李鑫宇 韓艷鏵
(南京航空航天大學(xué)航天學(xué)院, 南京 210016)
基于柔性關(guān)節(jié)機械臂振動的空間非合作目標(biāo)質(zhì)量辨識
李鑫宇 韓艷鏵?
(南京航空航天大學(xué)航天學(xué)院, 南京 210016)
針對空間在軌服務(wù)任務(wù)中捕獲的非合作目標(biāo)的質(zhì)量辨識問題,提出了一種基于柔性關(guān)節(jié)機械臂振動頻率的質(zhì)量辨識方法.在該方法中,首先利用操作航天器上的柔性關(guān)節(jié)機械臂捕獲空間非合作目標(biāo);然后對操作航天器、柔性關(guān)節(jié)機械臂與空間非合作目標(biāo)形成的組合體進行動力學(xué)建模;最后通過分析柔性關(guān)節(jié)機械臂的振動頻率來辨識空間非合作目標(biāo)的質(zhì)量.數(shù)值仿真結(jié)果證實了該方法的有效性.
柔性關(guān)節(jié)機械臂, 空間非合作目標(biāo), 組合體, 動力學(xué)建模, 質(zhì)量辨識
空間在軌服務(wù)任務(wù)中,作為客戶系統(tǒng)的目標(biāo)航天器可以分為合作目標(biāo)和非合作目標(biāo)[1].一般地,空間合作目標(biāo)是指那些可以向其他航天器提供質(zhì)量特性參數(shù)等信息的目標(biāo)航天器.目前,空間合作目標(biāo)的在軌服務(wù)技術(shù)已經(jīng)比較成熟,并且成功應(yīng)用于空間站的交會對接等領(lǐng)域.例如,歐空局的SMART-OLEV項目[2]、日本的ETS-VII項目等.而空間非合作目標(biāo)是指質(zhì)量特性參數(shù)未知的空間物體,包括故障或失效衛(wèi)星、空間碎片以及敵方航天器[3]等.這類非合作目標(biāo)的共性是與服務(wù)航天器間沒有互動的信息交流,進而對捕獲后組合體的高精度姿態(tài)控制產(chǎn)生不利的影響.因此必須對非合作目標(biāo)進行準(zhǔn)確的質(zhì)量辨識.
目前,針對非合作目標(biāo)和組合體的質(zhì)量辨識問題,國內(nèi)外學(xué)者進行了大量的研究,已經(jīng)提出了一些辨識方法.Murotsu等[4]研究了空間機器人捕獲未知目標(biāo)后組合體參數(shù)辨識問題,提出了基于線動量守恒原理的辨識方法,但該方法只能辨識組合體的慣性參數(shù),不能辨識未知目標(biāo)的質(zhì)量.Yoshida等[5]研究了飛輪動量矩誤差等問題,提出了一種基于角動量守恒原理解算出空間機器人及各連桿質(zhì)量參數(shù)修正值的方法,并且通過多次修正后得到目標(biāo)最優(yōu)估計值.王明等[6]提出了一種基于機械臂運動的組合航天器慣性參數(shù)在軌辨識方法.該方法先通過空間機械臂的大范圍運動來改變航天器的速度,然后利用動量守恒原理辨識出組合航天器的質(zhì)量.張帆等[7]利用空間繩系機器人抓捕未知目標(biāo),提出了一種利用抓捕后保持階段的振動特性辨識未知目標(biāo)參數(shù)的方法.首先,根據(jù)質(zhì)量特性參數(shù)辨識的需要建立了系統(tǒng)的動力學(xué)模型;然后,分析非合作目標(biāo)和系繩在抓捕保持階段的姿態(tài)運動;最后在非合作目標(biāo)與本體衛(wèi)星沒有任何信息交互的情況下,利用抓捕階段目標(biāo)衛(wèi)星和系繩特有的振動來辨識非合作目標(biāo)的質(zhì)量.張海博等[8]將空間機器人和非合作目標(biāo)看作整個系統(tǒng),基于加速度計測量模型,利用遞推最小二乘法完成了系統(tǒng)的質(zhì)量、質(zhì)心的辨識.因為空間機器人各部分質(zhì)量特性參數(shù)都是已知的,進而可以解算出非合作目標(biāo)和機械臂末端作用器聯(lián)合體的質(zhì)量和質(zhì)心位置.李冬柏等[9]研究了捕獲目標(biāo)后在軌服務(wù)衛(wèi)星質(zhì)量和質(zhì)心位置的辨識問題,提出了利用最小二乘法來辨識衛(wèi)星的質(zhì)量和質(zhì)心的方法.金磊等[10]利用單臂自由漂浮機器人俘獲未知目標(biāo).該方法可以分為兩步:第一步在慣性坐標(biāo)系下建立機械臂和未知目標(biāo)的動力學(xué)模型,該模型中必然含有線動量和角動量等信息;第二步測量得到不同時刻下單臂機器人線速度和機械臂角速度、關(guān)節(jié)角,基于動量守恒原理建立含有未知目標(biāo)質(zhì)量特性的不同方程,最終完成辨識.該方法有兩個優(yōu)點:一是避免了動量方程組奇異的問題,二是允許系統(tǒng)線動量和角動量為零情況的存在,更具有普遍性.
以上采用動量守恒原理或最小二乘法對非合作目標(biāo)質(zhì)量辨識的研究對象大多為非合作目標(biāo)或與機械臂組成的剛性組合體,且忽略了機械臂的關(guān)節(jié)柔性.即便如文獻[11]所研究的帶有柔性連桿的空間機械臂,也只是考慮了連桿柔性而非關(guān)節(jié)柔性.本文針對非合作目標(biāo)與柔性關(guān)節(jié)機械臂組成的剛?cè)狁詈辖M合體提出了一種利用柔性關(guān)節(jié)機械臂的振動頻率辨識出非合作目標(biāo)質(zhì)量的方法,經(jīng)驗證該方法可辨識出剛?cè)狁詈辖M合體中非合作目標(biāo)的質(zhì)量.
1.1 問題描述
參考世界各國的SMART-OLEV和DEOS等項目,不失一般性,組合體系統(tǒng)包括操作航天器及安裝于其上的空間機械臂和非合作目標(biāo),如圖1所示.
圖1 組合體的示意圖Fig. 1 Illustration of the combined-body
1.2 組合體動力學(xué)建模
為了對捕獲的非合作目標(biāo)進行質(zhì)量辨識,假設(shè)空間坐標(biāo)系Oxyz為慣性坐標(biāo)系.在操作航天器的質(zhì)心處建立本體坐標(biāo)系O0x0y0z0,O0x0y0平面與Oxy平面共面.點A為機械臂與操作航天器的鉸接點,O0x0軸通過O0并指向點A,O0y0軸由O0x0軸逆時針旋轉(zhuǎn)90°得到,O0z0軸符合右手螺旋定則.在本文中只研究航天器在Oxy平面中的運動,故忽略z軸方向.假設(shè)非合作目標(biāo)為一個質(zhì)點,圖2為操作航天器與非合作目標(biāo)形成的組合體系統(tǒng)的簡化模型.
圖2 組合體系統(tǒng)的簡化模型Fig. 2 Simplified Model of the Combined-body System
假設(shè)操作航天器的質(zhì)量為m,關(guān)于其質(zhì)心的轉(zhuǎn)動慣量為J.在慣性坐標(biāo)系Oxyz中,質(zhì)心位置為(x,y).Ox軸逆時針旋轉(zhuǎn)到O0x0軸的角度α,α為操作航天器的俯仰角.操作航天器質(zhì)心O0到鉸接點A間的距離為d.機械臂連桿1和連桿2均為均質(zhì)桿,質(zhì)量分別為m1和m2,長度分別為l1和l2,關(guān)于各自質(zhì)心的轉(zhuǎn)動慣量分別為J1和J2.兩連桿關(guān)節(jié)是柔性的,且兩個鉸接點處的剛度系數(shù)分別為k1和k2.連桿2的末端固定著一個質(zhì)量未知的非合作目標(biāo),質(zhì)量表示為m3.設(shè)機械臂連桿1和連桿2由于關(guān)節(jié)柔性而發(fā)生彈性變形的轉(zhuǎn)角分別為θ1和θ2.
非合作目標(biāo)在坐標(biāo)系Oxyz中的質(zhì)心位置坐標(biāo)為:
(1)
連桿1的質(zhì)心位置坐標(biāo)為:
(2)
連桿2的質(zhì)心位置坐標(biāo)為:
(3)
操作航天器的平動動能為:
(4)
連桿1和連桿2的平動動能分別為:
(5)
(6)
操作航天器的轉(zhuǎn)動動能為:
(7)
連桿1和連桿2的轉(zhuǎn)動動能分別為:
(8)
(9)
非合作目標(biāo)的動能為:
(10)
系統(tǒng)的總動能為:
T=TP+TIP+TIIP+TZ+TIZ+TIIZ+T3
(11)
鉸接點處的彈性勢能分別為:
(12)
(13)
系統(tǒng)總勢能為:
V=V1+V2
(14)
系統(tǒng)拉格朗日函數(shù)為:
L=T-V
(15)
取系統(tǒng)廣義坐標(biāo)為:
q1?x,q2?y,
q3?α,q4?θ1,
q5?θ2.
系統(tǒng)廣義力為零,即:
Q1=Q2=Q3=Q4=Q5=0
(16)
將式(4)~(14)代入式(15),然后將式(15)~(16)代入拉格朗日方程:
j=1,2,…,5
(17)
得到系統(tǒng)動力學(xué)方程為:
(18)
其中,質(zhì)量矩陣、阻尼矩陣和剛度矩陣分別為:
各矩陣元素的具體值見文末附錄.
本文采用剛?cè)狁詈辖M合體中柔性關(guān)節(jié)機械臂振動的特征頻率來辨識非合作目標(biāo)的質(zhì)量.
當(dāng)機械臂處于平衡位置(即連桿1和連桿2關(guān)節(jié)沒有發(fā)生彈性變形)時,關(guān)節(jié)角為θ1=θ2=0,將系統(tǒng)動力學(xué)方程在機械臂平衡位置處進行小擾動線性化得:
(19)
其中,質(zhì)量矩陣、阻尼矩陣和剛度矩陣分別為:
各矩陣元素的具體值見文末附錄.
(20)
表1中設(shè)定了系統(tǒng)的各參數(shù)值.
表1 系統(tǒng)參數(shù)Table 1 Parameters of the System
根據(jù)表1中設(shè)定的參數(shù),系統(tǒng)的特征值為:
(21)
本文首先解算振動的特征頻率,然后代入公式(21)求出非合作目標(biāo)的質(zhì)量m3.將求解的質(zhì)量與實際質(zhì)量進行對比,驗證該方法的有效性.
對機械臂的振動進行數(shù)值仿真.仿真入口參數(shù)如表1所示.
MATLAB的仿真結(jié)果為:
圖3 質(zhì)量為5kg時機械臂振動的特征頻率圖Fig. 3 Illustration of characteristic frequency of the manipulator′s vibration when m3=5 kg
圖4 質(zhì)量為8kg時機械臂振動的特征頻率圖Fig. 4 Illustration of characteristic frequency of the manipulator′s vibration when m3=8kg
改變非合作目標(biāo)的質(zhì)量而不改變系統(tǒng)其它參數(shù)取值,采用上述方法進行質(zhì)量辨識.非合作目標(biāo)的質(zhì)量分別取8kg、10kg、15kg和20kg.圖4~7為不同質(zhì)量下的機械臂振動特征頻率的仿真結(jié)果.
圖5 質(zhì)量為10kg時機械臂振動的特征頻率圖Fig. 5 Illustration of characteristic frequency of the manipulator′s vibration when m3=10kg
圖6 質(zhì)量為15kg時機械臂振動的特征頻率圖Fig. 6 Illustration of characteristic frequency of the manipulator′s vibration when m3=15kg
圖7 質(zhì)量為20kg時機械臂振動的特征頻率圖Fig. 7 Illustration of characteristic frequency of the manipulator′s vibration when m3=20 kg
表2列出了對于不同質(zhì)量的非合作目標(biāo)的質(zhì)量辨識結(jié)果.由表2可知,本文所提方法對剛?cè)狁詈辖M合體中的非合作目標(biāo)質(zhì)量辨識誤差維持在較小的數(shù)量級,在工程中可以接受.
表2 辨識結(jié)果Table 2 Results of the Identification
本文以帶有柔性關(guān)節(jié)機械臂的操作航天器和空間非合作目標(biāo)形成的剛?cè)狁詈辖M合體為研究對象,針對非合作目標(biāo)質(zhì)量辨識的問題進行了研究,提出了一種基于柔性關(guān)節(jié)機械臂振動頻率來辨識空間非合作目標(biāo)質(zhì)量的方法.該方法僅需機械臂小角度的運動,且通過傳感器對機械臂的振動進行記錄,然后利用快速傅立葉變換求出振動的特征頻率,從而反解出非合作目標(biāo)的質(zhì)量.仿真驗證了該方法的可行性,可應(yīng)用于未來的剛?cè)狁詈辖M合體中非合作目標(biāo)的質(zhì)量辨識中.
1 梁斌,杜曉東,李成等. 空間機器人非合作航天器在軌服務(wù)研究進展. 機器人,2012,34(2):242~256 (Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft.Robot, 2012,34(2):242~256 (in Chinese))
2 Kaiser C, Sjoberg F, Delcura J M, et al. SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO.ActaAstronautica, 2008,63(1-4):400~410
3 Kassebom M. ROGER-An advanced solution for a geostationary service satellite.Robot, 2003,35(2):216~225
4 Murotsu Y, Senda K, Ozaki M, et al. Parameter identification of unknown object handled by free-flying space robot.JournalofGuidanceControl&Dynamics, 1992(3):488~494
5 Yoshida K. Inertia parameter identificationfor a free-flying space robot.AIAAJournal, 2002,68(672):AIAA 2002~4568
6 王明,黃攀峰,常海濤. 非合作目標(biāo)航天器質(zhì)量特性參數(shù)辨識. 飛行力學(xué),2014,32(6):201~212 (Wang M, Huang P F, Chang H T. Identification of mass characteristic parameters for non-cooperative target spacecraft.FlightDynamics, 2014,32(6):201~212 (in Chinese))
7 張帆,黃攀峰.空間繩系機器人抓捕非合作目標(biāo)的質(zhì)量特性參數(shù)辨識. 宇航學(xué)報,2015,36(6):630~639 (Zhang F, Huang P F. Inertia parameter estimation for an non-cooperative.JournalofAstronautics, 2015,36(6):630~639 (in Chinese))
8 張海博,王大軼,魏春嶺. 空間非合作目標(biāo)質(zhì)量特性在軌辨識. 航天控制,2015,33(3):23~28 (Zhang H B, Wang D Y, Wei C L. On-orbit Identification of mass properties of non-cooperative space target.AerospaceControl, 2015,33(3):23~28(in Chinese))
9 李冬柏,劉闖,王峰. 捕獲目標(biāo)后的在軌服務(wù)衛(wèi)星質(zhì)量和質(zhì)心位置辨識.中國空間科學(xué)學(xué)會2013年空間光學(xué)與機電技術(shù)研討會會議論文集, 2013 (Li D B, Liu C, Wang F. Method of mass and centroid identification for user satellites. Proceedings of the 2013 Conference on space optics and mechanical and electrical technology, China Space Science Society, 2013 (in Chinese))
10金磊,徐世杰. 空間機器人抓取未知目標(biāo)的質(zhì)量特性參數(shù)辨識. 宇航學(xué)報,2012,33(11):1570~1576 (Jin L, Xu S J. Inertial parameter identification of unknown object captured.JournalofAstronautics, 2012,33(11):1570~1576 (in Chinese))
11安凱,王飛飛. 空間機械臂柔性連桿的彎曲形狀. 動力學(xué)與控制學(xué)報,2016,14(1):48~52 (An K, Wang F F. Bending shape of space manipulator with flexible link.JournalofDynamicsandControl, 2016,14(1):48~52 (in Chinese))
附錄:
式(18)中矩陣M、C、K的各元素分別為:
m11=m+m1+m2+m3
m12=0
m21=m12
m22=m11
m31=m13
m32=m23
m41=m14
m42=m24
m43=m34
m51=m15
m52=m25
m53=m35
m54=m45
c11=c12=c21=c22=c31=c32=c41=c42=c51=c52=0
c44=0
k11=k12=k13=k14=k15=k21=k22=k23=k24=k25=0
k31=k32=k33=k34=k35=k41=k42=k43=k45=k51=k52=k53=k54=0
k44=k1
k55=k2
21 July 2016,revised 21 November 2016.
? Corresponding author E-mail: hanyanhua@nuaa.edu.cn
IDENTIFICATION OF MASS PARAMETER OF NON-COOPERATIVE SPACE TARGET BASED ON VIBRATION CHARACTERISTIC OF FLEXIBLE-JOINT MANIPULATOR
Li Xinyu Han Yanhua?
(CollegeofAstronautics,NanjingUniversityofAeronautics&Astronautics,Nanjing210016,China)
For the identification of mass parameter of non-cooperative space target in on-orbit servicing missions, a method of mass identification based on vibration characteristic of the flexible-joint manipulator is proposed. Firstly, the flexible-joint manipulator captures non-cooperative target. Then, the dynamic model of the combined-body formed by operational spacecraft, flexible-joint manipulator and non-cooperative space target is established. Finally, the mass of non-cooperative space target is identified by analyzing the vibration frequency of the manipulator. Numerical simulation results show the effectiveness of the method.
flexible-joint manipulator, non-cooperative space target, combined-body, dynamic modeling, mass identification
10.6052/1672-6553-2016-050
2016-07-21收到第1稿,2016-11-21收到修改稿.
? 通訊作者 E-mail: hanyanhua@nuaa.edu.cn