史學(xué)蓮,時高峰,王小玲,王 琦,劉 輝
(河北醫(yī)科大學(xué)第四醫(yī)院CT/MRI室,河北 石家莊 050011)
DCE-MRI定量參數(shù)Ktrans值評估抗血管生成藥物治療裸鼠胃癌原位移植瘤的療效
史學(xué)蓮,時高峰*,王小玲,王 琦,劉 輝
(河北醫(yī)科大學(xué)第四醫(yī)院CT/MRI室,河北 石家莊 050011)
目的 分析MR動態(tài)增強掃描(DCE-MRI)定量參數(shù)Ktrans值評估甲磺酸阿帕替尼治療裸鼠胃癌原位移植瘤的療效。方法 建立裸鼠胃癌原位移植瘤模型后,隨機分為治療組(n=15,胃內(nèi)灌注甲磺酸阿帕替尼100 mg/kg體質(zhì)量)和對照組(n=15,胃內(nèi)灌注無菌去離子水),治療18天后行DCE-MRI,并定量測量Ktrans值。檢查結(jié)束后,取出瘤體測量微血管密度(MVD)值和血管內(nèi)皮生長因子(VEGF)水平,并對比組間差異。結(jié)果 與對照組相比,治療組MVD值(χ2=4.89,P<0.05)、VEGF水平明顯減低(χ2=8.69,P<0.01),治療組Ktrans值[(0.63±0.05)/min]明顯低于對照組 [(1.66±0.23)/min;t=17.05,P<0.01]。結(jié)論 DCE-MRI定量參數(shù)Ktrans值可作為胃癌抗血管生成藥物甲磺酸阿帕替尼療效的評估指標(biāo)。
磁共振成像;胃腫瘤;模型,動物;血管生成抑制劑
甲磺酸阿帕替尼(Apatinib mesylate,商品名:艾坦)是一種新型的血管內(nèi)皮生長因子受體(vascular endothelial growth factor receptor, VEGFR-2)酪氨酸激酶抑制劑,可以有效抑制細胞增殖、轉(zhuǎn)移,是治療晚期胃癌的新選擇[1-2]。微血管密度(microvessel density, MVD)是評估腫瘤相關(guān)血管生成以及胃癌預(yù)后的有效指標(biāo),血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)的表達與胃癌血管受侵、轉(zhuǎn)移和臨床預(yù)后有關(guān)[3-4],但MVD、VEGF等的測定方法為有創(chuàng)操作,無法動態(tài)、重復(fù)地觀察腫瘤血管生成情況,亦無法檢測腫瘤血管早期的變化。MR動態(tài)增強掃描(dynamic contrast enhanced MRI, DCE-MRI)是一種無創(chuàng)評估腫瘤血管改變的影像學(xué)檢查方法,常被用于抗腫瘤療效的評估。T1加權(quán)DCE-MRI可進行半定量或定量分析,其參數(shù)可以反映血管的生理學(xué)和解剖學(xué)特點[5-6]。本研究通過建立裸鼠胃癌原位移植瘤模型,評估DCE-MRI監(jiān)測抗血管生成藥物療效的可行性。
1.1材料 中分化人胃癌細胞株(SGC7901,購自中國科學(xué)院上海細胞研究所);雄性BALB/c-nu裸小鼠48只[4~6周齡,體質(zhì)量16~20 g,購于北京維通利華實驗動物技術(shù)有限公司,許可證號:SCXK(京)2012-0001];CD34單克隆抗體、鼠抗人VEGF單克隆抗體(英國Abcam公司);免疫組化試劑、DAB顯色液(北京中杉金橋生物技術(shù)開發(fā)公司);EDTA修復(fù)液(Gene Tech公司)。實驗動物均在河北醫(yī)科大學(xué)第四醫(yī)院動物實驗中心標(biāo)準(zhǔn)環(huán)境中飼養(yǎng),所有實驗均經(jīng)倫理委員會批準(zhǔn)。
1.2模型的建立 人胃癌細胞株SGC7901常規(guī)復(fù)蘇、傳代后,取至少5×106個/100 μl PBS細胞懸液,注射于3只裸小鼠右腋下建立皮下移植瘤模型,接種3周左右瘤體生長至直徑約10 mm時取出以傳代,取傳代5次的瘤體,處理后備用。裸鼠術(shù)前停食12 h,腹腔注射2%戊巴比妥鈉麻醉,常規(guī)消毒,取腹正中切口,于劍突下切開約1.5 cm皮膚,自白線處切開腹膜,將胃稍拉出腹腔,在胃大彎側(cè)血管豐富區(qū)劃開胃漿膜層成“一”字,觀察到出血后將備用瘤塊接種于此。在“一”字處滴少量OB膠,將網(wǎng)膜組織覆蓋在膠上,待粘合牢固后將鼠胃還納入腹,逐層關(guān)腹[7]。采用上述方法建立30只裸鼠胃癌模型,術(shù)后繼續(xù)飼養(yǎng)3周。
1.3分組 將建模成功裸鼠隨機分為治療組(n=15),每天每只給予甲磺酸阿帕替尼2 mg,以無菌去離子水溶解至0.1 ml進行灌胃治療,累及劑量約 100 mg/kg體質(zhì)量);對照組(n=15),每天每只0.1 ml無菌去離子水灌胃,18天[8]后行DCE-MRI。
1.4 DCE-MRI 掃描前麻醉裸鼠,采用26G留置針行尾靜脈穿刺,將裸鼠置于硬質(zhì)板保定并保溫。采用Siemens SKYRA 3.0T超導(dǎo)型MR掃描儀,Loop線圈。平掃序列包括TSE序列T2WI、T1WI,然后以5°、10°、12°、15°翻轉(zhuǎn)角行T1加權(quán)的軸位容積式插入法屏氣檢查(volumetric interpolated breath-hold examination, VIBE)序列,隨后行翻轉(zhuǎn)角為12°的VIBE動態(tài)灌注成像。第1期時間為4.14 s,隨后各期時間為1.50 s。掃描5期后,經(jīng)尾靜脈手動推注對比劑(釓噴酸葡胺注射液),0.3 mmol/kg體質(zhì)量,同時連續(xù)無中斷掃描160期,共計掃描時間為4 min 5 s。掃描參數(shù)見表1。
將數(shù)據(jù)傳至Syngo VX91B圖像處理工作站,采用Tissue 4D軟件分析,在2名資深放射科專家監(jiān)督下,參考配準(zhǔn)校正后的動態(tài)圖像,分別在2個不同層面腫瘤強化最明顯處勾畫ROI,面積約1 mm2。采用Tofts模型進行分析(分析模型采用“slow”,對比劑劑量0.01 ml)獲得定量參數(shù):轉(zhuǎn)運常數(shù)(volume transfer coefficient, Ktrans)、血管外細胞外容積分數(shù)(extravascular extracellular volume fraction, Ve)和速率常數(shù)(reverse reflux rate constant, Kep)。每個數(shù)值測量2次后取平均值。
1.5免疫組化染色及判定標(biāo)準(zhǔn) 荷瘤裸鼠接受DCE-MRI后立即處死,取出瘤體,以10%中性甲醛溶液固定。盡量選取與MR軸位掃描對應(yīng)的腫瘤強化位置進行脫水透明、浸蠟包埋。HE染色后于顯微鏡下觀察移植瘤生長情況及癌灶壞死情況。采用MaxVisionTM/HRP即用型快捷免疫組化染色方法進行免疫組化染色。本研究選擇CD34作為標(biāo)記物,將成簇的血管內(nèi)皮細胞與鄰近的微血管、腫瘤細胞和結(jié)締組織分開,被CD34標(biāo)記的成簇的血管內(nèi)皮細胞認為是一個單獨、可計數(shù)的微血管。低倍鏡下確定熱點區(qū)域,并計數(shù)染色的微血管數(shù)均值,所有樣本均計算3個血管熱點區(qū)域微血管數(shù)量的平均值,獲得每個樣本的MVD。將所有樣本MVD按照從高到低進行排列,取前10%定義為高MVD,其余為低MVD。
表1 裸鼠各掃描序列參數(shù)
表2 治療組和對照組DCE-MRI定量參數(shù)
表3 治療組和對照組MVD和VEGF表達水平[只(%),n=15]
圖1 裸鼠移植瘤Ktrans圖 A.對照組Ktrans圖,Ktrans=1.625/min; B.治療組Ktrans圖,Ktrans=0.707/min
VEGF表達水平的觀察,由2名病理醫(yī)師分別對每張切片(觀察500個細胞)的VEGF結(jié)果進行判讀,計算VEGF陽性細胞占所觀察細胞的百分數(shù),有異議的切片要共同觀察得出結(jié)論;將VEGF分為高表達(VEGF染色細胞占所觀察細胞的百分數(shù)≥50%)和低表達(VEGF染色細胞占所觀察細胞的百分數(shù)<50%)。
腫瘤呈類圓形,T1WI呈等或稍低信號,T2WI呈稍高或等信號,信號欠均勻,腫瘤邊緣清楚。腫瘤強化最明顯區(qū)域多位于腫瘤周邊區(qū)域。治療組Ktrans值、Kep值低于對照組,Ve高于對照組,差異均有統(tǒng)計學(xué)意義 (P均<0.01,表2,圖1)。
CD34表達定位于細胞質(zhì)或細胞膜(圖2),治療組、對照組共計30個裸鼠移植瘤中,高MVD率為56.67%(17/30),低MVD率為43.33%(13/30);治療組與對照組表達情況差異有統(tǒng)計學(xué)意義(χ2=4.89,P<0.05,表3)。VEGF表達定位于細胞質(zhì)(圖3),VEGF高表達率為56.67%(17/30),而低表達率為43.33%(13/30);治療組與對照組的VEGF表達水平差異有統(tǒng)計學(xué)意義(χ2=8.69,P<0.01,表3)。
研究[3,9]表明,腫瘤介導(dǎo)的血管生成是由高水平的促血管生成因子和下調(diào)的內(nèi)源性血管生成抑制劑綜合作用的結(jié)果,其在胃惡性腫瘤的發(fā)病機制中起著基礎(chǔ)性作用。多項研究[10]表明,MVD參與腫瘤的發(fā)展和轉(zhuǎn)移,且腫瘤MVD與癌細胞進入血流的機會呈正相關(guān)[11],因此,MVD是評估腫瘤血管生成的可靠指標(biāo),可用于評估腫瘤的生長和進展。MVD越高,腫瘤的營養(yǎng)狀況越好,越有利于促進腫瘤生長,預(yù)后越差[12]。研究[13]顯示,腫瘤細胞來源的VEGF作用于血管內(nèi)皮細胞促進血管生成和腫瘤生長。在不同程度的胃癌病變中均發(fā)現(xiàn)VEGF免疫組化結(jié)果陽性,其表達與胃癌血管受侵、轉(zhuǎn)移和臨床預(yù)后有關(guān)[3-4]。
T1加權(quán)DCE-MRI定量藥代動力學(xué)分析是通過分析ROI內(nèi)對比劑的吸收獲得定量參數(shù),這些參數(shù)可反映血管的生理學(xué)和解剖學(xué)特點,所得結(jié)果更接近真實的組織微循環(huán)[5-6]?;赥ofts雙室模型,定量參數(shù)分析能夠測量對比劑從血漿滲漏到血管外細胞外間隙(extravascular extracellular space, EES)的正向轉(zhuǎn)運常數(shù)(Ktrans)、對比劑從EES返回到血漿的反向轉(zhuǎn)運常數(shù)(Kep)和EES容積分數(shù)(Ve)[14-15],三者關(guān)系為Kep=Ktrans/Ve。從生理學(xué)角度講,DCE-MRI定量參數(shù)中Ktrans值最有意義,因為其在血流量受限或組織滲透性受限的情況下,均能進行評估。復(fù)雜情況下,則代表血流量和滲透性[16]。DCE-MRI已經(jīng)越來越多地應(yīng)用于描述各種腫瘤的特征、抗腫瘤治療過程中腫瘤血流灌注的變化及鑒別診斷。不同腫瘤模型的研究[13,17-18]表明,DCE-MRI能夠監(jiān)測抗血管生成治療的反應(yīng)。
圖2 CD34免疫組化染色結(jié)果(×100) A.低MVD; B.高MVD 圖3 VEGF免疫組化染色結(jié)果(×100),棕色染色的細胞被定義為VEGF陽性細胞 A.低表達; B.高表達
自Folkman提出惡性腫瘤的生長、轉(zhuǎn)移依賴腫瘤新生血管的假說后,直接和間接證據(jù)均表明腫瘤生長和轉(zhuǎn)移伴隨著新生血管的生長,證明抗血管生成藥物治療腫瘤的合理性和可行性[3,19]。甲磺酸阿帕替尼是一種VEGFR-2抑制劑,臨床前數(shù)據(jù)表明,阿帕替尼對于實體腫瘤和白血病有較高的治療效果,可有效地抑制人臍靜脈內(nèi)皮細胞的增殖和遷移,阻斷大鼠主動脈環(huán),抑制裸鼠移植瘤的生長[8,20-21]。VEGFR-2和VEGF分子結(jié)合可有效地、選擇性地抑制血管內(nèi)皮生長因子信號的傳導(dǎo)。其作用機制是VEGFR-2和VEGF分子結(jié)合后首先發(fā)生受體二聚化,其次是受體本身羧基末端激酶區(qū)域的自動磷酸化作用,隨后多個不同的分子路徑同時被激活,如Raf/MEK/Erk通路引起內(nèi)皮細胞的增殖;p38-MAPK通路與內(nèi)皮細胞遷移有關(guān);PI3K/AKT/mTOR通路負責(zé)增強內(nèi)皮細胞的生存期,增加血管的通透性[1]。因此,治療組應(yīng)用VEGFR-2抑制劑后,抑制了VEGFR-2和VEGF分子結(jié)合的信號傳導(dǎo),從而抑制了血管內(nèi)皮細胞的遷移和管腔的形成[22],使腫瘤內(nèi)血管退化、MVD降低,導(dǎo)致血流量下降,使腫瘤異常血管“正常化”、腫瘤毛細血管滲透性下降,表現(xiàn)為治療組胃癌組織Ktrans值下降。研究[11]表明,腫瘤中VEGF上調(diào)誘導(dǎo)內(nèi)皮細胞的增殖,促進新生血管的形成,MVD增加,從而維持腫瘤的增殖,與本研究治療組VEGF低表達率明顯高于對照組的結(jié)果一致。本研究結(jié)果顯示,Ktrans值在治療組、對照組有差異,且變化趨勢與MVD、VEGF變化趨勢相一致,
總之,阿帕替尼對裸鼠胃癌原位移植瘤治療有效,且推測Ktrans值有可能作為胃癌抗血管生成藥物療效的評估指標(biāo),以期在臨床動態(tài)、無創(chuàng)地監(jiān)測抗血管生成藥物的療效,但還需要進一步研究證實。
[1] Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet, 2014,383(9911):31-39.
[2] Geng R, Li J. Apatinib for the treatment of gastric cancer. Expert Opin Pharmacother, 2015,16(1):117-122.
[3] Wu J, Shi YQ, Wu KC, et al. Angiostatin up-regulation in gastric cancer cell SGC7901 inhibits tumorigenesis in nude mice. World J Gastroenterol, 2003,9(1):59-64.
[4] Chen CN, Cheng YM, Lin MT, et al. Association of color Doppler vascularity index and microvessel density with survival in patients with gastric cancer. Ann Surg, 2002,235(4):512-518.
[5] Malamas AS, Jin EL, Zhang Q, et al. Anti-angiogenic effects of bumetanide revealed by DCE-MRI with a biodegradable macromolecular contrast agent in a colon cancer model. Pharm Res, 2015,32(9):3029-3043.
[6] Sourbron SP, Buckley DL. Tracer kinetic modelling in MRI: Estimating perfusion and capillary permeability. Phys Med Biol, 2012,57(2):R1-R33.
[7] Furukawa T, Fu X, Kubota T, et al. Nude mouse metastatic models of human stomach cancer constructed using orthotopic implantation of histologically intact tissue. Cancer Res, 1993,53(5):1204-1208.
[8] Tian S, Quan H, Xie C, et al. YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci, 2011,102(7):1374-1380.
[9] Saito H, Tsujitani S. Angiogenesis, angiogenic factor expression and prognosis of gastric carcinoma. Anticancer Res, 2001,21(6B):4365-4372.
[10] Wang YD, Wu P, Mao JD, et al. Relationship between vascular invasion and microvessel density and micrometastasis. World J Gastroenterol, 2007,13(46):6269-6273.
[11] Xie L, Shen LD, Qing C, et al. Correlational study of vascular endothelial growth factor expression and microvessel density in primary malignant gastric lymphoma. Med Oncol, 2012,29(3):1711-1715.
[12] Wang YB, Ba CF, Yang LF, et al. Expression of differentiation inhibiting factor 1 and vascular endothelial growth factor and the relation between them and microvessel density in gastric cancer tissue. Hepatogastroenterology, 2013,60(121):197-199.
[13] Li L, Wang K, Sun XL, et al. Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer. Med Sci Monit, 2015,21:376-382.
[14] Ahn SJ, An CS, Koom WS, et al. Correlations of 3T DCE-MRI quantitative parameters with microvessel density in a human-colorectal-cancer xenograft mouse model.Korean J Radiol, 2011,12(6):722-730.
[15] Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J Magn Reson Imaging, 1999,10(3):223-232.
[16] Khalifa F, Soliman A, El-Baz A, et al. Models and methods for analyzing DCE-MRI: A review. Med Phys, 2014,41(12):124301.
[17] 胡運勝,張貴祥,趙京龍,等.VEGF反義核酸調(diào)控兔VX2腫瘤早期血管生成的DCE-MRI研究.中國醫(yī)學(xué)影像技術(shù),2005,21(11):1640-1643.
[18] Ceelen W, Smeets P, Backes W, et al. Noninvasive monitoring of radiotherapy-induced microvascular changes using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in a colorectal tumor model. Int J Radiat Oncol Biol Phys, 2006,64(4):1188-1196.
[19] Rosen LS. Angiogenesis inhibition in solid tumors. Cancer J, 2001,7(3):S120-S128.
[20] Hu X, Zhang J, Xu B, et al. Multicenter phase Ⅱ study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer. Int J Cancer, 2014,135(8):1961-1969.
[21] Tong XZ, Wang F, Liang S, et al. Apatinib (YN968D1) enhances the efficacy of conventional chemotherapeutical drugs in side population cells and ABCB1-overexpressing leukemia cells. Biochem Pharmacol, 2012,83(5):586-597.
[22] Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol, 2013,107(3):230-236.
Ktransof dynamic contrast enhanced MRI in evaluation of anti-angiogenic effects on nude mice with orthotopic transplantation tumor model of gastric cancer
SHIXuelian,SHIGaofeng*,WANGXiaoling,WANGQi,LIUHui
(DivisionCT/MRI,theFourthAffiliatedHospitalofHebeiMedicalUniversity,Shijiazhuang050011,China)
Objective To assess the feasibility of Ktransvalue of dynamic contrast enhanced MRI (DCE-MRI) in evaluation of anti-angiogenic effects on nude mice with orthotopic transplantation tumor model of gastric cancer. Methods Nude mice with orthotopic transplantation tumor model of gastric cancer were randomly assigned to two groups: Treatment group (n=15), mice were given apatinib intragastrically for 18 days (100 mg/kg), and control group (n=15), mice were given ddH2O2in the same manner. After 18 days, DCE-MRI was performed and Ktransvalue was measured. Then the tumors were dissected from the adjacent tissues in order to detect the microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression levels. MVD and VEGF expression level were compared between treatment group and the control group. Results MVD (χ2=4.89,P<0.05) and VEGF expression level (χ2=8.69,P<0.01) of treatment group were much lower than those of control groups. The Ktransvalue of treatment group was significantly lower than that of control groups ([0.63±0.05]/min vs [1.66±0.23]/min,t=17.05,P<0.01). Conclusion The value of ktransin DCE-MRI can be utilized to assess the effects of apatinib on nude mice with orthotopic transplantation model of gastric cancer.
Magnetic resonance imaging; Stomach neoplasms; Models, animal; Angiogenesis inhibitors
史學(xué)蓮(1982—),女,山東陽信人,博士,主治醫(yī)師。研究方向:腫瘤影像學(xué)。E-mail: alian1982@126.com
時高峰,河北醫(yī)科大學(xué)第四醫(yī)院CT/MRI室,050011。E-mail: 18531117285@163.com
2016-10-30
2016-12-13
R735.2; R445.2
A
1003-3289(2017)06-0843-05
10.13929/j.1003-3289.201610144