (X61010); Puntius conchoninus (AY004751); Puntius sp. (EF151093); Puntius titco (AB238969); Sinocyclocheilus altishoulderus (AY854724); Sinocyclocheilus anatirostris (AY854708); Sinocyclocheilus angustiporus (AY854702); Sinocyclocheilus jii (AY854728); Sinocyclocheilus macrolepis (AY854729); Sinocyclocheilus microphthalmus (AY854690); Sinocyclocheilus multipunctatus (AY854713); Sinocyclocheilus qujingensis (AY854719); Sinocyclocheilus tingi (AY854701); Sinocyclocheilus yangzongensis (AY854726); Sinocyclocheilus yishanensis (AB196445); Spinibarbichthys sinensis (AY195632); Spnibarbus caldwelli (AY195624); Spnibarbus denticulatus (AF051878); Spnibarbus hollandi (AY195628); Varicorhinus beso (AF180862); Varicorhinus mariae (AF180863); Varicorhinus maroccanus (AF287457); Varicorhinus nelspruitensis (AF180866); Varicorhinus steindachneri (AF180865).
根據細胞色素b序列我們計算了鲃亞科和鯉亞科以及鲃亞科內不同種之間的遺傳距離矩陣,結果表明,泰山赤鱗魚與鲃亞科其他屬、鯉屬的平均距離為7.239~12.156,而且與鯉屬的距離最大.在鲃亞科內,泰山赤鱗魚與倒刺鲃屬(7.239)的遺傳距離小于鲃屬(9.397),這與進化樹的結果相同. 地理隔離被認為是促進歐洲淡水魚物種形成的主要進化力量[15,17-18].據報道,鯉魚種類的發(fā)生在中新世中期[19]. 根據Cyt b序列,泰山赤鱗魚和鯉魚的遺傳距離為12.156,鯉魚的進化速率為0.76%/百萬年[20].由此推斷,泰山赤鱗魚的發(fā)生時間約為1600萬年前,即中新世中期。以上結果表明,泰山赤鱗魚可能是起源最早的淡水鲃亞科魚類,為山東淡水魚類的起源提供了依據。
[1]李旭光,劉永進. 泰山赤鱗(螭霖)現(xiàn)狀與保護發(fā)展對策[J]. 山東畜牧獸醫(yī),2011,32(5):54-56.
[2]薛家驊,張先文.泰山赤鱗魚的繁殖生態(tài)[J].淡水漁業(yè),1985,(4):22-24.
[3]BROWN W M, GEORGE M, WILSON A C. Rapid evolution of animal mitochondrial DNA [J]. Proc. Natl. Acad. Sci. USA, 1979, 76(4): 1967-1971.
[4]OLIVIO P D, VAN De WALLE M J, LAIPIS P J, et al. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop[J]. Nature, 1983,306:400-402.
[5]PERDICES A, SAYANADA D, COELHO M M. Mitochondrial diversity of Opsariichthys bidens (Teleostei, Cyprinidae) in three Chinese drainages [J]. Mol Phylogenet Evol, 2005, 37(3): 920-927.
[6]GILLES A, LECOINTRE G, FAURE E, et al. Mitochondrial phylogeny of the European Cyprinids: implications for their systematics, reticulate evolution and colonization time [J]. Mol Phylogenet Evol, 1998,10(1):132-143.
[7]KONRULA T, KIRILCHIK S V, VAINOLA R. Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing [J]. Mol Phylogenet Evol, 2003, 27(1):143-155.
[8]PENG Z G, HE S P, WANG J, et al. Mitochondrial molecular clocks and the origin of the major Otocephalan clades ( Pisces: Teleostei ): a new insight [J]. Gene, 2006, 370: 113-124.
[9]PERDICES A, CUNHA C, COELHO M M. Phylogenetic structure of Zacco platypus (Teleostei, Cyprinidae) populations on the upper and middle Chang Jing (= Yangtze) drainage inferres from cytochrome b sequences [J]. Mol Phylogenet Evol, 2004, 31(1):192-203.
[10]TANG Q Y, XIONG B X, YANG X P, et al. 2005. Phylogeny of the East Asian botiine loaches (Cypriniformes, Botiidae ) inferred from mitochondrial cytochrome b gene sequences [J]. Hydrobiologia, 2005, 544(1):249-258.
[11]KOCHER T D, THOMAS W K, MEYER A, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers [J]. Proc. Natl. Acad. Sci. USA, 1989, 86(16): 6196-6200.
[12]KUMAR S, TAMURA K, NEI M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment [J]. Brief Bioinform, 2004, 5(2): 150-163.
[13]BROUGHTON R E, MILAM J E, ROE B A. The complete sequence of the Zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA [J]. Genome Res, 2001, 11 (11): 1958-1967.
[14]楊青,周才武,王金星. 山東省鯉科魚類的組成特點和地理分區(qū)[J]. 動物學研究, 1994, 15 (增刊): 68-73.
[15]DURAND J D, TSIGENOPOULOS C S, UNLU E B P. Phylogeny and Biogeography of the Family Cyprinidaein the Middle East Inferred from Cytochrome b DNA-Evolutionary Significance of this Region [J]. Mol Phylogenet Evol, 2002, 22(1): 91-100.
[16]RICHARD E B, JAMI E M, BRUCE A R. The complete sequence of the Zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA [J]. Genome Res, 2001, 11(11): 1958-1967.
[17]ZHANG M L, BIANCO P. Potential role of the palaeohistory of the Mediterranean and Paratethys basins on the early dispersal of Euro-Mediterranean freshwater fishes [J]. Ichthyol Explor Freshwater, 1990, 1(3):167-184.
[18]PERDICES A, DOADRIO I, ECONOMIDIS P S, et al. Pleistocene effects on the European freshwater fish fauna: double origin of the cobitid genus Sabanejewia in the Danube basin (Osteichthyes: Cobitidae) [J]. Mol Phylogenet Evol, 2003, 26(2): 289-299.
[19]周家健. 山東山旺中中新世鯉科化石 [J]. 古脊椎動物學報, 1990, 28 (2): 95-127.
[20]趙凱,楊公社,李俊兵等. 黃河裸裂尻魚群體遺傳結構和Cytb序列變異 [J]. 水生生物學報, 2006, 30(2): 129-133.
(編輯:姚佳良)
Mitochondrial partial DNA sequence analysis of Chi-lin fish Varicorhinus macrolepis from Taishan Mountain: implication for its taxonomy and evolution
QU Xiao-juan1, LI Zhao-yan2, SONG Qian1, WANG Meng-wei1, ZHAO Bo-sheng1
(1.School of Life Sciences, Shandong University of Technology, Zibo 255049, China;2.Zibo Experimental Middle School, Zibo 255000, China)
The Chi-lin fish is an ancient species of Cyprinidae, which specifically distributed in the Taishan mountain. However, the taxonomy and evolution of Chi-lin fish are disputed. In this study, the Mitochondrial 12S rRNA, 16S rRNA, cytochrome b, ATP synthase 8 and 6 gene fragments of Chi-lin fish from Tai Mountain were amplified by PCR, and the products were purified and sequenced. The sequences and characters of the multiple genes of mitochondrial DNA (mtDNA) were analyzed by MEGA 7.0. The results showed that all of the multiple genes were (A+T)% >(G+C)%. The base compositions of the protein-coding genes were globally G-deficient, especially in the third position. Interestingly, transitions of protein-coding genes were major in the substitution, and largely concentrated in the third position, too. All molecular phylogenetic trees revealed that Chi-lin fish did not belong to genusVaricorhinus, against the former morphological data. And it was comparatively closer to genus Spinibarbus and Barbus. The Cyt b sequence analysis suggested that the divergence time of Chi-lin fish was about 16.0 Mya (million years ago) .
Chi-lin fish; 12S rRNA; 16S rRNA; cytochromeb; ATP synthase 8/6; phylogeny
2017-03-09
國家基礎研究計劃(973計劃)項目(2006CB101805)
曲曉娟,女,qxj33521@163.com; 通信作者:趙博生,男,zhaobosheng@sdut.edu.cn
1672-6197(2017)05-0018-06
Q111
A