張 楠,莊昕波,黃子信,陳玉侖,李春保,周光宏*
(南京農(nóng)業(yè)大學(xué) 肉品加工與質(zhì)量控制教育部重點實驗室,農(nóng)業(yè)部畜產(chǎn)品加工重點實驗室,江蘇省肉類生產(chǎn)與加工質(zhì)量安全控制協(xié)同創(chuàng)新中心,江蘇 南京 210095)
低場核磁共振技術(shù)研究豬肉冷卻過程中水分遷移規(guī)律
張 楠,莊昕波,黃子信,陳玉侖,李春保,周光宏*
(南京農(nóng)業(yè)大學(xué) 肉品加工與質(zhì)量控制教育部重點實驗室,農(nóng)業(yè)部畜產(chǎn)品加工重點實驗室,江蘇省肉類生產(chǎn)與加工質(zhì)量安全控制協(xié)同創(chuàng)新中心,江蘇 南京 210095)
目的:采用低場核磁弛豫時間和低場核磁成像技術(shù),研究在模擬冷庫環(huán)境條件下,風循環(huán)冷卻和霧化噴淋冷卻過程中豬肉水分遷移規(guī)律。方法:選擇宰后2 h內(nèi)的整條帶皮豬背最長肌(通脊)10 條,沿肌肉走向垂直方向分切成4 份14 cm×10 cm×6 cm的肉塊,其中2 份保留豬皮及皮下脂肪(帶皮組),另2 份則去除豬皮及皮下脂肪(不帶皮組),帶皮組和不帶皮組肉塊分別放入風循環(huán)冷卻和霧化噴淋冷卻的模擬冷庫中進行冷卻,并于0.0、1.5、3.0、4.5、6.0 h和7.5 h進行低場核磁共振橫向弛豫時間(T2)和低場核磁成像測定,同時記錄肉塊質(zhì)量變化。結(jié)果:風循環(huán)冷卻過程中豬肉中結(jié)合水峰面積A2b和結(jié)合水占豬肉中總水分的百分比P2b變化差異不顯著(P>0.05)、不易流動水t21顯著降低(P<0.05),自由水A22、P22也顯著降低(P<0.05);而在霧化噴淋冷卻過程中,結(jié)合水A2b、P2b和不易流動水t21、A21、P21變化差異不顯著(P>0.05),自由水A22、P22則顯著降低(P<0.05)。帶皮豬肉和不帶皮豬肉在冷卻過程中水分遷移的變化過程相同,但水分損耗存在差異。結(jié)合圖像分析,在冷卻過程初期,豬肉干耗主要是自由水的損失;而冷卻后期,豬肉干耗則主要是部分不易流動水的損失。霧化噴淋冷卻通過補充外源水,來減小豬肉內(nèi)部和外表的水勢差而抑制不易流動水由內(nèi)向外遷移,可有效降低冷卻干耗。
低場核磁弛豫時間;低場核磁成像;冷卻干耗;霧化噴淋冷卻;風循環(huán)冷卻
張楠, 莊昕波, 黃子信, 等. 低場核磁共振技術(shù)研究豬肉冷卻過程中水分遷移規(guī)律[J]. 食品科學(xué), 2017, 38(11): 103-109.
DOI:10.7506/spkx1002-6630-201711017. http://www.spkx.net.cn
ZHANG Nan, ZHUANG Xinbo, HUANG Zixin, et al. Change in water mobility in pork during postmortem chilling analyzed by low-field nuclear magnetic resonance[J]. Food Science, 2017, 38(11): 103-109. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201711017. http://www.spkx.net.cn
冷卻肉是指動物在嚴格按照檢疫制度宰殺后,使其胴體溫度迅速降至7 ℃,并在后續(xù)的分割加工、流通和零售過程中始終不超過7 ℃的生鮮肉。冷鮮肉因具有肉嫩、味美、衛(wèi)生,及品質(zhì)優(yōu)于熱鮮肉和冷凍肉等特點,受到越來越多消費者喜愛。冷卻是冷卻豬肉加工的重要環(huán)節(jié),目前主要采用風冷工藝[1]。在冷卻過程中,存在熱量和水分的交換,造成胴體表面的水分蒸發(fā),形成冷卻干耗,對于豬胴體而言,宰后24 h內(nèi)的冷卻干耗可達到3.5%,給企業(yè)造成了嚴重的經(jīng)濟損失[2-3]。自20世紀80年代開始,加拿大等國家便開始研究霧化噴淋技術(shù)在豬牛羊屠宰加工企業(yè)的應(yīng)用,進而降低冷卻干耗[4-8]。但由于對該項技術(shù)的機理研究較少,過度噴淋導(dǎo)致的微生物污染及肉色劣變等問題較為嚴重,使得該技術(shù)一直沒得到很好的應(yīng)用和發(fā)展[9-12]。直到2000年前后,隨著衛(wèi)生管理和噴淋技術(shù)設(shè)施的改進,霧化噴淋技術(shù)才得到一定程度的應(yīng)用[13-18]。近10年來,我國部分屠宰加工企業(yè)開始采用霧化噴淋冷卻技術(shù),可使胴體冷卻干耗降低50%以上,起到了良好的降耗減費效果[19]。所謂的霧化噴淋是指在胴體冷卻過程中,通過特定的管道和增壓系統(tǒng),產(chǎn)生一定大小的霧化顆粒,增加冷卻濕度的同時,可在胴體表明形成一層水膜,從而實現(xiàn)降低損耗的技術(shù)[20-24]。但噴淋時間過長,仍會造成微生物超標、肉色變差等問題[25-26]。因此,弄清冷卻干耗機理,對于合理應(yīng)用霧化噴淋技術(shù),實現(xiàn)產(chǎn)業(yè)減費增效,具有十分重要的意義。
胴體冷卻是熱量交換、水分遷移的過程。早前研究中有關(guān)熱量交換的研究報道較多,但有關(guān)水分遷移規(guī)律仍鮮見報道。近年來,低場核磁共振(low-field nuclear magnetic resonance,LF-NMR)弛豫時間和低場核磁成像(magnetic resonance imaging,MRI)技術(shù)在肉品領(lǐng)域得到一定的應(yīng)用[27-28],也為胴體冷卻過程中水分遷移規(guī)律研究提供思路。本研究采用LF-NMR弛豫時間和MRI技術(shù),研究在風循環(huán)冷卻和霧化噴淋冷卻過程中帶皮豬肉和不帶皮豬肉中水分遷移變化規(guī)律,為霧化噴淋技術(shù)的進一步應(yīng)用提供理論參考。
1.1 材料與儀器
分批次取剛屠宰的生豬整條帶皮背最長肌10 份,于宰后2 h內(nèi)帶回實驗室進行實驗。
BCD-256WDGH冰箱 青島海爾冰箱有限公司;MacroMR核磁共振食品分析與成像系統(tǒng) 蘇州紐邁電子科技有限公司;噴霧迷你風扇 深圳市舞陽萬代科技有限公司。
1.2 方法
1.2.1 樣品制備
選擇宰后2 h內(nèi)的整條帶皮豬背最長?。ㄍ梗? 0 條,沿肌肉走向垂直方向分切成4份14 cm×10 cm×6 cm的肉塊,其中,2 份保留豬皮及皮下脂肪(帶皮組),另2 份則去除豬皮及皮下脂肪(不帶皮組),帶皮組和不帶皮組肉塊分別放入風循環(huán)冷卻和霧化噴淋冷卻的模擬冷庫中進行冷卻,并于0.0、1.5、3.0、4.5、6.0 h和7.5 h(對應(yīng)實際宰后時間為2.0、3.5、5.0、6.5、8.0 h和9.5 h)進行LF-NMR橫向弛豫時間(T2)和MRI測定。實驗設(shè)計如表1所示。
表1 實驗條件設(shè)計Table 1 Experimental design
1.2.2 LF-NMR弛豫時間分析
參照龐之列等[27]的方法,并作適當修改。將肉樣放入直徑30 cm樣品管中,置于LF-NMR儀進行弛豫時間T2的測定,每個肉樣平行測定2 次,取平均值。在32 ℃、22.4 MHz共振頻率下,使用CPMG(carr-purcellmeiboom-gill)脈沖序列(90°脈沖和180°脈沖之間的時間τ=200 μs),重復(fù)掃描8次,每次間隔3 s,得到2 000個回波。t2b、A2b、P2b分別代表豬肉中結(jié)合水的最高出峰時間、峰面積和結(jié)合水占豬肉中總水分的百分比;t21、A21、P21分別代表的是豬肉中不易流動水的最高出峰時間、峰面積和不易流動水占豬肉中總水分的比例;t22、A22、P22分別代表自由水的最高出峰時間、峰面積和自由水占豬肉中總水分的比例。
1.2.3 低場核磁成像
MRI參考Caballero等[29]方法。采用SE成像序列實驗,通過改變序列參數(shù)回波時間TE和重復(fù)時間TR來改變質(zhì)子密度以及T2對圖像的影響。本實驗中,運用MRI成像軟件及MSE多層自旋回波序列采集樣品橫斷面的質(zhì)子密度圖像,肉樣的放置和選層如圖1所示。MRI成像參數(shù):GSliceZ =1,GPhasey =1,GReadX=1,TR=800 ms,TE=11 ms,F(xiàn)OV Read=80 mm,F(xiàn)OV Phase=80 mm,累加8 次,K空間大小256×192;肉樣選層厚度3.0 cm。
圖1 樣品測定方法示意圖Fig. 1 Schematic diagram of the measurement method
1.3 數(shù)據(jù)統(tǒng)計分析
數(shù)據(jù)處理采用SAS 9.1.2軟件分析系統(tǒng),樣品狀態(tài)(帶皮、不帶皮)、冷卻方式(風循環(huán)冷卻、霧化噴淋冷卻)和宰后時間對本實驗指標的影響采用析因方差設(shè)計分析(factorial ANOVA),各處理組間的差異顯著性采用Duncan’s多重比較法。
2.1 冷卻方式和樣品狀態(tài)對豬肉冷卻過程中水分弛豫時間的影響
2.1.1 對結(jié)合水的影響
圖2 不同冷卻方式和樣品狀態(tài)對豬肉中結(jié)合水t 2b 、A2b、P2b的=10)Fig. 2 Effect of chilling methods and sample status on t2b, A2band P2bin pork (n = 10)影響(n
如圖2所示,冷卻方式和樣品狀態(tài)對豬肉冷卻過程中結(jié)合水的峰面積(A2b)和峰面積比(P2b)沒有顯著影響(P>0.05),但對結(jié)合水出峰時間(t2b)有顯著影響(P<0.05)。對于風循環(huán)冷卻組,帶皮豬肉和不帶皮豬肉的t2b隨冷卻時間延長呈增加趨勢,而霧化噴淋冷卻組呈降低趨勢,在1.5 h時,帶皮組t2b值明顯高于不帶皮組,在其他時間點沒有顯著差異。
2.1.2 對不易流動水的影響
圖3 不同冷卻方式和樣品狀態(tài)對豬肉中不易流動水t21、A21、P21的=10)Fig. 3 Effect of chilling methods and sample status on t21, A21and P21of immobilized water in pork (n = 10)影響(n
如圖3所示,樣品狀態(tài)對豬肉中不易流動水的最高出峰時間(t21)沒有顯著影響(P>0.05),但冷卻方式對t21有顯著影響(P<0.05)。風循環(huán)冷卻組,t21隨著冷卻時間的延長而逐漸下降(P<0.05),且?guī)へi肉t21顯著高于不帶皮豬肉(P<0.05)。而霧化噴淋冷卻組中,t21沒有顯著變化(P>0.05)。在霧化噴淋冷卻組和風循環(huán)冷卻組中,隨著冷卻時間延長,P21均呈現(xiàn)出現(xiàn)增加后保持穩(wěn)定的趨勢,但風循環(huán)冷卻組在1.5 h時就達到穩(wěn)定,而霧化噴淋冷卻組在3.0 h時達到最大并保持穩(wěn)定(P<0.05)。風循環(huán)冷卻組中,A21隨時間沒有顯著變化,而霧化噴淋冷卻組表現(xiàn)出先增加后穩(wěn)定的趨勢(P<0.05)。
2.1.3 對自由水的影響
圖4 不同冷卻方式和樣品狀態(tài)對豬肉中自由水t22、A22、P22的=10)Fig. 4 Effect of chilling methods and sample status on t22, A22and P22of free water in pork (n = 10)影響(n
如圖4所示,帶皮和不帶皮豬肉在冷卻過程中自由水的峰面積(A22)及自由水在總水分中的比例(P22)都顯著下降(P<0.05),尤其是在1.5 h內(nèi)下降非常明顯。帶皮豬肉和不帶皮豬肉之間沒有顯著差異(P>0.05)。霧化噴淋冷卻組要略高于風循環(huán)冷卻組(P<0.05),說明風循環(huán)冷卻造成的蒸發(fā)損失更高。
2.2 冷卻方式和樣品狀態(tài)對豬肉冷卻過程中質(zhì)量的影響如圖5所示,帶皮豬肉和不帶皮豬肉在冷卻過程中質(zhì)量都呈現(xiàn)出顯著差異(P<0.05),帶皮豬肉和不帶皮豬肉的質(zhì)量損失沒有顯著差異(P>0.05),但風循環(huán)冷卻組的質(zhì)量損失明顯高于霧化噴淋組(P<0.05),霧化噴淋冷卻損耗抑制最高值在1.5%左右,而風循環(huán)冷卻組則高達6%。因此,霧化噴淋冷卻在減少冷卻干耗方面的優(yōu)勢明顯。
=10)Fig. 5 Effect of chilling methods and sample status on pork weight (n = 10)圖5 不同冷卻方式和樣品狀態(tài)對豬肉質(zhì)量的影響(n
2.3 風循環(huán)冷卻過程中低場核磁對豬肉水分成像
圖6 風循環(huán)冷卻(A)和霧化噴淋冷卻(B)過程中LF-NMR對豬肉水分成像Fig. 6 Low-field nuclear magnetic resonance images of pork under blast chilling (A) or spray chilling (B)
由上述結(jié)果可以看出,在相同模擬冷卻條件下,帶皮豬肉和不帶皮豬肉中水分遷移規(guī)律基本相似。霧化噴淋組和風循環(huán)冷卻的變化趨勢基本相似,但在時間變化點及數(shù)值上存在一定差異。為了進一步研究水分遷移規(guī)律,MRI圖像可提供更為有用的信息。圖6顯示了帶皮豬肉在風循環(huán)和霧化噴淋冷卻過程中不同時間段的MRI(由上到下),紅色部分表示水分加權(quán)高,即水分含量高;綠色部分表示水分加權(quán)低,水分含量少(圖中未顯示)。在0.0 h和1.5 h時,成像中水分加權(quán)很低,但其并不代表豬肉中水分含量少,而是因為測試物的溫度差異導(dǎo)致信號強度有所差異,溫度越高信號強度越弱,溫度越低信號強度越高強。這一現(xiàn)象可反映豬肉在冷卻過程中的溫度變化。從整體來看,外側(cè)豬肉的水分信號要高于內(nèi)部水分;從單個圖片來看,肉塊四周信號要明顯高于中間信號,這說明肉塊的冷卻過程由外向內(nèi)的過程。在4.5 h時,豬肉中水分信號均勻,說明整個冷卻過程基本完成。隨著時間進一步推移,紅色部分明顯減少,綠色部分明顯增加(圖中未顯示),說明在冷卻后期水分發(fā)生遷移損耗。雖然內(nèi)部的水分含量明顯偏高,但是在后期其水分含量也明顯下降,說明水分在向肉的外部遷移。所以,通過成像可以發(fā)現(xiàn),水分先由肉塊內(nèi)部向外部遷移,再由外側(cè)向空氣中遷移。此外,從MRI圖像中還可以看出,樣品逐漸變小,主要是因為僵直收縮所致。
本實驗采用LF-NMR弛豫時間和MRI方法,研究了兩種冷卻方式下帶皮豬肉和不帶皮豬肉中水分遷移變化規(guī)律。鮮肉中的水分主要以自由水、不易流動水和結(jié)合水3 種形式存在[30]。自由水指的是肌肉中能夠自由流動,存在于細胞外間隙中的水,它僅靠毛細管作用力而保持;不易流動水是指那些存在于肌原纖維、纖絲中約占總水分80%的水分;結(jié)合水是指與蛋白質(zhì)大分子之間通過靜電引力而緊密結(jié)合的一部分水分子。
實驗發(fā)現(xiàn),不同類型的豬肉在冷卻過程中水分遷移規(guī)律相同,但水分損耗量存在一定的差異。結(jié)合水在豬肉總水分中的比例較少(約占4%左右),且和蛋白基團緊密結(jié)合,所以風循環(huán)冷卻過程沒有產(chǎn)生結(jié)合水遷移;而不易流動水的A21、P21呈先增加后降低趨勢。帶皮組中由于皮和脂肪的保護作用,不易流動水的變化相對較為緩和。在冷卻起始階段,可能會發(fā)生肌肉收縮,增加了單位體積中水分含量,起到“水分濃縮”作用,進而使A21、P21顯著增加(主要是因為自由水比例高,所以A21和P21變化更為明顯)。在后續(xù)冷卻過程中,隨著豬肉表面自由水被蒸發(fā),表面內(nèi)外水壓力差增加,使內(nèi)部的不易流動水攜帶熱量不斷向外部遷移、蒸發(fā),從而導(dǎo)致豬肉中A21和P21在冷卻后期顯著降低。此外,低場弛豫時間t21也可以解釋豬肉中不易流動水的損耗過程。弛豫時間t21越短,說明水分在豬肉內(nèi)部被束縛的越緊,越不容易流失[28]。在風循環(huán)冷卻開始階段,帶皮豬肉和不帶皮豬肉的t21差異不顯著,說明在這一階段中豬肉的水分損耗都是自由水。結(jié)合MRI結(jié)果,風循環(huán)冷卻初期,冷卻干耗主要是自由水的損失;而后期冷卻干耗則主要是部分不易流動水的損失。
和風循環(huán)冷卻相似,霧化噴淋冷卻中,豬肉表面水勢因自由水的蒸發(fā)而增加,但在后續(xù)冷卻過程中,通過噴灑適量的外源水來降低豬肉表面的水勢差,以抑制不易流動水由內(nèi)向外遷移,從而降低冷卻干耗。
本實驗研究了風循環(huán)冷卻和霧化噴淋冷卻條件下,帶皮和不帶皮豬肉水分遷移規(guī)律,發(fā)現(xiàn)在風循環(huán)冷卻初期,豬肉冷卻干耗主要源于自由水的損失;而后期的冷卻干耗主要源于部分不易流動水的損失。霧化噴淋冷卻通過向胴體或肉的外表噴灑適量的外源水,可降低肉表面內(nèi)部和外表的水勢,從而減緩不易流動水由內(nèi)向外遷移,降低冷卻干耗。
[1] 周光宏, 徐幸蓮. 肉品學(xué)[M]. 北京: 中國農(nóng)業(yè)出版社, 1999: 12.
[2] JONES S D M, JEREMIAH L E, ROBERTSON W M. The effects of spray and blast-chilling on carcass shrinkage and pork muscle quality[J]. Meat Science, 1993, 34(3): 351-362. DOI:10.1016/0309-1740(93)90083-T.
[3] SAVELL J W, MUELLER S L, BAIRD B E. The chilling of carcasses[J]. Meat Science, 2005, 70(3): 449-459. DOI:10.1016/ j.meatsci.2004.06.027.
[4] JONES S D M, ROBERTSON W M. The effects of spray-chilling carcasses on the shrinkage and quality of beef[J]. Meat Science, 1988, 24(3): 177-188. DOI:10.1016/0309-1740(88)90076-9.
[5] JONES S D M, MURRAy A C, ROBERTSON W M. The effects of spray chilling pork carcasses on the shrinkage and quality of pork[J]. Canadian Institute of Food Science and Technology Journal, 1988, 21(1): 102-105.
[6] HIPPE C L, FIELD R A, RAy B, et al. Effect of spray-chilling on quality of beef from lean and fatter carcasses[J]. Journal of Animal Science, 1991, 69(1): 178-183. DOI:10.2527/1991.691178x.
[7] LEE L M, HAWRySH Z J, JEREMIAH L E, et al. Shrouding, spraychilling and vacuum-packaged aging effects on processing and eating quality attributes of beef[J]. Journal of Food Science, 1990, 55(5): 1270-1273. DOI:10.1111/j.1365-2621.1990.tb03913.x.
[8] BROWN T, CHOUROUZIDIS K N, GIGIEL A J. Spraying chilling of lamb carcasses[J]. Meat Science, 1993, 34(3): 311-325. DOI:10.1016/0309-1740(93)90080-2.
[9] STRyDOM P E, BUyS E M. The effects of spray-chilling on carcass mass loss and surface associated bacteriology[J]. Meat Science, 1995, 39(2): 265-276. DOI:10.1016/0309-1740(94)P1827-I.
[10] ALLEN D M, HUNT M C, FILHO A L, et al. Effects of spray chilling and carcass spacing on beef carcass cooler shrink and grade factors[J]. Journal of Animal Science, 1987, 64(1): 165-170.
[11] GREER G G, DILTS B D. Bacteriology and retail case life of spray-chilled pork[J]. Canadian Institute of Food Science and Technology Journal, 1988, 21(3): 295-299.
[12] FELDHUSEN F, KIRSCHNER T, KOCH R, et al. Inf l uence on meat colour of spray-chilling the surface of pig carcasses[J]. Meat Science, 1995, 40(2): 245-251. DOI:10.1016/0309-1740(94)00047-B.
[13] JAMES S. The chill chain “from carcass to consumer’’[J]. Meat Science, 1996, 43(Suppl 1): 203-216. DOI:10.1016/0309-1740(96)00066-6.
[14] SHACKELFORD S D, KING D A, WHEELER T L. Chilling rate effects on pork loin tenderness in commercial processing plants[J]. Journal of Animal Science, 2012, 90(8): 2842-2849. DOI:10.2527/ jas.2011-4855.
[15] WIKLUND E, KEMP R M, LEROUX G J, et al. Spray chilling of deer carcasses: effects on carcass weight, meat moisture content, purge and microbiological quality[J]. Meat Science, 2010, 86(4): 926-930. DOI:10.1016/j.meatsci.2010.07.018.
[16] JANZ J A M, AALHUS J L. Meat quality, bacteriology and retail case life of bison Longissimus lumborum following spray chilling[J]. Journal of Muscle Foods, 2006, 17(3): 330-342. DOI:10.1111/j.1745-4573.2006.00053.x.
[17] GILL CO, LANDERS C. Effects of spray-cooling processes on the microbiological conditions of decontaminated beef carcasses[J]. Journal of Food Protection, 2003, 66(7): 1247-1252. DOI:10.4315/0362-028X-66.7.1247.
[18] GREER G G, JONES S D M. Quality and bacteriological consequences of beef carcass spray-chilling: effects of spray duration and boxed beef storage temperature[J]. Meat Science, 1997, 45(1): 61-73. DOI:10.1016/S0309-1740(96)00073-3.
[19] 張向前, 徐幸蓮, 周光宏, 等. 季節(jié)和霧化噴淋冷卻對豬半胴體干耗及品質(zhì)的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2007, 30(3): 124-128. DOI:10.7685/j.issn.1000-2030.2007.03.024.
[20] FELDHUSEN F. The influence of spray chilling on temperature prof i les and weight losses of pig half carcasses[J]. Fleischwirtschaft, 1993, 73(2): 184-187.
[21] BROWN T, JAMES S J. Process design data for pork chilling[J]. International Journal of Refrigeration, 1992, 15(5): 281-289. DOI:10.1016/0140-7007(92)90043-T.
[22] GILL C O, JONES S D M, TONG A K W. Application of a temperature function integration technique to assess the hygienic adequacy of a process for spray chilling beef carcasses[J]. Journal of Food Protection, 1991, 54(9): 731-736.
[23] ISSA R J, LAWRENCE T. Experimental heat transfer study of beef carcasses chilled by mist sprays[J]. Experimental Heat Transfer, 2014, 28(1): 69-88. DOI:10.1080/08916152.2013.813877.
[24] PRADO C S, de FELICIO P E. Effects of chilling rate and spraychilling on weight loss and tenderness in beef strip loin steaks[J]. Meat Science, 2010, 86(2): 430-435. DOI:10.1016/j.meatsci.2010.05.029.
[25] KINSELLA K J, SHERIDAN J J, ROWE T A, et al. Impact of a novel spray-chilling system on surface microf l ora, water activity and weight loss during beef carcass chilling[J]. Food Microbiology, 2006, 23(5): 483-490. DOI:10.1016/j.fm.2005.05.013.
[26] JACOB R H, HOPKINS D L. Techniques to reduce the temperature of beef muscle early in the post mortem period: a review[J]. Animal Production Science, 2014, 54(4): 482-493. DOI:10.1071/AN12338.
[27] 龐之列, 何栩曉, 李春保. 一種基于LF-NMR技術(shù)的不同含水量豬肉檢測方法研究[J]. 食品科學(xué), 2014, 35(4): 142-145. DOI:10.7506/ spkx1002-6630-201404029.
[28] 夏天蘭, 劉登勇, 徐幸蓮, 等. 低場核磁共振技術(shù)在肉與肉制品水分測定及其相關(guān)品質(zhì)特性中的應(yīng)用[J]. 食品科學(xué), 2011, 32(21): 253-256.
[29] CABALLERO D, CARO A, RODRIGUEZ P G, et al. Modeling salt diffusion in Iberian ham by applying MRI and data mining[J]. Journal of Food Engineering, 2016, 189: 115-122. DOI:10.1016/ j.jfoodeng.2016.06.003.
[30] LI C, LIU D, ZHOU G, et al. Meat quality and cooking attributes of thawed pork with different low field NMR T-21[J]. Meat Science, 2012, 92(2): 79-83. DOI:10.1016/j.meatsci.2011.11.015.
Change in Water Mobility in Pork during Postmortem Chilling Analyzed by Low-Field Nuclear Magnetic Resonance
ZHANG Nan, ZHUANG Xinbo, HUANG Zixin, CHEN Yulun, LI Chunbao, ZHOU Guanghong*
(Key Laboratory of Meat Products Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China)
Objective: This study was designed to explore the change in water mobility in skin-on and skin-off pork during blast chilling and spray chilling. Methods: Ten skin-on pork loins were obtained at 2 h postmortem and each loin was cut into 4 steaks (14 cm × 10 cm × 6 cm), the skin of two of which was kept and the other two were skinless. Skin-on and skinless steaks were individually subjected to blast chilling and spray chilling. At 0.0, 1.5, 3.0, 4.5, 6.0 and 7.5 h of chilling, transverse relaxation time (T2) and magnetic resonance images (MRI) were determined by low-field nuclear magnetic resonance (LF-NMR) and sample weight was measured. Results: The A2band P2bchanged without statistical significance (P > 0.05), and the t21, A22and P22were significantly decreased during blast chilling (P < 0.05), while spray treatment significantly reduced A22and P22(P < 0.05), but it had no significant effect on A2b, P2b, t21, A21or P21(P > 0.05). The water mobility in skinless or skin-on pork under two chilling treatments was similar, while the evaporative loss was significantly affected by the treatments (P < 0.05). At the initial stage of blast chilling, the evaporative loss was mainly derived from free water, while it was immobilized water that contributed to the evaporative loss at the late stage. The spray chilling treatment could replace the immobilized water during the removal of heat from pork, resulting in a reduction of evaporative loss.
low-field nuclear magnetic relaxation time; low-field nuclear magnetic resonance imaging; evaporative loss; spray chilling; blast chilling
=104,ebook=111
10.7506/spkx1002-6630-201711017
TS251.1
A
1002-6630(2017)11-0103-07引文格式:
2016-11-25
“十二五”國家科技支撐計劃項目(2014BAD19B01);江蘇省農(nóng)業(yè)自主創(chuàng)新項目(CX(15)1006);江蘇省重點研發(fā)計劃項目(BE2015372);國家現(xiàn)代農(nóng)業(yè)(生豬)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS36-11);南京農(nóng)業(yè)大學(xué)基本業(yè)務(wù)費專項(KYCYL201502);江蘇省優(yōu)勢學(xué)科PADP項目
張楠(1981-),男,博士研究生,研究方向為畜產(chǎn)品加工與質(zhì)量控制。E-mail:285913549@qq.com
*通信作者:周光宏(1960-),男,教授,博士,研究方向為畜產(chǎn)品加工與質(zhì)量控制。E-mail:guanghong.zhou@hotmail.com