王昱棋,李鐵山
(大連海事大學(xué) 航海學(xué)院,遼寧 大連 116026)
?
欠驅(qū)動(dòng)水面船舶的有限時(shí)間航跡跟蹤控制
王昱棋,李鐵山
(大連海事大學(xué) 航海學(xué)院,遼寧 大連 116026)
針對(duì)欠驅(qū)動(dòng)水面船舶的快速航跡跟蹤控制問(wèn)題,本文設(shè)計(jì)了一種基于終端滑模控制方法的分散控制器。通過(guò)引入輔助線性滑模面進(jìn)行切換控制,避免了傳統(tǒng)終端滑模面中狀態(tài)可能為零而導(dǎo)致控制無(wú)窮大的奇異問(wèn)題,且使欠驅(qū)動(dòng)水面船舶能夠在有限時(shí)間內(nèi)快速跟蹤并保持期望的軌跡。本文結(jié)合有限時(shí)間穩(wěn)定性理論證明了終端滑??刂品椒ň哂邢迺r(shí)間收斂作用這一特性;借助Lyapunov穩(wěn)定性理論證明了閉環(huán)系統(tǒng)的穩(wěn)定性。仿真結(jié)果表明:該算法控制效果良好,且對(duì)外界環(huán)境干擾具有一定的魯棒性能。
欠驅(qū)動(dòng)水面船舶;跟蹤控制;有限時(shí)間穩(wěn)定性;終端滑??刂?;輔助滑模面;奇異問(wèn)題
近年來(lái),欠驅(qū)動(dòng)水面船舶的航跡跟蹤控制問(wèn)題,因其挑戰(zhàn)性及其在航海領(lǐng)域內(nèi)廣泛的實(shí)際應(yīng)用,受到了學(xué)者們極大的關(guān)注[1]。欠驅(qū)動(dòng)水面船舶運(yùn)動(dòng)控制的主要難點(diǎn)是橫向未裝備驅(qū)動(dòng)裝置,缺少可用的控制輸入[2-3]。由于欠驅(qū)動(dòng)水面船舶所具有的驅(qū)動(dòng)器個(gè)數(shù)少于其自由度,所以具有加速度不可積分的二階非完整約束條件,不滿足著名的Brockett必要條件,不能轉(zhuǎn)化為無(wú)漂鏈?zhǔn)较到y(tǒng)[4-6],因此其控制設(shè)計(jì)非常具有挑戰(zhàn)性。盡管如此,已經(jīng)有許多學(xué)者在航跡跟蹤控制問(wèn)題上通過(guò)使用多種控制方法取得了有意義的研究成果,這些方法包括自適應(yīng)控制[7-8]、線性代數(shù)方法[9]、模型預(yù)測(cè)控制[10-11]、Backstepping方法[12-13]、神經(jīng)網(wǎng)絡(luò)控制[14-15]、動(dòng)態(tài)面控制方法[16]、滑模控制方法[18-22]等。其中,滑??刂品椒ㄒ蚱浜?jiǎn)單易行、響應(yīng)速度快、對(duì)外界干擾和參數(shù)攝動(dòng)具有魯棒性的特點(diǎn)在控制領(lǐng)域得到了廣泛的應(yīng)用。Ashrafiuon等最早將滑模控制方法應(yīng)用在欠驅(qū)動(dòng)船舶航跡跟蹤問(wèn)題中,算法考慮了船舶參數(shù)不確定性,利用縱蕩跟蹤誤差設(shè)計(jì)一階滑模,橫向跟蹤誤差設(shè)計(jì)二階滑模,成功跟蹤了直線軌跡和曲線軌跡,并在無(wú)人船模型試驗(yàn)中進(jìn)行了驗(yàn)證[18]。于瑞亭等研究了在外界環(huán)境干擾和模型參數(shù)辨識(shí)不確定情況下的欠驅(qū)動(dòng)水面船舶航跡跟蹤控制問(wèn)題,設(shè)計(jì)了一種二階滑模控制器[19]。楊震等結(jié)合神經(jīng)網(wǎng)絡(luò)和滑??刂品椒ㄔO(shè)計(jì)了一種神經(jīng)滑模魯棒控制器[20]。Li等將自抗擾控制技術(shù)與滑??刂萍夹g(shù)結(jié)合,設(shè)計(jì)了船舶航向跟蹤控制器和航跡跟蹤控制器[22]。以上方法存在一個(gè)共性問(wèn)題是都沒(méi)有考慮有限時(shí)間穩(wěn)定性。
論文對(duì)外界環(huán)境干擾影響下的欠驅(qū)動(dòng)水面船舶航跡跟蹤控制有限時(shí)間穩(wěn)定性問(wèn)題進(jìn)行了研究,采用終端滑??刂品椒╗23],實(shí)現(xiàn)了預(yù)期有限時(shí)間內(nèi)的航跡跟蹤控制,并在控制器設(shè)計(jì)中引入了輔助滑模面[24],避免了終端滑??刂破髦锌赡軙?huì)出現(xiàn)的控制器奇異問(wèn)題。最后通過(guò)仿真驗(yàn)證了所提出方法的有效性。
1.1 欠驅(qū)動(dòng)水面船舶數(shù)學(xué)模型
本文中的船舶航跡跟蹤問(wèn)題是針對(duì)水面船舶,只需考慮船舶前進(jìn)、橫漂和艏搖三個(gè)自由度的運(yùn)動(dòng)問(wèn)題[25]。圖1為船舶平面運(yùn)動(dòng)變量描述圖。
圖1 船舶平面運(yùn)動(dòng)變量描述圖Fig.1 Planar model of a surface vessel
欠驅(qū)動(dòng)水面船舶的動(dòng)力學(xué)方程和運(yùn)動(dòng)學(xué)方程表示為[2]
(1)
(2)
式中:η?[xyψ]T∈R3,v?[vxvywz]T∈R3,ω=[ω1ω2ω3]T為有界外界干擾,τ?[Fx0Tz]T∈R3,F(xiàn)x和Tz分別為水面船舶的縱向推進(jìn)力和轉(zhuǎn)向力矩。R(ψ)∈R3是傳遞矩陣:
(3)
其中,RT(ψ)=R-1(ψ)。
M∈R3×3,是慣性參數(shù)矩陣:
(4)
通過(guò)選擇合適的物體固定坐標(biāo)系原點(diǎn)[8],m23能夠滿足m23=0。
C(v)∈R3×3,是科里奧利和向心力矩陣:
(5)
D(v)∈R3×3,是水動(dòng)力阻尼參數(shù)矩陣:
(6)
假設(shè)慣性參數(shù)矩陣和水動(dòng)力阻尼參數(shù)矩陣都是常值對(duì)角矩陣,則式(2)的簡(jiǎn)化模型如下
(7)
注1:考慮船舶沒(méi)有側(cè)推器,即Fy=0。兩個(gè)螺旋槳產(chǎn)生前進(jìn)方向上的推進(jìn)力和首搖運(yùn)動(dòng)轉(zhuǎn)向力矩,即τ=[Fx0Tz]Τ,與欠驅(qū)動(dòng)水面船舶一致。
1.2 有限時(shí)間穩(wěn)定性
現(xiàn)在介紹將用到的有限時(shí)間穩(wěn)定性引理。首先考慮如下非線性動(dòng)態(tài)系統(tǒng):
(8)
式中:x(t)∈ξ?Rn,是系統(tǒng)的狀態(tài)矢量;ξ是開集;0∈ξ,f(x(t))在ξ上是連續(xù)的,f(0)=0。
針對(duì)系統(tǒng)(8),有如下引理:
引理1[26]考慮非線性動(dòng)態(tài)系統(tǒng)(8),設(shè)ξ′∈ξ為與式(8)相關(guān)的不變集。假設(shè)存在一個(gè)連續(xù)微分方程
V(x(t)):ξ→R,實(shí)數(shù)c>0,α∈(0,1),如此,V(x)=0,x∈ξ;V(x)>0,x∈ξ/ξ′且V′(x)f(x)≤-c(V(x))a,x∈ξ。則不變集ξ′是具有有限時(shí)間穩(wěn)定性的。并且調(diào)節(jié)時(shí)間函數(shù)滿足:
(9)
式中,x0在ξ′的開鄰域內(nèi)。
注2:有限時(shí)間穩(wěn)定性保證了系統(tǒng)每一個(gè)狀態(tài)都能在預(yù)期有限時(shí)間內(nèi)到達(dá)系統(tǒng)的原點(diǎn),引理1給出了不變集的有限時(shí)間穩(wěn)定性。
(10)
由(7)得
(11)
式中:η=[xyψ]T表示船舶在慣性坐標(biāo)系中的位置,v=[vxvywz]T表示船舶在物體固定坐標(biāo)系中的速度,mij和dij是正常數(shù)。
對(duì)(10)求導(dǎo)得
(12)
其中
采用SPSS 20.0統(tǒng)計(jì)學(xué)軟件對(duì)數(shù)據(jù)進(jìn)行處理,計(jì)數(shù)資料以百分?jǐn)?shù)(%)表示,采用x2檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義[2] 。
控制目標(biāo)是使以上系統(tǒng)的狀態(tài)在有限時(shí)間內(nèi)達(dá)到且保持期望的穩(wěn)態(tài)值。設(shè)跟蹤目標(biāo)的期望軌跡方程為ηL(t),t≥0。
引入誤差變量為
(13)
(14)
(15)
(16)
定義非線性滑模面S為
(17)
其中C=diag(c1,c2,c3),ci>0,i=1,2,3;R(e)?diag(sign(e1),sign(e2),sign(e3)),ei∈R,i=1,2,3。
(18)
(19)
(20)
式中:M?R3×R3,d(·,·)是有界的。
定義M為
(21)
其中,
λ?‖C‖∞+δ,δ>0。
(22)
引理2[23]:考慮誤差動(dòng)態(tài)式(14)~(16),如果滑模控制器的增益ki,i=1,2,3,滿足
ki=αi+σ
(23)
且
(24)
則由式(21)定義的設(shè)定集M是不變的。
(25)
定義輔助滑模面Saux為
(26)
(27)
其中
且
kaux=αaux+σ,αaux>0
(28)
定理1 由終端滑??刂坡?18)和(27)及水面船舶運(yùn)動(dòng)系統(tǒng)(10)和(11)組成的閉環(huán)系統(tǒng)能夠在有限時(shí)間內(nèi)跟蹤期望軌跡,并且使得系統(tǒng)的狀態(tài)在有限時(shí)間內(nèi)達(dá)到且保持期望的穩(wěn)態(tài)值。
選取李雅普諾夫函數(shù)
(29)
對(duì)V求導(dǎo)得
(30)
根據(jù)文獻(xiàn)[25],滑模面具有有限時(shí)間穩(wěn)定性,分散滑模控制器式(18)切換到式(27)。
(31)
對(duì)V求導(dǎo),得
(32)
同樣根據(jù)文獻(xiàn)[25],誤差狀態(tài)能在有限時(shí)間內(nèi)到達(dá)滑模面。
此外,根據(jù)式(17),閉環(huán)誤差動(dòng)態(tài)定義為
(33)
因此,根據(jù)引理1誤差狀態(tài)能夠在有限時(shí)間內(nèi)收斂到原點(diǎn),既而保證了船舶能夠在有限時(shí)間內(nèi)跟蹤期望軌跡。
現(xiàn)在對(duì)上述所設(shè)計(jì)的控制器進(jìn)行計(jì)算機(jī)仿真研究,以演示其性能及效果。數(shù)值仿真采用文獻(xiàn)[2]中的水池試驗(yàn)用的船模參數(shù)進(jìn)行仿真實(shí)驗(yàn),具體參數(shù)如下:
m11=200 kg,m22=250 kg,m33=80 kg,
d11=70 kg/s,d22=100 kg/s,d33=50 kg/s
外界環(huán)境時(shí)變干擾采用文獻(xiàn)[17]中的模型,如下:
0.196sin(0.3t)cos(0.4t)
期望的運(yùn)動(dòng)軌跡為圓形軌跡:
XL=3sin(t),YL=3cos(t)。
船舶的初始值為:η1=[00-1/2]T。
滑模面參數(shù)為C1=diag[3, 3, 3]。
控制增益參數(shù)為K=Kaux=diag[2, 2, 2]。
為了更好地說(shuō)明所設(shè)計(jì)的控制器效果,與傳統(tǒng)的線性滑??刂品椒ㄗ龇抡鎸?shí)驗(yàn)進(jìn)行比較,該線性滑模面設(shè)計(jì)如下:
圖2 欠驅(qū)動(dòng)水面船舶的跟蹤軌跡(TSMC)Fig.2 Tracking trajectory of USV(TSMC)
圖4 控制力曲線Fig.4 Response of control forces
圖3 欠驅(qū)動(dòng)水面船舶跟蹤軌跡(SMC)Fig.3 Tracking trajectory of USV(SMC)
圖5 控制力矩曲線Fig.5 Response of control torques
通過(guò)對(duì)欠驅(qū)動(dòng)水面船舶的有限時(shí)間航跡跟蹤控制器設(shè)計(jì),并進(jìn)行數(shù)值仿真實(shí)驗(yàn)可以得到以下結(jié)論:
1)控制器設(shè)計(jì)中采用了終端滑??刂品椒?,與傳統(tǒng)的船舶航跡跟蹤控制方法相比,具有有限時(shí)間收斂及快速收斂的特性。
2)通過(guò)設(shè)計(jì)輔助線性滑模面,避免了控制器采用終端滑模方法可能會(huì)出現(xiàn)奇異值得問(wèn)題。
3)給出的航跡跟蹤控制算法閉環(huán)穩(wěn)定性條件易于達(dá)到,并且設(shè)計(jì)方法的可操作性較強(qiáng),因此在實(shí)際應(yīng)用中具有一定的參考價(jià)值。
此外,設(shè)計(jì)過(guò)程中未考慮模型未知、通信時(shí)延等復(fù)雜情況,這些問(wèn)題是下一階段的研究重點(diǎn)。
[1]郭晨,汪洋,孫福春,等.欠驅(qū)動(dòng)水面船舶運(yùn)動(dòng)控制研究綜述[J].控制與決策, 2009, 24(3): 321-329.
GUO Chen, WANG Yang, SUN Fuchun, et al. Survey for motion control of underactuated surface vessels [J]. Control and decision, 2009, 24(3): 321-329.
[2]FOSSEN T I. Guidance and control of ocean vehicles [M]. Upper saddle river, New York: Wiley Interscience, 1994.
[3]DO K D, PAN J. Control of ships and underwater vehicles [M]. Springer, 2009.
[4]SORDALEN O J, EGELAND O. Exponential stabilization of nonholonomic chained systems [J]. IEEE transactions on automatic control, 1995, 40(1): 35-49.
[5]REYHANOGLU M. Exponential stabilization of an underactuated autonomous surface vessel [J]. Automatica, 1997, 33(12): 2248-2254.
[6]PETTERSEN K Y. Exponential stabilization of an underactuated vehicles [D]. Trondheim: Norwegian university of science and technology, 1996.
[7]DO K D, JIANG Z P, PAN J. Robust adaptive path following of underactuated ships [J]. Automatica, 2004, 40(6): 929-944.
[8]DO K D. Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances [J]. Ocean engineering, 2016, 111:267-278.
[9]SERRANO M E, SCAGLIA G J E, GODOY S A, et al. Trajectory tracking of underactuated surface vessels: A linear algebra approach [J]. IEEE Transactions on control systems technology, 2014, 22(3): 1103-1111.
[10]YAN Z, WANG J. Model predictive control for tracking of underactuated vessels based on recurrent neural networks [J]. IEEE Journal of oceanic engineering, 2012, 37(4): 717-726.
[11]柳晨光,初秀民,王樂(lè),等.欠驅(qū)動(dòng)水面船舶的軌跡跟蹤模型預(yù)測(cè)控制器[J]. 上海交通大學(xué)報(bào),2015,49(12): 1842-1854.
LIU Chenguang, CHU Xiumin, WANG Le, et al. Trajectory tracking controller for underactuated surface vessels based on model predictive control [J]. Journal of Shanghai Jiaotong University, 2015, 49(12): 1842-1854.
[12]DONG Zaopeng, WAN Lei, LI Yueming, et al. Trajectory tracking control of underactuated USV based on modified backstepping approach [J]. International journal of naval architecture and ocean engineering, 2015, 7(5): 817-832.
[13]曾薄文,朱齊丹,于瑞亭.欠驅(qū)動(dòng)水面船舶的曲線航跡跟蹤控制 [J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2011, 32(10): 1317-1322.
ZENG Bowen, ZHU Qidan, YU Ruiting. Curve tracking of an underactuated surface vessel [J]. Journal of Harbin Engineering University, 2011, 32(10): 1317-1322.
[14]王耀祿,郭晨.欠驅(qū)動(dòng)船舶RBF神經(jīng)網(wǎng)絡(luò)路徑自適應(yīng)跟蹤控制[J].大連海事大學(xué)學(xué)報(bào), 2015, 41(1): 1-5.
WANG Yaolu, GUO Chen. Path flowing control for underactuated surface vessels based on RBF neural network [J]. Journal of Dalian Maritime University, 2015, 41(1): 1-5.
[15]ZHENG Zewei, SUN Liang. Path following control for marine surface vessel with uncertainties and input saturation [J]. Neurocomputing, 2015, 177:158-167.
[16]WANG H, WANG D, PENG Z H, et al. Adaptive dynamic surface control for cooperative path following of underactuated marine surface vehicles via fast learning [J]. IET Control theory and applications, 2013, 7(15): 1888-1898.
[17]PENG Zhouhua, WANG Dan, LAN Weiyao, et al.Robust leader-follower formation tracking control of multiple underactuated surface vessels [J]. China ocean engineering, 2012, 26(3): 521-534.
[18]ASHRAFIUON H, MUSKE K R, MCNINCH L C, et al. Sliding-mode tracking control of surface vessels [J]. IEEE Transactiona on industrial electronics, 2008, 55(11): 4004-4012.
[19]YU Ruiting, ZHU Qidan, XIA Guihua, et al. Sliding mode tracking control of an underactuated surface vessel [J]. Control theory and applications, IET, 2012, 6(3): 461-466.
[20]朱齊丹,于瑞亭,夏桂華,等.風(fēng)浪流干擾及參數(shù)不確定欠驅(qū)動(dòng)船舶航跡跟蹤的滑模魯棒控制[J].控制理論與應(yīng)用, 2012, 29(7): 959-964.
ZHU Qidan, YU Ruiting, XIA Guihua, et al. Sliding-mode robust tracking control for underactuated surface vessels with parameter uncertainties and external disturbances [J]. Control theory and applications, 2012, 29(7): 959-964.
[21]楊震,劉繁明,王巖.欠驅(qū)動(dòng)船舶路徑跟蹤的神經(jīng)滑??刂芠J].中國(guó)造船, 2015, 56(2): 45-55.
YANG Zhen, LIU Fanming, WANG Yan. Path following of underactuated surface vessels based on neural sliding mode [J]. Shipbuildig of China, 2015, 56(2): 45-55.
[22]LI R H, LI T S, BU R X, et al. Active disturbance rejection with sliding mode control based course and path following for underactuated ships [J]. Mathematical problems in engineering, 2013, 2013:1-9.
[23]MASOOD G, SERGEY G N, GARRETT C. Finite-time tracking using sliding mode [J]. Journal of the franklin institute, 2014, 351(5): 2966-2990.
[24]YU Xinghuo, MAN Zhihong. Model reference adaptive control systems with terminal sliding modes [J]. International journal of Control, 1996, 64(6): 1165-1176.
[25]賈欣樂(lè),楊鹽生. 船舶運(yùn)動(dòng)數(shù)學(xué)模型:機(jī)理建模與辨識(shí)建模[M].大連:大連海事大學(xué)出版社,1999.
[26]NERSESOV S G, NATARAJ C, AVIS J M. Design of finite-time stabilizing controllers for nonlinear dynamical systems [C]∥IEEE Conference on Decision and Control, 2007, 1740-1745.
本文引用格式:
王昱棋,李鐵山.欠驅(qū)動(dòng)水面船舶的有限時(shí)間航跡跟蹤控制[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2017, 38(5): 684-689.
WANG Yuqi, LI Tieshan. Finite-time trajectory tracking control of under-actuated surface vessel[J]. Journal of Harbin Engineering University, 2017, 38(5): 684-689.
Finite-time trajectory tracking control of under-actuated surface vessel
WANG Yuqi, LI Tieshan
(Navigation College, Dalian Maritime University, Dalian 116026, China)
To realize fast trajectory tracking control for an under-actuated surface vessel, a decentralized controller was designed based on the terminal sliding mode control method, and an auxiliary linear sliding mode surface was introduced for the switch control to avoided the singularity problem in the traditional terminal sliding mode surface, i.e., the state may be zero and the control can be infinity. In addition, this made an under-actuated surface vessel realize fast tracking and maintain the desired trajectory in a finite time. In combination with the finite-time stability theory, it was verified that TSMC has the characteristics of converging within a limited time. In virtue of the Lyapunov stability theory, the stability of the closed loop system was verified. Simulation results show that this algorithm has good control effect and has certain robustness against external environmental disturbances.
under-actuated surface vessel (USV); tracking control; finite-time stability; terminal sliding mode control (TSMC); auxiliary sliding mode surface; singularity problem
2015-12-21.
日期:2017-04-26.
國(guó)家自然科學(xué)基金項(xiàng)目(51179019, 61374114);遼寧省教育廳重點(diǎn)實(shí)驗(yàn)室基礎(chǔ)項(xiàng)目(LZ2015006);中央高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(3132016313, 3132016311).
王昱棋(1992-), 男, 碩士研究生; 李鐵山(1968-), 男, 教授,博士生導(dǎo)師.
李鐵山, E-mail:tieshanli@126.com.
10.11990/jheu.201512069
TP273.2
A
1006-7043(2017)05-0684-06
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20170426.1133.036.html