俞淼,汪冰,張丹,馮源,梁紅麗,鄭令娜,王萌,程路峰,豐偉悅
1. 新疆醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,烏魯木齊 8300182. 中國(guó)科學(xué)院高能物理研究所納米生物效應(yīng)與安全性重點(diǎn)實(shí)驗(yàn)室,北京 100049
SO2與CeO2超細(xì)顆粒非均相反應(yīng)產(chǎn)物的細(xì)胞毒性效應(yīng)
俞淼1,2,汪冰2,#,張丹2,馮源2,梁紅麗2,鄭令娜2,王萌2,程路峰1,*,豐偉悅2
1. 新疆醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,烏魯木齊 8300182. 中國(guó)科學(xué)院高能物理研究所納米生物效應(yīng)與安全性重點(diǎn)實(shí)驗(yàn)室,北京 100049
大氣二次細(xì)顆粒物(secondary fine particulate matters, SFPMs)是我國(guó)城市大氣PM2.5的主要組成部分。然而由于PM2.5組成成份復(fù)雜,其毒性產(chǎn)生的來源并不明確。在本研究中,我們以二氧化鈰(CeO2)超細(xì)顆粒物(UFPs)為大氣細(xì)礦物質(zhì)顆粒模型,研究了SO2氣體在模擬大氣環(huán)境中,如濕度(RH)、紫外光照(UV)和NO2存在條件下,在CeO2UFPs界面經(jīng)多相反應(yīng)生成的二次無機(jī)細(xì)顆粒物的性質(zhì)及與細(xì)胞毒性的構(gòu)效關(guān)系。實(shí)驗(yàn)通過實(shí)時(shí)高通量細(xì)胞分析系統(tǒng),實(shí)時(shí)觀察了CeO2-SFPMs暴露對(duì)小鼠單核巨噬細(xì)胞(RAW264.7)增殖的影響;并進(jìn)一步檢測(cè)了CeO2-SFPMs對(duì)細(xì)胞膜通透性和細(xì)胞凋亡的影響。結(jié)果表明,SO2與CeO2UFPs作用后可轉(zhuǎn)化為硫酸鹽,在有NO2存在下轉(zhuǎn)化更為明顯。CeO2-SFPMs對(duì)細(xì)胞毒性效應(yīng)與其生成的環(huán)境條件相關(guān),并具有時(shí)間效應(yīng)性。RAW264.7細(xì)胞暴露于CeO2-SFPMs 8 h,細(xì)胞增殖無明顯變化;暴露8~25 h后,CeO2-SFPMs對(duì)細(xì)胞增殖的抑制率隨CeO2< @CeO2+SO2< @CeO2+SO2+RH ≈ @CeO2+SO2+RH+UV < @CeO2+SO2+RH+NO2的順序顯著升高。CeO2-SFPMs對(duì)Raw264.7細(xì)胞膜通透性和細(xì)胞凋亡的影響研究也證明CeO2-SFPMs@CeO2+SO2+RH+NO2產(chǎn)生的細(xì)胞毒性最明顯。
二次無機(jī)細(xì)顆粒物;超細(xì)二氧化鈰;界面多相反應(yīng);小鼠單核巨噬細(xì)胞;細(xì)胞毒性
大氣細(xì)顆粒物(PM2.5)是指空氣動(dòng)力學(xué)直徑小于或等于2.5 μm的大氣顆粒物。由于PM2.5粒徑小、比表面積大,可經(jīng)人體上呼吸道沉積在支氣管和肺泡等區(qū)域,導(dǎo)致呼吸道炎癥等多種肺部疾病,并成為促發(fā)肺癌,心血管疾病的危險(xiǎn)因素[1-3]。大量的研究表明PM2.5進(jìn)入呼吸道后,首先被巨噬細(xì)胞吞噬,并激活巨噬細(xì)胞釋放細(xì)胞因子和炎癥因子,誘導(dǎo)巨噬細(xì)胞損傷,因此巨噬細(xì)胞是PM2.5毒性作用的主要靶細(xì)胞[4]。大氣二次細(xì)顆粒物(SFPMs),即自然和人為排放的一次污染物進(jìn)入大氣后與大氣中SO2、氮氧化物(NOx)、H2O、臭氧(O3)等經(jīng)氧化、成核、生長(zhǎng)和積聚等均相或多相反應(yīng)過程形成的新顆粒物,是我國(guó)大中城市大氣PM2.5的主要組成部分[5]。迄今為止,大氣SFPMs毒性的研究主要基于采集的大氣顆粒物,然而由于PM2.5組成成份復(fù)雜,其毒性產(chǎn)生的來源并不明確。
目前已知大氣礦物質(zhì)細(xì)顆粒物表面是氣態(tài)污染物轉(zhuǎn)化成二次細(xì)顆粒物的主要場(chǎng)所,顆粒物表界面的多相反應(yīng)是生物活性和毒性物質(zhì)產(chǎn)生的最可能途徑。大氣細(xì)和超細(xì)礦物質(zhì)顆粒物(空氣動(dòng)力學(xué)直徑< 100 nm),由于其粒徑小,表面反應(yīng)活性高,吸附性強(qiáng),可在表面直接發(fā)生氧化還原或光化學(xué)氧化還原反應(yīng),其與平流層中強(qiáng)氧化劑,如O3、NOx和H2O2等作用,促進(jìn)表面吸附的SO2、NOx及易揮發(fā)有機(jī)化合物(volatile organic compounds, VOC)反應(yīng),產(chǎn)生活性和毒性更強(qiáng)的產(chǎn)物[6-7]。
二氧化硫(SO2)是重要的大氣污染物之一,它主要來源于含硫化石燃料燃燒,如燃煤和機(jī)動(dòng)車尾氣排放等。很多研究表明SO2可在礦質(zhì)顆粒物表面發(fā)生吸附并通過非均相反應(yīng)形成亞硫酸鹽、硫酸鹽及它們的酸式鹽,被認(rèn)為是二次顆粒物的主要成分[8-10]。然而,大氣顆粒物中硫酸鹽組分的健康效應(yīng)的流行病學(xué)研究結(jié)論還不明確[10],有關(guān)SO2經(jīng)多相反應(yīng)形成二次顆粒物的毒性研究仍舊非常有限。
稀土二氧化鈰(CeO2)具有獨(dú)特的4f電子結(jié)構(gòu),在光、電和磁方面具有獨(dú)特的物理化學(xué)性質(zhì),目前已廣泛應(yīng)用于汽車尾氣三效催化劑、工業(yè)催化、拋光材料、固體氧化燃料電池、傳感器等領(lǐng)域[12-13]。值得一提的是納米尺寸的CeO2作為汽車尾氣凈化催化劑的重要組成部分,可明顯提高CO和NO的催化轉(zhuǎn)化活性,降低CO和NOx的排放,對(duì)催化劑的儲(chǔ)氧能力、熱穩(wěn)定性、抗中毒能力及耐久性起著十分重要的作用,有望取代貴金屬催化劑成為汽車尾氣催化劑新的發(fā)展方向[14]。汽車尾氣凈化催化劑中納米尺度的CeO2會(huì)隨汽車尾氣排放到大氣中,據(jù)報(bào)道,歐洲每年汽車尾氣可排放約10 t的CeO2納米顆粒。如果全球都采用此催化劑,每年將有7千萬t納米尺寸的CeO2顆粒釋放到大氣中[14]。此外,我國(guó)是稀土大國(guó),稀土材料在我國(guó)化工催化、輕紡化工、特種合金、硅酸鹽材料等領(lǐng)域得到了廣泛的應(yīng)用。在稀土礦物資源開發(fā)和應(yīng)用過程中,大量的稀土微粒進(jìn)入大氣中[15]。研究表明稀土元素在我國(guó)大氣細(xì)顆粒物PM2.5中的平均含量為58.30 ng·mg-1,在地鐵,公路等道路附近稀土元素的含量可達(dá)128.5 ng·mg-1[16]。在本研究中我們以CeO2超細(xì)顆粒(UFPs)為模型,研究SO2氣體在CeO2UFPs表界面生成的二次顆粒物CeO2-SFPMs的細(xì)胞毒性,并探討大氣環(huán)境條件,如相對(duì)濕度(relative humidity, RH)、紫外光照(UV)和二氧化氮(NO2)條件下生成的CeO2-SFPMs對(duì)細(xì)胞毒性效應(yīng)的影響。
1.1 材料和試劑
超細(xì)CeO2顆粒購自Sigma公司,實(shí)驗(yàn)前采用透射電子顯微鏡(transmission electron microscope, TEM, JEOLJSM-2100)和紅外光譜(Therme Scientific, NICOLET IN10 FT-IR MX)對(duì)顆粒物進(jìn)行物理化學(xué)性質(zhì)表征。
小鼠單核巨噬細(xì)胞(RAW264.7)由中國(guó)醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所細(xì)胞中心提供。胎牛血清及胰酶由Gibco公司提供;DMEM高糖培養(yǎng)基由Hyclone公司提供;Annexin V-FITC/PI細(xì)胞凋亡檢測(cè)試劑盒、乳酸脫氫酶(LDH)細(xì)胞毒性檢測(cè)試劑盒購自碧云天生物技術(shù)研究所。
1.2 CeO2UFPs生成CeO2-SFPMs反應(yīng)
CeO2-SFPMs生成的反應(yīng)裝置中,配氣系統(tǒng)主要由SO2標(biāo)準(zhǔn)氣體、水汽路、高純氮、高純氧、空氣、質(zhì)量流量控制器、反應(yīng)池、尾氣處理裝置等組成。反應(yīng)前用氮?dú)獯祾呦到y(tǒng)30 min,驅(qū)趕反應(yīng)池及管道內(nèi)的空氣,并以空氣為稀釋氣,使用流量控制器控制SO2和NO2氣體終濃度分別為30 mg·L-1和10 mg·L-1。相對(duì)濕度由水汽發(fā)生器控制,用濕度記錄器檢測(cè)標(biāo)定為40%。將CeO2UFPs置于反應(yīng)器中,各路氣體混合后通入反應(yīng)器,反應(yīng)持續(xù)2 h。以汞燈作為紫外光源,波長(zhǎng)254 nm。
CeO2UFPs在下述反應(yīng)條件下,即CeO2+SO2;CeO2+SO2+RH;CeO2+SO2+RH+UV及CeO2+SO2+RH+NO2,通過CeO2UFPs表界面的多相催化反應(yīng),得到4種不同的CeO2-SFPMs反應(yīng)產(chǎn)物。
1.3 CeO2-SFPMs紅外光譜測(cè)定
取1~2 mg CeO2-SFPMs,加入約200 mg的KBr粉末,經(jīng)研磨、混勻、壓片,獲得樣品厚度約1~2 mm。傅里葉變換紅外光譜儀(Thermo Scientific Nicolet iN10)測(cè)定。
1.4 細(xì)胞毒性效應(yīng)研究
RAW264.7細(xì)胞于DMEM高糖培養(yǎng)基(含10%胎牛血清,100 U·mL-1青霉素,100 mg·L-1鏈霉素),在37 ℃,5%CO2培養(yǎng)箱中培養(yǎng)。
1.4.1 CeO2-SFPMs對(duì)Raw264.7細(xì)胞增殖的影響
Raw264.7細(xì)胞增殖通過xCELLigence RTCA DP(美國(guó)Roche公司)系統(tǒng)進(jìn)行實(shí)時(shí)監(jiān)測(cè)。xCELLigence RTCA DP通過微電極列陣整合在細(xì)胞培養(yǎng)板底部,通過阻抗變化實(shí)時(shí)、動(dòng)態(tài)獲得細(xì)胞指數(shù)變化曲線。檢測(cè)時(shí),取對(duì)數(shù)生長(zhǎng)期的細(xì)胞接種于E-Plate板上。每孔預(yù)先加入50L完全培養(yǎng)基,再加入100L細(xì)胞懸液(1106個(gè)·mL-1),靜置30 min開始實(shí)時(shí)測(cè)量,8 h后取出E-Plate 16孔板除去培養(yǎng)液,分別加入終濃度為50g·mL-1的CeO2-SFPMs懸浮溶液(以完全培養(yǎng)基稀釋),實(shí)時(shí)檢測(cè)其對(duì)Raw264.7細(xì)胞增殖的影響。正常生長(zhǎng)Raw264.7細(xì)胞和CeO2UFPs暴露組細(xì)胞作為對(duì)照同時(shí)進(jìn)行細(xì)胞增殖的測(cè)量。
1.4.2 CeO2-SFPMs對(duì)Raw264.7細(xì)胞膜通透性的影響
取處于對(duì)數(shù)生長(zhǎng)期的Raw264.7細(xì)胞,調(diào)整細(xì)胞密度至1106個(gè)·mL-1,加100L細(xì)胞懸液接種于96孔板,過夜使細(xì)胞貼壁。加入不同CeO2-SFPMs懸浮溶液,至終濃度50g·mL-1,每組6個(gè)復(fù)孔。細(xì)胞暴露CeO2-SFPMs 24 h后將96孔板取出,400 g離心5 min。取上清液120 μL,加入到一新的96孔板中,并分別加入60 μL LDH檢測(cè)工作液,避光孵育30 min。于490 nm處測(cè)定吸光度。
1.4.3 CeO2-SFPMs對(duì)Raw264.7細(xì)胞凋亡的影響
用Annexin V-FITC/PI雙染法檢測(cè)CeO2-SFPMs對(duì)Raw264.7細(xì)胞凋亡的影響。取處于對(duì)數(shù)生長(zhǎng)期的細(xì)胞,調(diào)整細(xì)胞密度至1106個(gè)·mL-1,將細(xì)胞接種于6孔板上,培養(yǎng)12 h后除去細(xì)胞培養(yǎng)液,加入CeO2-SFPMs懸浮溶液,至終濃度50g·mL-1。Raw264.7細(xì)胞暴露CeO2-SFPMs 24 h時(shí)后除去上清液,用PBS清洗細(xì)胞2次,胰酶消化后收集細(xì)胞。調(diào)整細(xì)胞密度至1106個(gè)·mL-1,取100L的細(xì)胞懸液,分別加入Annexin V-FITC和PI各5 μL,室溫下避光孵育10~15 min,用流式細(xì)胞儀(BD公司)進(jìn)行檢測(cè)。
1.4.4 統(tǒng)計(jì)分析
實(shí)驗(yàn)結(jié)果采用SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,多組間比較采用One Way ANOVE進(jìn)行單因素方差分析,組間顯著性差異采用LSD-t檢驗(yàn),*及**分別為與對(duì)照組相比,P< 0.05,P< 0.01。
2.1 CeO2超細(xì)顆粒物的表征
圖1為CeO2的TEM圖像,從圖中可以到CeO2顆粒物的粒徑范圍在11~33 nm,平均值為22 nm。顆粒物邊界清晰,說明具有較好的分散性。2.2 CeO2-SFPMs紅外光譜測(cè)定
圖2為CeO2UFPs在不同濕度、紫外光照和NO2條件下,與SO2氣體通過多相催化反應(yīng),得到的CeO2-SFPMs反應(yīng)產(chǎn)物的紅外光譜圖譜。從圖中可以看出,除CeO2UFPs外,其他CeO2-SFPMs生成產(chǎn)物在1 350 cm-1處均有明顯的S=O收縮振動(dòng)峰,說明SO2氣體牢固吸附在CeO2UFPs上。@CeO2+SO2、@CeO2+SO2+RH、@CeO2+SO2+RH+UV和@CeO2+SO2+RH+NO2形成的CeO2-SFPMs在1 080~1 130 cm-1處有明顯的吸收峰,證明有硫酸鹽生成。其中,以@CeO2+SO2+RH+NO2條件下生成的CeO2-SFPMs含硫酸鹽最明顯。
圖1 CeO2超細(xì)顆粒物透射電子顯微鏡照片F(xiàn)ig. 1 Transmission electron microscopy (TEM) image of CeO2 ultrfine particles
圖2 CeO2大氣二次細(xì)顆粒物(CeO2-SFPMs)紅外光譜圖Fig. 2 The FTIR spectrometer of CeO2 secondary fine particulate matter (CeO2-SFPMs)
2.3 CeO2-SFPMs對(duì)Raw264.7細(xì)胞增殖的影響
xCELLigence實(shí)時(shí)無標(biāo)記動(dòng)態(tài)細(xì)胞分析技術(shù)具有高靈敏度、高通量、可實(shí)時(shí)檢測(cè)等優(yōu)點(diǎn),可同時(shí)監(jiān)測(cè)短期和長(zhǎng)達(dá)數(shù)周細(xì)胞增殖的變化情況,在細(xì)胞毒性的檢測(cè)中得到了廣泛的應(yīng)用[17-18]。圖3為50g·mL-1CeO2-SFPMs暴露后對(duì)Raw264.7細(xì)胞增殖的影響,觀察時(shí)間為0~33 h。實(shí)驗(yàn)結(jié)果顯示,CeO2-SFPMs對(duì)細(xì)胞增殖的影響與顆粒物表面結(jié)構(gòu)相關(guān),并具有時(shí)間效應(yīng)性。CeO2-SFPMs與Raw264.7細(xì)胞共孵育0~8 h,CeO2-SFPMs對(duì)細(xì)胞生長(zhǎng)曲線無明顯影響,各環(huán)境條件下生成的CeO2-SFPMs作用無明顯差別;暴露8 h后,CeO2-SFPMs對(duì)細(xì)胞增殖抑制明顯增強(qiáng),作用8~25 h,CeO2-SFPMs對(duì)細(xì)胞增殖的抑制率隨CeO2< @CeO2+SO2< @CeO2+SO2+RH ≈ @CeO2+SO2+RH+UV < @CeO2+SO2+RH+NO2順序顯著升高。CeO2-SFPMs@CeO2+SO2+RH+NO2與Raw264.7作用25 h后,對(duì)細(xì)胞增殖的抑制率達(dá)到16%。
2.4 CeO2-SFPMs對(duì)Raw264.7細(xì)胞膜通透性的影響
LDH釋放是細(xì)胞膜完整性受到破壞的重要指標(biāo),細(xì)胞凋亡或壞死而造成的細(xì)胞膜結(jié)構(gòu)的破壞會(huì)導(dǎo)致細(xì)胞漿內(nèi)的酶釋放到培養(yǎng)液里。圖4為CeO2-SFPMs暴露24 h后對(duì)Raw264.7細(xì)胞膜通透性的影響。結(jié)果可見,Raw264.7暴露于CeO2和CeO2-SFPMs 24 h后,均可以導(dǎo)致細(xì)胞LDH釋放率明顯升高;其中,CeO2-SFPMs@CeO2+SO2+RH+UV和@CeO2+SO2+RH+NO2作用組與對(duì)照組相比,LDH釋放率分別升高了10%和15%。而CeO2-SFPMs組與CeO2UFPs組相比無明顯差異性。
圖3 CeO2-SFPMs對(duì)Raw264.7細(xì)胞增殖的影響注:(A) xCELLigence RTCA DP實(shí)時(shí)檢測(cè)CeO2-SFPMs對(duì)Raw264.7細(xì)胞增殖的影響;(B) CeO2-SFPMs作用24 h后細(xì)胞增殖率統(tǒng)計(jì)分析,*,P< 0.05。Fig. 3 CeO2-SFPMs effects on cell proliferation of Raw264.7Note: (A) xCELLigence RTCA DP system monitoring on cell proliferation of Raw264.7 after exposure to CeO2-SFPMs. (B) The analysis of inhibition of cell proliferation of Raw264.7 after exposure to CeO2-SFPMs at 24 h. *, P< 0.05.
圖4 CeO2-SFPMs暴露后Raw264.7細(xì)胞乳酸脫氫酶(LDH)的釋放檢測(cè)注:*,P< 0.05;**,P< 0.01。Fig. 4 Lactate dehydrogenase (LDH) assay of Raw264.7 after CeO2-SFPM exposureNote: *, P< 0.05; **, P< 0.01.
2.5 CeO2-SFPMs對(duì)Raw264.7細(xì)胞凋亡的影響
利用Annexin V-FITC/PI雙染法流式細(xì)胞技術(shù)對(duì)CeO2-SFPMs誘導(dǎo)Raw264.7細(xì)胞凋亡進(jìn)行了分析。Annexin V為檢測(cè)細(xì)胞早期凋亡的靈敏指標(biāo)之一,PI對(duì)于凋亡中晚期的細(xì)胞和死細(xì)胞,能夠透過細(xì)胞膜而使細(xì)胞核染紅,因此Annexin V與PI匹配使用,可將處于不同凋亡時(shí)期的細(xì)胞區(qū)分開來。圖5是流式細(xì)胞儀分析結(jié)果。結(jié)果顯示,與對(duì)照組和單獨(dú)的CeO2UFPs作用組相比,SO2氣體經(jīng)模擬大氣化學(xué)過程在CeO2UFPs形成的多相反應(yīng)產(chǎn)物CeO2-SFPMs能明顯誘導(dǎo)Raw264.7細(xì)胞產(chǎn)生凋亡,特別是在有紫外光照和NO2存在的條件下,CeO2-SFPMs誘導(dǎo)的細(xì)胞凋亡率分別增加了14%和27%。各環(huán)境條件下生成的CeO2-SFPMs誘導(dǎo)Raw264.7細(xì)胞凋亡的效應(yīng)強(qiáng)度為:@CeO2+SO2+RH+NO2> @CeO2+SO2+RH+UV > @CeO2+SO2+RH > @CeO2+SO2> @CeO2,與CeO2-SFPMs對(duì)Raw264.7細(xì)胞增殖抑制強(qiáng)度順序一致。
圖5 CeO2-SFPMs暴露對(duì)RAW264.7細(xì)胞凋亡的誘導(dǎo)效應(yīng)注:A為對(duì)照組(Control);B為CeO2組;C為@CeO2+SO2組;D為@CeO2+SO2+RH組;E為@CeO2+SO2+RH+UV組;F為@CeO2+SO2+RH+NO2組;G為細(xì)胞凋亡率。*(P< 0.05)和**(P< 0.01)表示實(shí)驗(yàn)組與對(duì)照組(Control)顯著性差異比較;#(P< 0.05)及##(P< 0.01)分別表示CeO2-SFPMs組與CeO2組顯著性差異比較。Fig. 5 The apoptosis of Raw264.7 induced by CeO2-SFPMsNote: A, Control; B, CeO2; C, CeO2+SO2; D, CeO2+SO2+RH; E, CeO2+SO2+RH+UV; F, CeO2+SO2+RH+NO2; G, Apoptosis of Raw264.7 cells. * and ** mean significant difference between the control and experimental groups; # and ## mean significant difference between the CeO2UFPs and CeO2-SFPMs groups.
據(jù)2013年對(duì)我國(guó)大中城市進(jìn)行的大氣顆粒物(PMs)研究顯示,大氣二次顆粒物是我國(guó)城市PM2.5的主要組分;而其中,有機(jī)二次顆粒物(SOA)與無機(jī)二次顆粒物(SIA)的貢獻(xiàn)率相當(dāng)[19]。因此,我國(guó)大氣污染對(duì)人體健康的影響與SFPMs的形成密切相關(guān)。有統(tǒng)計(jì)表明,全球每年進(jìn)入大氣中的顆粒物約50%以上為礦物顆粒物[20],這些礦物質(zhì)顆粒物由于單位濃度下具有巨大的比表面積、極高的表面活性及催化活性,能夠吸附大量排放到大氣中的反應(yīng)活性物質(zhì),包括SO2、NOx、一氧化碳(CO)和揮發(fā)性有機(jī)物(VOCs),通過快速的非均相反應(yīng)生成二次顆粒物。然而,通過超細(xì)顆粒物表/界面非均相反應(yīng)生成的SFPMs,除反應(yīng)過程復(fù)雜外,其產(chǎn)生毒性的構(gòu)效關(guān)系也并不清楚,是當(dāng)前大氣污染與健康領(lǐng)域亟待研究的重要問題。
本研究中,我們以礦物質(zhì)超細(xì)顆粒物CeO2UFPs為模型,研究了SO2氣體在CeO2UFPs上,在相對(duì)濕度(RH)、紫外光照(UV)和二氧化氮(NO2)存在的下生成的二次無機(jī)超細(xì)顆粒物CeO2-SFPMs對(duì)小鼠單核巨噬細(xì)胞RAW264.7的細(xì)胞毒性效應(yīng),并初步揭示了不同環(huán)境條件下生成的CeO2-SFPMs對(duì)細(xì)胞毒性的構(gòu)效關(guān)系。在本研究中,我們選用的CeO2的粒徑為11~33 nm,與汽車尾氣催化劑用的CeO2的尺寸接近(~15 nm)[14],以其為模型研究其與大氣中無機(jī)污染物界面反應(yīng)形成二次顆粒物的毒性。我們發(fā)現(xiàn)了非常重要的現(xiàn)象,即SO2氣體可以在CeO2UFPs上快速轉(zhuǎn)化成硫酸鹽;CeO2-SFPMs對(duì)細(xì)胞毒性效應(yīng)與其生成的環(huán)境條件相關(guān);CeO2-SFPMs@CeO2+SO2+RH+NO2對(duì)細(xì)胞毒性效應(yīng)最為明顯。
SO2和NO2均是我國(guó)城市大氣的主要污染物。我們通過紅外光譜研究發(fā)現(xiàn),SO2氣體在水汽條件和NO2氣體存在下,在CeO2UFPs上轉(zhuǎn)化為硫酸鹽的效應(yīng)最為明顯,此研究結(jié)果已被近期的研究證實(shí)。Cheng等[21]對(duì)通過對(duì)北京氣溶膠研究證實(shí),堿性氣溶膠吸附的SO2可以在氣溶膠吸附的水分條件下快速被NO2氧化為硫酸鹽。我們通過細(xì)胞毒性效應(yīng)實(shí)驗(yàn)進(jìn)一步揭示,顆粒物上硫酸鹽組分是細(xì)胞毒性的主要來源之一。本研究中,細(xì)胞增殖、細(xì)胞LDH釋放和細(xì)胞凋亡實(shí)驗(yàn)顯示,CeO2-SFPMs對(duì)Raw264.7細(xì)胞毒性效應(yīng)的強(qiáng)度均呈現(xiàn)CeO2-SFPMs@CeO2+SO2+RH+NO2> @CeO2+SO2+RH+UV ≈ @CeO2+SO2+RH > @CeO2+SO2> CeO2的順序,說明SO2和NO2的復(fù)合作用對(duì)細(xì)胞毒性效應(yīng)最強(qiáng)。SO2在水汽條件和紫外光照條件共同作用下,也會(huì)產(chǎn)生明顯的細(xì)胞毒性效應(yīng),說明SO2在上述大氣環(huán)境下,因在CeO2UFPs上發(fā)生硫酸鹽轉(zhuǎn)化而產(chǎn)生細(xì)胞毒性。而沒有經(jīng)過反應(yīng)的CeO2UFPs對(duì)RAW264.7細(xì)胞無明顯毒性效應(yīng)。
針對(duì)上述二次無機(jī)顆粒物的毒理學(xué)效應(yīng)問題,本研究結(jié)果揭示,SO2氣體可以在超細(xì)礦物質(zhì)顆粒物CeO2UFPs上快速轉(zhuǎn)化成硫酸鹽;顆粒物表面硫酸鹽組分的增多對(duì)RAW264.7的細(xì)胞毒性增強(qiáng);SO2和NO2復(fù)合作用生成的二次顆粒物CeO2-SFPMs對(duì)RAW264.7細(xì)胞毒性效應(yīng)最強(qiáng)。
[1] Liu S, Ganduglia C M, Li X, et al. Fine particulate matter components and emergency department visits among a privately insured population in Greater Houston [J]. Science of the Total Environment, 2016, 566(567): 521-527
[2] Gauderman W J, Urman R, Avol E, et al. Association of improved air quality with lung development in children [J]. The New England Journal of Medicine, 2015, 372(10): 905-913
[3] Loxham M, Morgan-Walsh R J, Cooper M J, et al. The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station [J]. Toxicological Sciences, 2015, 145(1): 98-107
[4] Milano M, Dongiovanni P, Artoni A, et al. Particulate matter phagocytosis induces tissue factor in differentiating macrophages [J]. Journal of Applied Toxicology, 2016, 36(1): 151-160
[5] Ye X N. Advances in the mechanism of secondary fine particulate matters formation [J]. Progress in Cemistry, 2009, 21(2): 288
[6] Moroń W, Rybak W. NOxand SO2emissions of coals, biomass and their blends under different oxy-fuel atmospheres [J]. Atmospheric Environment, 2015, 116: 65-71
[7] P?schl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene [J]. Chemical Reviews, 2015, 115(10): 4440-4475
[8] Tai J F, Kong L D. A mechanism observation on the photochemical reaction between SO2and α-Fe2O3[J]. China Environmental Science, 2008, 28(5): 401-406
[9] Shang J L, Zhu T. Heterogeneous reaction of SO2on TiO2particles [J]. Science China Press, 2010, 40(12): 1749-1756
[10] Li J, Shang J, Zhu T. Heterogeneous reactions of SO2on ZnO particle surfaces [J]. Science China Chemistry, 2011, 54(1): 161-166
[11] Schlesinger R B. The health impact of common inorganic components of fine particulate matter (PM 2.5) in ambient air: A critical review [J]. Inhalation Toxicology, 2007, 19(10): 811-832
[12] Abbas F, Jan T, Iqbal J, et al. Fe doping induced enhancement in room temperature ferromagnetism and selective cytotoxicity of CeO2nanoparticles [J]. Current Applied Physics, 2015, 15(11): 1428-1434
[13] Liu S, Wu X, Weng D, et al. Ceria-based catalysts for soot oxidation: A review [J]. Journal of Rare Earths, 2015, 33(6): 567-590
[14] Dale J G, Cox S S, Vance M E, et al. Transformation of cerium oxide nanoparticles from a diesel fuel additive during combustion in a diesel engine [J]. Environmental Science and Technology, 2017, 51(4): 1973-1980
[15] Huang W B. Adsorption research of malachite green and acid orange by biochar [J]. Environmental Science & Technology, 2014, 37(120): 69-73
[16] Moreno-Rodríguez V, Del Rio-Salas R, Adams D K, et al. Historical trends and sources of TSP in a sonoran desert city: Can the North America monsoon enhance dust emissions? [J]. Atmospheric Environment, 2015, 110: 111-121
[17] Meindl C, Absenger M, Roblegg E, et al. Suitability of cell-based label-free detection for cytotoxicity screening of carbon nanotubes [J]. BioMed Research International, 2013, 2013: 1-13
[18] Otero-Gonzalez L, Sierra-Alvarez R, Boitano S, et al. Application and validation of an impedance-based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells [J]. Environmental Science & Technology, 2012, 46(18): 10271-10278
[19] Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514(7521): 218-222
[20] Houghton J T, Meira Filho L G, Harris N B. Climate Change 1994: Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios [M]. Cambridge: Cambridge University Press, 1995: 209-230
[21] Cheng Y F, Guang J Z, Chao W, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China [J]. Science Advances, 2016, 2(12): 1-11
[22] Tsai F C, Apte M G, Daisey J M. An exploratory analysis of the relationship between mortality and the chemical composition of airborne particulate matter [J]. Inhalation Toxicology, 2000, 12(Sup 1): 121-137
[23] Chung Y, Dominici F, Wang Y, et al. Associations between long-term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in medicare enrollees in the Eastern United States [J]. Environmental Health Perspectives, 2015, 123(5): 467-474
[24] Schlesinger R B. The interaction of inhaled toxicants with respiratory tract clearance mechanisms [J]. Critical Reviews in Toxicology, 1990, 20(4): 257-286
[25] Zhou F M, Sun Q R, Wang M R, et al. Measurement of aerosol strong acidity in Zhongguancun, Beijing [J]. Environmental Sciences, 1998, 19(2): 6-11 (in Chinese)
[26] Fang T, Guo H Y, Zeng L H, et al. Highly acidic ambient particles, soluble metals, and oxidative potential: A link between sulfate and aerosol toxicity [J]. Environmental Science & Technology, 2017, 51(5): 2611-2620
◆
Cytotoxicity Study of Secondary Ultrafine Particles Forming from SO2Reaction on CeO2Ultrafine Particles
Yu Miao1,2, Wang Bing2,#, Zhang Dan2, Feng Yuan2, Liang Hongli2, Zheng Lingna2, Wang Meng2, Cheng Lufeng1,*, Feng Weiyue2
1. School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830018, China2. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
3 January 2017 accepted 31 March 2017
The secondary aerosol, including secondary organic aerosol and secondary inorganic aerosol, are found as the major components in PM2.5in megacities of China. To data, the toxic components in PM2.5that make a contribution to adverse health effects is still unclear due to the complex composition of the fine particulate matters. In the study, we used cerium dioxide (CeO2) as aerosol mineral particle model to investigate its heterogeneous reaction with sulfur dioxide (SO2) under various simulated atmospheric conditions, such as various humidity (RH), ultraviolet (UV) irradiation and nitric dioxide (NO2) existence, which formed secondary fine particulate matter (SFPM), i.e., CeO2-SFPMs. The preliminary characters of CeO2-SFPMs were measured by fourier transform infrared spectroscopy (FTIR) and further the structure-cytotoxicity of the CeO2-SFPMs were investigated. The xCELLigence real time cell analysis system was used to monitor the proliferation of mouse macrophage cell line (RAW264.7) after exposure to the CeO2-SFPMs. In addition, the lactate dehydrogenase (LDH) release and apoptosis of the cells were assayed after the exposure. The data showed that SO2could be oxidized to sulfate after interaction with CeO2ultrafine particles under the simulated atmospheric conditions. It is noteworthy that the NO2existence can enhance SO2transformation. The cytotoxicity of CeO2-SFPMs is associated with their formation condition and has time-dependent manner. No significant changes of cell proliferation were found after exposure to CeO2-SFPMs for 8 h. However, after the extended 8-25 h exposure, the significant inhibition of cell proliferation was observed, which following the orders: CeO2< @CeO2+SO2< @CeO2+SO2+RH ≈ @CeO2+SO2+RH+UV < @CeO2+SO2+RH+NO2. The toxic assay by LDH and apoptosis measurements also indicate that the CeO2-SFPMs@SO2+RH+NO2had the most significant cytotoxicity on RAW264.7 cells.Keywords: secondary inorganic fine particulate; ultrafine CeO2; multi-phase interface reaction; mouse macrophage cell; cytotoxicity
國(guó)家自然科學(xué)基金聯(lián)合基金重點(diǎn)支持項(xiàng)目(U1432245);國(guó)家自然科學(xué)基金(11475195,91543118)
俞淼(1989-),女,碩士,研究方向?yàn)榄h(huán)境毒理學(xué),E-mail: yumiao@ihep.ac.cn;
*通訊作者(Corresponding author), E-mail: lewis_clf@163.com;
10.7524/AJE.1673-5897.20170103004
2017-01-03 錄用日期:2017-03-31
1673-5897(2017)2-063-08
X171.5
A
程路峰(1975—),男,藥理學(xué)博士,教授,主要研究方向心血管藥理學(xué),發(fā)表學(xué)術(shù)論文30余篇。
共同通訊作者簡(jiǎn)介:汪冰(1977—),女,生物無機(jī)化學(xué)博士,副研究員,主要研究方向納米生物安全性和環(huán)境健康,發(fā)表學(xué)術(shù)論文60余篇。
# 共同通訊作者(Co-corresponding author), E-mail: wangbing@ihep.ac.cn;
俞淼, 汪冰, 張丹, 等. SO2與CeO2超細(xì)顆粒非均相反應(yīng)產(chǎn)物的細(xì)胞毒性效應(yīng)[J]. 生態(tài)毒理學(xué)報(bào),2017, 12(2): 63-70
Yu M, Wang B, Zhang D, et al. Cytotoxicity study of secondary ultrafine particles forming from SO2reaction on CeO2ultrafine particles [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 63-70 (in Chinese)