蔡艷軍,趙 睿
(武警工程大學(xué),西安 710086)
基于灰色加權(quán)馬爾科夫的部隊(duì)集成訓(xùn)練效果預(yù)測*
蔡艷軍,趙 睿
(武警工程大學(xué),西安 710086)
針對(duì)GM(1,1)預(yù)測模型誤差較大的問題,在GM(1,1)模型的基礎(chǔ)上引入加權(quán)馬爾科夫模型構(gòu)建了部隊(duì)集成訓(xùn)練效果預(yù)測模型。該模型以GM(1,1)模型存在的預(yù)測殘差作為劃分馬爾科夫狀態(tài)的依據(jù),通過加權(quán)處理對(duì)預(yù)測結(jié)果進(jìn)行修正。實(shí)例分析結(jié)果表明,該模型算法簡單,易于實(shí)現(xiàn),可以較大地提高部隊(duì)訓(xùn)練效果預(yù)測精度,為部隊(duì)開展科學(xué)有效的實(shí)戰(zhàn)化訓(xùn)練提供了有力的數(shù)據(jù)支撐。
信息系統(tǒng),集成訓(xùn)練,效果預(yù)測
訓(xùn)練考核成績是衡量部隊(duì)訓(xùn)練效果的重要指標(biāo)。當(dāng)前,在部隊(duì)訓(xùn)練效果評(píng)估研究和運(yùn)用方面,主要有模糊評(píng)判法、云理論、層次分析法等[1-4],這些方法主要關(guān)注的是對(duì)靜態(tài)訓(xùn)練效果的評(píng)估。然而,基于信息系統(tǒng)集成訓(xùn)練作為提高部隊(duì)?wèi)?zhàn)斗力的重要手段,其過程是動(dòng)態(tài)、可持續(xù)的,其訓(xùn)練效果也是實(shí)時(shí)、動(dòng)態(tài)的,而且能夠反映訓(xùn)練發(fā)展變化的總趨勢(shì)。因此,部隊(duì)開展集成訓(xùn)練效果研究,不僅要關(guān)注訓(xùn)練效果,更要注重考察各階段訓(xùn)練效果的發(fā)展變化情況,通過對(duì)訓(xùn)練效果進(jìn)行預(yù)測來反思當(dāng)前部隊(duì)訓(xùn)練存在的問題,為科學(xué)組訓(xùn)提供數(shù)據(jù)支撐。
基于此,本文構(gòu)建了基于灰色加權(quán)馬爾科夫的部隊(duì)集成訓(xùn)練效果預(yù)測模型。該模型在GM(1,1)模型基礎(chǔ)上,引入馬爾科夫狀態(tài)轉(zhuǎn)移模型,并對(duì)預(yù)測狀態(tài)概率進(jìn)行加權(quán),算法簡單、易于實(shí)現(xiàn)、準(zhǔn)確度高。其基本思路是:根據(jù)原始樣本數(shù)據(jù)(實(shí)際考核成績),利用GM(1,1)取得部隊(duì)集成訓(xùn)練效果預(yù)測成績與樣本數(shù)據(jù)之間的殘差值,作為劃分馬爾科夫狀態(tài)的依據(jù),建立馬爾科夫狀態(tài)轉(zhuǎn)移矩陣,對(duì)各狀態(tài)分布概率作加權(quán)處理,以此來修正GM(1,1)模型的預(yù)測誤差,提高預(yù)測精度。
GM(1,1)模型即灰色模型(Grey Model),是灰色預(yù)測理論的經(jīng)典模型,適用性強(qiáng)。由文獻(xiàn)[5]可知,GM(1,1)模型的原始形式為:
GM(1,1)模型的基本形式為:
GM(1,1)模型的關(guān)鍵就是求解a和b值。為了方便求解a和b的值,將GM(1,1)模型改寫為矩陣方程:Y=B·A。
利用最小二乘法計(jì)算a和b的參數(shù)估計(jì)值,即:
進(jìn)行累加還原后,其原始數(shù)據(jù)序列的灰色預(yù)測模型為:
本文選取某部上一年度1月~12月集成訓(xùn)練月考成績作為樣本數(shù)據(jù),該成績依據(jù)相關(guān)要求《訓(xùn)練與考核大綱》考核得來。為了獲得精度較高的GM(1,1)模型,需要對(duì)原始數(shù)據(jù)序列的數(shù)據(jù)級(jí)比進(jìn)行檢驗(yàn)[6],即數(shù)據(jù)級(jí)比σ(k)必須滿足。樣本數(shù)據(jù)及級(jí)比驗(yàn)證結(jié)果如表1所示。
表1 樣本數(shù)據(jù)及級(jí)比
由式(6)計(jì)算可得該部上一年度1月~11月基于GM(1,1)模型的集成訓(xùn)練考核預(yù)測成績,如表2所示。
表2 GM(1,1)模型預(yù)測結(jié)果
由表2所示,對(duì)比樣本數(shù)據(jù)和GM(1,1)模型預(yù)測結(jié)果,可以發(fā)現(xiàn)預(yù)測結(jié)果與實(shí)際值之間的誤差較大。為了提高預(yù)測精度,引入加權(quán)馬爾科夫修正模型,對(duì)預(yù)測值誤差進(jìn)行修正。在這里,以該部1月~ 11月基于GM(1,1)模型預(yù)測成績與實(shí)際成績的殘差作為劃分馬爾科夫狀態(tài)的依據(jù),對(duì)誤差進(jìn)行修正。在此基礎(chǔ)上,通過數(shù)據(jù)分析對(duì)比,驗(yàn)證所建預(yù)測模型的有效性。
2.1 劃分狀態(tài)轉(zhuǎn)移區(qū)間
定義δ(k)為殘差,ε(k)為相對(duì)殘差,其中:
根據(jù)式(7),計(jì)算得出表2中基于GM(1,1)模型的預(yù)測成績與實(shí)際訓(xùn)練成績的殘差值δ(k)和相對(duì)殘差值ε(k),根據(jù)殘差分布情況,將其劃分5個(gè)狀態(tài)區(qū)間,分別是:E1=(-4,-2),E2=[-2,0),E3=[0,2),E4=[2,4),E5=[4,∞)。由此,每個(gè)殘差所處的狀態(tài)分布如表3所示。
表3 殘差狀態(tài)分布
2.2 建立狀態(tài)轉(zhuǎn)移矩陣
根據(jù)表3中殘差分布情況,構(gòu)建s步馬爾科夫狀態(tài)轉(zhuǎn)移概率矩陣為:
2.3 確立各階權(quán)值
運(yùn)用馬爾科夫模型修正預(yù)測結(jié)果時(shí),要考慮各狀態(tài)之間的強(qiáng)弱關(guān)系,即各階(轉(zhuǎn)移步長)馬爾科夫的絕對(duì)分布在預(yù)測中所起的作用。在這里,用權(quán)重值ws即各步長樣本的自相關(guān)系數(shù)來反映各狀態(tài)之間的關(guān)系。ws計(jì)算方式如下[7]:
式中,rs表示各階自相關(guān)系數(shù),x軃表示樣本數(shù)據(jù)序列的均值,對(duì)各階自相關(guān)系數(shù)進(jìn)行歸一化處理即可得到各階權(quán)重ws。對(duì)不同步長的轉(zhuǎn)移概率加權(quán),即:。式中,pj為第j種預(yù)測狀態(tài)的概率;為第k階第j種預(yù)測狀態(tài)的概率。
由式(9)計(jì)算可得各階狀態(tài)轉(zhuǎn)移權(quán)重值:w=[w1w2w3w4]=[0.051 8,0.000 7,0.527 2,0.420 3]。選取與12月最近的8月~11月訓(xùn)練考核成績所在的區(qū)間狀態(tài)為初始狀態(tài),分別計(jì)算出轉(zhuǎn)移步數(shù)為4、3、2、1步的結(jié)果,并對(duì)其加權(quán)求和來確定12月訓(xùn)練考核成績的預(yù)測值。計(jì)算結(jié)果如表4所示。
表4 加權(quán)權(quán)重值計(jì)算結(jié)果
2.4 修正預(yù)測結(jié)果
選擇最大加權(quán)權(quán)重值作為預(yù)測未來狀態(tài)的依據(jù),確定預(yù)測值的變化區(qū)間。由表4可知,12月訓(xùn)練成績預(yù)測值的殘差處于狀態(tài)E4的可能性最大,從而可預(yù)測該部12月份訓(xùn)練考核成績的殘差修正值Q為:
這里選取Q下、Q上為該狀態(tài)區(qū)間中殘差最小值、最大值作為狀態(tài)區(qū)間E4的下限值和上限值,即Q下=2.100 8,Q上=2.883 7,并據(jù)此計(jì)算殘差修正值。最終預(yù)測結(jié)果為:
表5給出了該部12月份集成訓(xùn)練考核成績預(yù)測結(jié)果分析。從表中可以看出,在原有GM(1,1)預(yù)測模型基礎(chǔ)上,引入加權(quán)馬爾科夫模型對(duì)其預(yù)測誤差進(jìn)行修正,其預(yù)測精度提高了3倍。
表5 結(jié)果對(duì)比
由此可見,運(yùn)用灰色加權(quán)馬爾科夫預(yù)測模型對(duì)部隊(duì)集成訓(xùn)練成績進(jìn)行預(yù)測,克服了訓(xùn)練成績因各種因素隨機(jī)波動(dòng)較大對(duì)預(yù)測結(jié)果的影響,預(yù)測精度高,計(jì)算簡單,便于實(shí)現(xiàn),這些都可以有力促進(jìn)基于信息系統(tǒng)實(shí)戰(zhàn)化集成訓(xùn)練。同時(shí),在預(yù)測過程中,通過對(duì)部隊(duì)訓(xùn)練成績數(shù)據(jù)在各個(gè)狀態(tài)上的分析研究,可以對(duì)部隊(duì)訓(xùn)練效果實(shí)施有效評(píng)估,有利于幫助指揮員協(xié)調(diào)、控制部隊(duì)訓(xùn)練過程,改進(jìn)訓(xùn)練方法,為部隊(duì)科學(xué)訓(xùn)練、針對(duì)性訓(xùn)練提供了有力的數(shù)據(jù)支撐。
[1]鄭敏嬌,鄭安卡,李文元.基于改進(jìn)模糊綜合評(píng)判的指揮信息系統(tǒng)對(duì)抗訓(xùn)練效果評(píng)估[J].微電子學(xué)與計(jì)算機(jī),2014,(5):179-183.
[2]崔凱旋,石全,張文宇,等.云理論在裝備保障訓(xùn)練效果評(píng)估中的應(yīng)用[J].火力與指揮控制,2013,38(3):108-111.
[3]徐池,石寧權(quán),黃曉飛.艦艇通信兵訓(xùn)練效果評(píng)估研究[J].指揮控制與仿真,2011,33(1):74-77.
[4]馮鑫,危懿.基于AHP與模糊綜合批判的模擬訓(xùn)練效果評(píng)估研究[J].重慶通信學(xué)院學(xué)報(bào),2015,34(4):43-46.
[5]劉思峰,黨耀國,方志耕,等.灰色系統(tǒng)理論及其應(yīng)用[M].北京:科學(xué)出版社,2004:125-134.
[6]彭勇.基于灰色馬爾科夫理論的體能訓(xùn)練效果預(yù)測與評(píng)價(jià)模型[J].軍事運(yùn)籌與系統(tǒng)工程,2013,27(3):59-61.
[7]王鐵寧,朱域,陳曉晨.基于灰色加權(quán)馬爾科夫的備件需求預(yù)測[J].裝甲兵工程學(xué)院學(xué)報(bào),2015,29(3):8-13.
Research on Integrated Training Effect Prediction of Troops Based on Gray Weighted Markov Model
CAI Yan-jun,ZHAO Rui
(Engineering University of Chinese Armed Police Force,Xi’an 710086,China)
Aiming at the error of GM(1,1)prediction model,the integrated training effect prediction model is established by using the weighted Markov method based on GM(1,1)model in this paper.In this model,the Markov state is dividing on the errors in GM(1,1)model,and then the prediction result is improved by using the weighted Markov method.The example result analysis shows that the algorithm of this model is more simpler,and the training effect prediction veracity is more accurate,and this model can provide the powerful date support for battle-focused training.
information system,integrated training,effect prediction
E13
A
1002-0640(2017)05-0023-03
2016-04-06
2016-05-07
全軍軍事學(xué)研究生基金資助項(xiàng)目(JYKTXS1404)
蔡艷軍(1983- ),男,湖北武漢人,博士研究生,講師。研究方向:軍事通信。