亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        西瓜根際促生菌篩選及生物育苗基質(zhì)研制*

        2017-06-07 10:30:36楊王甜甜孫玉涵胡官墨李萍沈其榮
        土壤學(xué)報(bào) 2017年3期
        關(guān)鍵詞:根際種苗西瓜

        張 楊王甜甜孫玉涵胡官墨李 榮?俞 萍沈其榮

        (1 南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院/國(guó)家有機(jī)肥類肥料工程技術(shù)研究中心/江蘇省固體有機(jī)廢棄物資源化高技術(shù)研究重點(diǎn)實(shí)驗(yàn)室/

        江蘇省有機(jī)固體廢棄物資源化協(xié)同創(chuàng)新中心,南京 210095)

        (2 南京秦邦吉品農(nóng)業(yè)開發(fā)有限公司,南京 211516)

        西瓜根際促生菌篩選及生物育苗基質(zhì)研制*

        張 楊1王甜甜1孫玉涵1胡官墨1李 榮1?俞 萍2沈其榮1

        (1 南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院/國(guó)家有機(jī)肥類肥料工程技術(shù)研究中心/江蘇省固體有機(jī)廢棄物資源化高技術(shù)研究重點(diǎn)實(shí)驗(yàn)室/

        江蘇省有機(jī)固體廢棄物資源化協(xié)同創(chuàng)新中心,南京 210095)

        (2 南京秦邦吉品農(nóng)業(yè)開發(fā)有限公司,南京 211516)

        通過從西瓜根際分離篩選具根際定殖能力的植物根際促生菌,將其保活添加至普通育苗基質(zhì)研制生物育苗基質(zhì),以確保功能菌株能夠在苗期定殖根際,進(jìn)而在移栽后發(fā)揮促生功能。結(jié)果表明,分離獲得一株同時(shí)具有產(chǎn)吲哚乙酸(IAA)和NH3,且對(duì)尖孢鐮刀菌和茄科勞爾氏菌均有拮抗作用的植物根際促生菌(PGPR)菌株N23;在三季育苗試驗(yàn)中,與普通基質(zhì)處理(CK)相比,添加菌株N23的生物育苗基質(zhì)所育種苗,在多項(xiàng)苗期生長(zhǎng)指標(biāo)上均表現(xiàn)出穩(wěn)定的促生作用;盆栽試驗(yàn)表明,除葉綠素相對(duì)含量測(cè)量值(SPAD)外,生物基質(zhì)所育西瓜種苗的其他檢測(cè)指標(biāo)均顯著高于對(duì)照(普通育苗基質(zhì)所育種苗,下同);田間試驗(yàn)表明,生物基質(zhì)所育種苗西瓜、黃瓜、辣椒和番茄種苗移苗后,在苗期植株株高和莖粗均顯著優(yōu)于對(duì)照,在產(chǎn)量上均增產(chǎn)10% 以上。結(jié)合形態(tài)、生理生化特征和16S rDNA基因序列分析,初步鑒定菌株N23為芽孢桿菌屬細(xì)菌(Bacillus sp.)。綜上,利用芽孢桿菌N23研制的生物育苗基質(zhì)能夠有效促進(jìn)所育不同作物種苗質(zhì)量,增強(qiáng)移栽后作物的生長(zhǎng)和田間產(chǎn)量。因此,本研究能夠?yàn)楦H有益微生物的應(yīng)用提供新的思路,為生物育苗基質(zhì)的研制提供理論支撐。

        根際有益促生菌;生物基質(zhì);育苗;促生;芽孢桿菌

        植物根際微生物由于受根系生長(zhǎng)及其分泌物的影響,其數(shù)量和種群結(jié)構(gòu)顯著不同于非根際土壤,構(gòu)成了根際特有的微生物區(qū)系[1]。植物根際促生菌(plant growth-promoting rhizobacteria,PGPR)是指生存于植物根際或根表,可以通過直接或間接的方式促進(jìn)或調(diào)節(jié)植物生長(zhǎng)并能防治病害的一類有益微生物[2-6]。隨著研究的深入,康貽軍等[7]提出,細(xì)菌成為PGPR的先決條件是接種后的菌株能在根際土壤微生物群體中表現(xiàn)出相當(dāng)?shù)母?jìng)爭(zhēng)力。張小蘭等[8]的研究也指出,溶磷菌的篩選不僅要考慮其溶磷能力,還有必要基于菌株在植物根際的定殖能力??梢姡琍GPR在根際土壤中是否有良好的定殖和競(jìng)爭(zhēng)能力對(duì)其發(fā)揮應(yīng)有的生物功能至關(guān)重要。因此,分離獲得具有高效定殖能力的PGPR菌株,并開發(fā)出其最優(yōu)的施用模式對(duì)現(xiàn)代生態(tài)農(nóng)業(yè)和有機(jī)農(nóng)業(yè)的發(fā)展具有重要意義[9]。

        隨著我國(guó)蔬菜產(chǎn)業(yè)的發(fā)展,工廠化育苗因有出苗整齊,成活率高,省工省力等優(yōu)點(diǎn)而越來越受到人們的重視[10],從而加速了固體栽培基質(zhì)的開發(fā)研究。然而,傳統(tǒng)的育苗基質(zhì)(草炭、珍珠巖等)的配方因草炭的來源有限,大大制約著穴盤育苗應(yīng)用的推廣。國(guó)外工廠化育苗發(fā)展較早,技術(shù)較為成熟,進(jìn)口基質(zhì)保水性能及營(yíng)養(yǎng)成分明顯優(yōu)于國(guó)產(chǎn)泥炭基質(zhì)[11],因此,提升國(guó)內(nèi)育苗基質(zhì)的整體水平尤為迫切。

        本研究將PGPR菌株與普通育苗基質(zhì)相結(jié)合,預(yù)計(jì)能夠有效促進(jìn)PGPR菌株在作物苗期的根際定殖,從而保障其促生功能的發(fā)揮,增強(qiáng)所育種苗的質(zhì)量,提高移植后作物的產(chǎn)量。研究結(jié)果預(yù)計(jì)能夠?yàn)镻GPR菌株的高效應(yīng)用提供新的思路,也為現(xiàn)代高效農(nóng)業(yè)的發(fā)展提供理論依據(jù)。

        1 材料與方法

        1.1 試驗(yàn)材料

        用于菌株分離的植株樣品采至南京市蔬菜花卉科學(xué)研究所南京市江寧區(qū)橫溪鎮(zhèn)南京現(xiàn)代園藝科技示范園;供試西瓜品種為“早佳8424”;黃瓜品種為“津優(yōu)1號(hào)”;辣椒品種為“紅巨椒”; 番茄品種為“紅粉佳人”。供試普通育苗基質(zhì)由淮安柴米河基質(zhì)肥料公司提供:總氮13.4 g kg-1,有機(jī)質(zhì)227.8 g kg-1,含水量≤50%,pH 6.96,電導(dǎo)率(EC)1.94 mS cm-1。

        1.2 根際及內(nèi)生菌的初步篩選

        參照張楊等[12]的方法。

        1.3 菌株產(chǎn)吲哚乙酸(IAA)和產(chǎn)NH3能力的測(cè)定

        菌株產(chǎn)IAA能力參照Glickmann和Dessaux[13]的方法測(cè)定。

        菌株產(chǎn)NH3能力的測(cè)定:分別將待測(cè)菌株接種于蛋白胨氨化培養(yǎng)基中,30℃培養(yǎng)24 h。以不接種的蛋白胨氨化培養(yǎng)基作對(duì)照。在培養(yǎng)液中加入3~5滴納氏試劑,出現(xiàn)黃色或棕紅色沉淀則為正反應(yīng)。未接種的培養(yǎng)基加入納氏試劑后無黃色或棕紅色沉淀出現(xiàn)[3,14]。

        1.4 菌株拮抗能力的測(cè)定

        采用平板對(duì)峙培養(yǎng)法,分別篩選對(duì)尖孢鐮刀真菌西瓜專化型(Fusarium oxysporum f. sp. niveum,F(xiàn)ON)和茄科勞爾氏菌(Ralstonia solanacearum,RS)有拮抗功能的菌株。將尖孢鐮刀菌(FON)接種至PDB(Potato dextrose broth馬鈴薯牛肉湯培養(yǎng)基)上[15],28℃ 下培養(yǎng)7 d,用直徑為5 mm的打孔器在菌落邊緣取菌塊,放置于新的 PDB 平板中央;并在其周圍3 cm處點(diǎn)接被篩選菌株,每處理4次重復(fù),然后放入28℃ 恒溫箱中培養(yǎng),3 d后,檢查有無抑制作用,并測(cè)量抑菌圈的大?。ㄈ?次重復(fù)的平均值)。將被篩選菌株點(diǎn)接于NA (Nutrient agar營(yíng)養(yǎng)瓊脂)培養(yǎng)基上,黑暗中恒溫30℃培養(yǎng)12 h;將茄科勞爾氏菌(RS)接種于NA液體培養(yǎng)基中,30℃,170 r min-1震蕩18 h,制成對(duì)數(shù)期的菌懸液(OD600=1.0),將菌懸液倒入無菌的噴瓶中,并將菌液均勻適量地噴至被篩選菌株的NA平板上。每處理設(shè)3次重復(fù),然后放入30℃恒溫箱中黑暗培養(yǎng),1 d 后,檢查有無抑制作用,并測(cè)量抑菌圈的大?。ㄈ?次重復(fù)的平均值)。

        1.5 生物育苗基質(zhì)的研制

        將菌株接種至PDB培養(yǎng)基中發(fā)酵生產(chǎn),條件為:pH 7.0,溫度30℃,170 r min-1震蕩,發(fā)酵中后期形成芽孢,發(fā)酵時(shí)間為48 h。將各菌株的50 ml發(fā)酵液添加至1 kg普通育苗基質(zhì)中,混合均勻。

        1.6 穴盤育苗試驗(yàn)

        1.6.1 生物基質(zhì)對(duì)西瓜的育苗效果 本試驗(yàn)于2013年7月—10月在南京農(nóng)業(yè)大學(xué)溫室內(nèi)進(jìn)行。將西瓜種子消毒浸種催芽,露白后埋入基質(zhì)中,每處理8個(gè)重復(fù)。育苗試驗(yàn)設(shè)計(jì)如下:處理為含5%(體積質(zhì)量比,下同)N23菌株發(fā)酵液的育苗生物基質(zhì);對(duì)照1為添加等量清水的普通育苗基質(zhì)(CK1);對(duì)照2為添加等體積未接菌的PDB培養(yǎng)基育苗基質(zhì)(CK2)。30 d后取植株樣品,分別測(cè)定株高、莖粗、葉綠素相對(duì)含量測(cè)量值(SPAD)和葉面積。育苗試驗(yàn)進(jìn)行3次,分別為育苗試驗(yàn)1~試驗(yàn)3。

        1.6.2 生物基質(zhì)對(duì)其他作物育苗效果 本試驗(yàn)于2014年7月―8月在淮安柴米河基質(zhì)肥料公司科技示范園內(nèi)進(jìn)行。分別將黃瓜、辣椒和番茄種子浸種催芽,露白后埋于基質(zhì)中,每種作物均設(shè)兩個(gè)處理:1)使用普通育苗基質(zhì)育苗(CK);2)使用添加功能菌株N23發(fā)酵液的生物基質(zhì)育苗(N23),每處理設(shè)置3個(gè)重復(fù)(每重復(fù)采用72孔苗盤育苗72棵)。30 d后取植株樣品,分別測(cè)定株高、莖粗以及地上部鮮重和干重。

        1.7 盆栽試驗(yàn)

        將生物基質(zhì)以及普通基質(zhì)所育西瓜種苗分別于2014年6月—9月在溫室內(nèi)進(jìn)行兩季盆栽試驗(yàn)。共設(shè)2個(gè)處理:1)普通基質(zhì)所育種苗(CK);2)含N23菌株發(fā)酵液的生物基質(zhì)所育種苗。每處理6個(gè)重復(fù),每盆缽裝土2.5 kg,并添加15 g kg-1的普通雞糞有機(jī)肥與土拌勻作為基肥,選取長(zhǎng)勢(shì)均一的種苗移栽,于40 d時(shí)測(cè)定各處理的株高、莖粗和SPAD值。

        1.8 田間試驗(yàn)

        1.8.1 西瓜實(shí)驗(yàn) 生物育苗基質(zhì)所育西瓜種苗田間增產(chǎn)效果兩季田間試驗(yàn)分別于 2014年8月—11月和2015年4月—7月在南京市蔬菜花卉科學(xué)研究所南京市江寧區(qū)橫溪鎮(zhèn)南京現(xiàn)代園藝科技示范園內(nèi)進(jìn)行。待種苗長(zhǎng)勢(shì)兩葉一心時(shí)移栽至蔬菜大棚中進(jìn)行田間實(shí)驗(yàn),共設(shè)2個(gè)處理(同盆栽試驗(yàn)處理)。所有處理均施用普通雞糞有機(jī)肥。有機(jī)肥施用量按7500 kg hm-2施用,基肥總氮(N)、磷(P2O5)和鉀(K2O)養(yǎng)分分別為120 kg hm-2、90 kg hm-2和120 kg hm-2(不足之處用化肥補(bǔ)齊);在花期和果期進(jìn)行兩次追施化肥,兩次追肥氮、磷(P2O5)和鉀(K2O)養(yǎng)分分別為90 kg hm-2、60 kg hm-2和60 kg hm-2,90 kg hm-2、0 kg hm-2和60 kg hm-2。試驗(yàn)每個(gè)處理設(shè)3次重復(fù),隨機(jī)區(qū)組設(shè)計(jì)。每個(gè)小區(qū)面積為2 m×4 m,基肥于耕層混合均勻。每個(gè)小區(qū)移栽西瓜株數(shù)為10株。在西瓜移栽30 d時(shí)測(cè)定植株的株高和莖粗,移栽60 d開始測(cè)定各處理作物的產(chǎn)量,所采記產(chǎn)作物按統(tǒng)一規(guī)格采摘,且之后每隔一段時(shí)間計(jì)產(chǎn)一次,共計(jì)產(chǎn)3次。

        1.8.2 其他作物實(shí)驗(yàn) 生物育苗基質(zhì)所育其他作物種苗田間增產(chǎn)效果田間試驗(yàn)于2014年8月—11月在淮安柴米河基質(zhì)肥料公司科技示范園內(nèi)進(jìn)行,將功能型基質(zhì)和普通基質(zhì)分別育黃瓜、辣椒和番茄種苗,待種苗長(zhǎng)勢(shì)兩葉一心時(shí)移栽至蔬菜大棚中進(jìn)行田間實(shí)驗(yàn),共設(shè)2個(gè)處理(同1.6.2試驗(yàn)處理)。施肥計(jì)劃一律按企業(yè)常規(guī)管理施用量施以化肥。移栽約30 d后分別測(cè)定黃瓜、辣椒和番茄植株的株高、莖粗。移栽60 d開始計(jì)處理作物的產(chǎn)量,所采記產(chǎn)作物按統(tǒng)一規(guī)格采摘,且之后每隔一段時(shí)間計(jì)產(chǎn)一次,共計(jì)產(chǎn)4次。

        1.9 菌株的鑒定

        以總 DNA 為模板,采用通用引物 27F/1492R[16]進(jìn)行 16S r DNA 擴(kuò)增。PCR 產(chǎn)物切膠回收后,委托美吉生物工程(上海)有限公司測(cè)序,測(cè)序結(jié)果在RDP數(shù)據(jù)庫中進(jìn)行比對(duì),選取同源性較高的序列使用MEGA 4.1 軟件構(gòu)建系統(tǒng)發(fā)育樹,采用1 000次重復(fù)取樣進(jìn)行 Bootstrap 檢驗(yàn),確定菌株的分類地位。

        1.10 數(shù)據(jù)分析

        使用Excel 2007程序和SPSS 19.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,使用最小顯著差異法(LSD)進(jìn)行多重比較(p<0.05),采用T檢驗(yàn)法(Student’s t test)進(jìn)行兩個(gè)樣本間的顯著性差異比較。

        2 結(jié) 果

        2.1 初篩菌株的促生及拮抗性能

        分離獲得根際菌株(編號(hào)前為G)及內(nèi)生菌株(編號(hào)前為N)共84株,選取其中6株能夠產(chǎn)生IAA菌株,再進(jìn)行產(chǎn)NH3及拮抗能力測(cè)定,6株菌分別命名為G36、G35、G8、G3、N23、N14。測(cè)定結(jié)果表明,G36、G35、G8和G3對(duì)尖孢鐮刀菌及茄科勞爾氏菌均無拮抗作用,其中G36產(chǎn)NH3的能力大于G3,G35和G8無明顯產(chǎn)NH3能力;N23和N14兩株菌具有最高的產(chǎn)IAA和產(chǎn)NH3的能力,且對(duì)尖孢鐮刀菌和茄科勞爾氏菌均有拮抗作用,由抑菌圈大小可以看出N23的拮抗效果顯著強(qiáng)于N14,基于此,具有較強(qiáng)復(fù)合功能的菌株N23被選取進(jìn)行進(jìn)一步研究,如表1。

        2.2 含菌株N23生物基質(zhì)的穴盤育苗效果

        在1.6.1生物基質(zhì)對(duì)西瓜育苗效果的三次育苗試驗(yàn)的試驗(yàn)1和試驗(yàn)2中,相比于添加等量清水的普通育苗基質(zhì)(CK1)及添加等體積未接菌液體PDB培養(yǎng)基育苗基質(zhì)(CK2)所育種苗,添加菌株N23研制成的生物育苗基質(zhì)對(duì)西瓜苗的生長(zhǎng)有明顯促生效果,除莖粗和SPAD值外,其他生長(zhǎng)指標(biāo)均顯著高于CK1和CK2。在育苗試驗(yàn)3中,生物基質(zhì)處理(N23)相比CK1和CK2,除葉面積和SPAD外,其他生長(zhǎng)指標(biāo)均顯著高于對(duì)照,如表2。綜上,添加功能菌發(fā)酵液的生物基質(zhì)對(duì)西瓜種苗的生長(zhǎng)有明顯促生作用,同時(shí),三次育苗試驗(yàn)結(jié)果表明,發(fā)酵液中培養(yǎng)基并未對(duì)本試驗(yàn)結(jié)果產(chǎn)生顯著影響。

        添加N23菌株生物育苗基質(zhì)對(duì)黃瓜、辣椒和番茄幼苗均具有促生效果。生物育苗基質(zhì)所育黃瓜種苗,除莖粗外,其他生長(zhǎng)指標(biāo)均顯著優(yōu)于CK;所育辣椒種苗,所有生長(zhǎng)指標(biāo)均顯著優(yōu)于CK;所育番茄種苗,所有生長(zhǎng)指標(biāo)均有顯著差異,如表3。綜上,添加菌株N23的生物育苗基質(zhì)不僅對(duì)西瓜苗期生長(zhǎng)有促進(jìn)作用,對(duì)其他多種作物苗期生長(zhǎng)均有促進(jìn)作用。

        2.3 含菌株N23生物基質(zhì)的盆栽試驗(yàn)效果

        兩季盆栽試驗(yàn)結(jié)果一致,相比于使用普通育苗基質(zhì)(CK)所育種苗,添加功能菌生物育苗基質(zhì)所育種苗在移栽30 d后仍然有優(yōu)異生長(zhǎng)特性,除SPAD值外,其他生長(zhǎng)指標(biāo)均顯著高于對(duì)照,如表4。

        表1 初篩菌株的促生及拮抗性能Table 1 Plant growth-promoting and antagonistic characteristics of the strains of bacteria out of the first screening

        圖1 所分離菌株的功能特性Fig.1 Functions of the isolated bacteria

        表2 以菌株N23為功能菌的生物基質(zhì)對(duì)西瓜育苗效果Table 2 Effects of inoculation of nursery substance with Strain N23 on watermelon seedling growth

        表3 以菌株N23為功能菌的生物基質(zhì)對(duì)黃瓜、辣椒和番茄的育苗效果Table 3 Effects of inoculation of nursery substance with strain N23 on seedlings growth of different crops

        表4 生物基質(zhì)和普通基質(zhì)所育西瓜種苗盆栽生長(zhǎng)效果Table 4 Growth characters of watermelon seedlings transplanted from bio-nursery substrate and ordinary nursery substrate after transplanting in the pots

        2.4 含菌株N23生物基質(zhì)所育種苗的田間生長(zhǎng)效果

        相比于普通育苗基質(zhì)所育種苗(CK),添加功能菌N23研制成的生物育苗基質(zhì)所育種苗移栽后,兩季西瓜田間結(jié)果株高和莖粗均顯著優(yōu)于對(duì)照。兩季西瓜田間增產(chǎn)效果一致,第一季,生物基質(zhì)所育種苗處理(N23)的產(chǎn)量較普通基質(zhì)所育種苗處理(CK)增產(chǎn)約12.4%;第二季則增產(chǎn)約25.4%,如表5。

        相比于普通育苗基質(zhì)所育種苗(CK),添加功能菌研制成的生物育苗基質(zhì)的處理(N23)所育番茄、辣椒和黃瓜三種作物的種苗移栽后,在作物株高和莖粗上能保持苗期生長(zhǎng)優(yōu)勢(shì)(表6);在當(dāng)季產(chǎn)量上,番茄產(chǎn)量為9 710 kg hm-2,辣椒產(chǎn)量為23 816 kg hm-2,黃瓜產(chǎn)量為31 283 kg hm-2,均顯著高于普通育苗基質(zhì)所育種苗產(chǎn)量,在番茄、辣椒和黃瓜上分別增產(chǎn)60%、25%和18%。

        表5 生物基質(zhì)和普通基質(zhì)所育西瓜種苗田間生長(zhǎng)效果Table 5 Growth characters of watermelon seedlings transplanted from bio-nursery substrate and ordinary nursery substrate after transplanting in the field

        表6 生物基質(zhì)和普通基質(zhì)所育黃瓜、辣椒和番茄種苗田間生長(zhǎng)效果Table 6 Growth of tomato,pepper and cucumber seedlings transplated from bio-nursery substrate and ordinary nursery substrate in the field

        2.5 菌株N23鑒定為芽孢桿菌屬細(xì)菌

        菌株N23在LB(Luria-Bertani培養(yǎng)基)平板上的菌落呈乳白色,皺褶,邊緣不整齊,具有一定的黏性,易挑起。革蘭氏染色陽性,菌體著色均勻,呈桿狀,兩端鈍平,呈不規(guī)則形狀。淀粉水解反應(yīng)、V.P反應(yīng)(Voges-Proskauer reaction)、接觸酶反應(yīng)、利用檸檬酸鹽反應(yīng)、硝酸鹽還原、石蕊牛奶還原胨化、甲基紅反應(yīng)以及明膠液化反應(yīng)均呈陽性;D-果糖、麥芽糖、阿拉伯糖、木糖和乳糖利用均呈陽性;發(fā)酵葡萄糖產(chǎn)酸不產(chǎn)氣,厭氧條件下不生長(zhǎng);7%NaCl培養(yǎng)條件下生長(zhǎng),能夠產(chǎn)生芽孢。利用N23菌株的16S rDNA序列(登錄號(hào)為KP403800)所構(gòu)建發(fā)育樹如圖2所示,與死谷芽孢桿菌Bacillus vallismortis DSM11031T(AB021198)相似性在99%以上。結(jié)合菌株的形態(tài)特征、理化特征并結(jié)合16S rDNA序列分析,將菌株N23初步鑒定為芽孢桿菌屬細(xì)菌。

        3 討 論

        3.1 多功效PGPR的獲得

        圖2 菌株N23的系統(tǒng)發(fā)育樹Fig. 2 Phylogenetic tree of strain N23

        本研究首先從西瓜植株根系篩選出6株產(chǎn)IAA優(yōu)勢(shì)菌株,進(jìn)一步復(fù)篩出具有產(chǎn)NH3能力4株菌株G36、G3、N23和N14,最后通過對(duì)尖孢鐮刀菌和茄科勞爾氏菌的拮抗測(cè)試獲得具有復(fù)合功能的根際促生菌株N23。目前,已有大量關(guān)于植物根際促生菌(PGPR)促進(jìn)植物生長(zhǎng)及防控土傳病害的報(bào)道[17-19]。菌株促生性能主要體現(xiàn)在產(chǎn)生一些植物促生物質(zhì),如吲哚乙酸(IAA)、赤霉素和玉米素等植物生長(zhǎng)激素[13],如:Cattelan等[20]研究發(fā)現(xiàn)接種產(chǎn)IAA的促生菌可以促進(jìn)大豆地上部及根系的生長(zhǎng);Kumar和 Singh[21]提出氨作為提供氮素的重要原料,為微生物產(chǎn)氨促進(jìn)植物生長(zhǎng)重要因子之一。因此,本研究首先利用產(chǎn)IAA和氨能力初篩具促生能力的潛在根際細(xì)菌,通過多級(jí)篩選,首先獲得潛在的促生菌株。PGPR菌株的防病功能主要體現(xiàn)在其具有抑制土傳病原菌生長(zhǎng)的功效[22-23],因此,本文繼續(xù)通過測(cè)定菌株對(duì)設(shè)施蔬菜兩種常見病害——枯萎病和青枯?。?4-26]病原菌拮抗能力進(jìn)行復(fù)篩,選擇目標(biāo)細(xì)菌,最終獲得一株具有多種功效的細(xì)菌,預(yù)計(jì)所分離細(xì)菌不僅能夠促進(jìn)作物生長(zhǎng),同時(shí)具有防控設(shè)施蔬菜土傳病害的能力。

        3.2 生物育苗基質(zhì)的應(yīng)用效果與可能促生機(jī)理

        功能菌株N23保活添加至普通育苗基質(zhì)中研制成的生物育苗基質(zhì),在3次育苗試驗(yàn)中均體現(xiàn)出促生優(yōu)勢(shì)。這與張楊等[12]利用辣椒根際枯草芽孢桿菌研制的生物基質(zhì)促生效果一致。表明將PGPR與普通育苗基質(zhì)聯(lián)合研制成生物育苗基質(zhì)后能夠有效促進(jìn)所育種苗的生長(zhǎng)。目前大量的有關(guān)PGPR的研究均是直接添加至作物根際或研制成生物有機(jī)肥或復(fù)合微生物肥料施用后促進(jìn)作物生長(zhǎng)[27]。相比于先前研究,本研究開發(fā)出了新的PGPR利用模式,能夠?yàn)镻GPR的研究提供新思路。

        兩季盆栽試驗(yàn)結(jié)果表明,西瓜苗移栽后的株高、莖粗、和真葉數(shù)等生長(zhǎng)指標(biāo)均顯著高于對(duì)照處理(CK)。將生物基質(zhì)所育種苗(N23)移栽大田試驗(yàn)中,西瓜、黃瓜、辣椒和番茄四種作物的生長(zhǎng)指標(biāo)和產(chǎn)量均顯著優(yōu)于普通育苗基質(zhì)所育種苗處理(CK)。由于盆栽和田間試驗(yàn)均保證了作物生長(zhǎng)充足的養(yǎng)分供應(yīng),因此,處理的促生功效推斷由PGPR發(fā)揮?,F(xiàn)有大量PGPR菌株的研究均表明,該類微生物能夠有效促進(jìn)植株的生長(zhǎng)[12,15,25-27],這與本研究結(jié)論一致。但與先前研究不同的是,本研究將PGPR與普通育苗基質(zhì)聯(lián)合形成生物育苗基質(zhì),育苗過程中,PGPR菌株即能夠在苗期定殖于作物根際,預(yù)計(jì)到田間后能夠進(jìn)一步發(fā)揮促生功能;另一方面,本試驗(yàn)所篩選并研制的生物育苗基質(zhì)能有效提高作物苗期質(zhì)量,推測(cè)苗期的生長(zhǎng)優(yōu)勢(shì)同樣是取得盆栽試驗(yàn)促生效果的原因之一。因此,生物育苗基質(zhì)能夠首先提高所育種苗的質(zhì)量,促進(jìn)功能菌在苗期的定殖,進(jìn)而兩者協(xié)同作用,促進(jìn)種苗移植后田間的增產(chǎn)。最后,本文篩選的功能菌株被鑒定為芽孢桿菌屬細(xì)菌(Bacillus sp.),其與死谷芽孢桿菌、龍舌蘭芽孢桿菌和枯草芽孢桿菌的同源性較近,但具體到種的分類地位尚需在以后的工作中進(jìn)一步確定。

        4 結(jié) 論

        本研究分離篩選獲得1株同時(shí)具有產(chǎn)IAA和NH3能力,既對(duì)尖孢鐮刀菌又對(duì)茄科勞爾氏菌有拮抗作用且能力較高的PGPR菌株。將其?;钐砑又疗胀ǖ挠缁|(zhì)中而研制成對(duì)作物苗期生長(zhǎng)具有促進(jìn)作用的生物育苗基質(zhì),在三次育苗試驗(yàn)中,與普通基質(zhì)處理(CK)相比添加菌株N23的生物基質(zhì)處理(N23),多項(xiàng)作物苗期生長(zhǎng)指標(biāo)均表現(xiàn)出穩(wěn)定的促生及根際定殖能力;移栽后,通過盆栽試驗(yàn)及田間試驗(yàn)證實(shí)使用生物基質(zhì)所育種苗在移苗后其株高、莖粗和田間產(chǎn)量均具有顯著優(yōu)勢(shì)。最后,結(jié)合形態(tài)、生理生化特征和16S rDNA 基因序列分析,初步鑒定菌株N23為芽孢桿菌屬細(xì)菌(Bacillus sp.)。

        [1] Adesemoye A O,Torbert H A,Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology,2008,54(10):876—886

        [2] Lee S W,Lee S H,Balaraju K,et al. Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria(PGPR)strain Bacillus subtilis 21-1 under two different soil conditions. Acta Physiologiae Plantarum,2014,36(6):1353—1362

        [3] 康貽軍,程潔,梅麗娟,等. 植物根際促生菌的篩選及鑒定. 微生物學(xué)報(bào),2010,50(7):853—861

        Kang Y J,Cheng J,Mei L J,et al. Screening and identification of plant growth-promoting rhizobacteria (In Chinese). Acta Microbiologica Sinica,2010,50 (7):853—861

        [4] 胡江春,薛德林,馬成新,等. 植物根際促生菌(PGPR)的研究與應(yīng)用前景. 應(yīng)用生態(tài)學(xué)報(bào),2004,15(10):1963—1966

        Hu J C,Xue D L,Ma C X,et al. Research advances in plant growth promoting rhizobacteria and its application prospects(In Chinese). Chinese Journal of Applied Ecology,2004,15(10):1963—1966

        [5] Schippers B,Bakker A W,Bakker P A H M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology,2003,25(1):339—358

        [6] 孫珊,黃星,范寧杰,等. 一株溶磷細(xì)菌的分離、鑒定及其溶磷特性研究. 土壤,2010,42(1):117—122

        Sun S,Huang X,F(xiàn)an N J,et al. Studies on phosphorus solubilizing activity of a strain isolated from corp rhizosphere(In Chinese). Soils,2010,42 (1):117—122

        [7] 康貽軍,程潔,梅麗娟,等. 植物根際促生菌作用機(jī)制研究進(jìn)展. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(1):232—238

        Kang Y J,Cheng J,Mei L J,et al. Action mechanisms of plant growth promoting rhizobacteria(PGPR):A review(In Chinese). Chinese Journal of Applied Ecology,2010,21(1):232—238

        [8] 張小蘭,韋中,梅新蘭,等. 一種基于根際定殖能力篩選溶磷菌的方法. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,37 (2):79—84

        Zhang X L,Wei Z,Mei X L,et al. A method for screening phosphate solubilizing bacteria based on the rhizosphere colonization ability of strains(In Chinese). Journal of Nanjing Agricultural University,2014,37(2):79—84

        [9] 劉靜洋,崔松松,韓國(guó)民,等. 棉花根際細(xì)菌的生理活性和促生效果. 中國(guó)土壤與肥料,2013(6):88—92 Liu J Y,Cui S S,Han G M,et al. Physiological activity and promoting effects of rhizobacteria on cotton (In Chinese). Soil and Fertilizer Sciences in China,2013(6):88—92

        [10] 李紅. 淺談蔬菜工廠化穴盤育苗生產(chǎn)技術(shù). 現(xiàn)代農(nóng)業(yè),2015(6):15

        Li H. Introduction to vegetable factory seedling production technology(In Chinese). Modernizing Agriculture,2015(6):15

        [11] Chaney R L,Munns J B,Cathey H M. Effectiveness of digested sewage sludge compost in supplying nutrients for soilless potting media. Journal of the American Society for Horticultural Science,1980,105(4):485—492

        [12] 張楊,文春燕,趙買瓊,等. 辣椒根際促生菌的分離篩選及生物育苗基質(zhì)研制. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,38(6):950—957

        Zhang Y,Wen C Y,Zhao M Q,et al. Isolation of plant growth promoting rhizobacteria from pepper and development of bio-nursery substrates(In Chinese). Journal of Nanjing Agricultural University,2015,38 (6):950—957

        [13] Glickmann E,Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and environmental microbiology,1995,61 (2):793—796

        [14] Dye D W. The inadequacy of the usual determinative tests for identification of Xanthomonas spp. New Zealand Journal of Science,1962(5):393—416

        [15] 韋巧婕,鄭新艷,鄧開英,等. 黃瓜枯萎病拮抗菌的篩選鑒定及其生物防效. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,36 (1):40—46

        Wei Q J,Zheng X Y,Deng K Y,et al. Screening and identification of antagonistic Bacillus vallismortis B against cucumber Fusarium wilt and its biologicaleffect(In Chinese). Journal of Nanjing Agricultural University,2013,36(1):40—46

        [16] 李引,虞麗,李輝信,等. 一株花生根際促生菌的篩選鑒定及其特性研究. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2012,28 (4):416—421

        Li Y,Yu L,Li H X,et al. Isolation identification and characteristics of a peanut growth-promoting strain of Rhizobacteria(In Chinese). Journal of Ecology and Rural Environment,2012,28(4):416—421

        [17] Xue Q Y,Chen Y,Li S M,et al. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control,2009,48(3):252—258

        [18] Zhou T T,Chen D,Li C Y,et al. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbial Research,2012,167(7):388—394

        [19] 陳巧玲,胡江,汪漢成,等. 生物有機(jī)肥對(duì)盆栽煙草根際青枯病原菌和短短芽孢桿菌數(shù)量的影響. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,35(1):75—79

        Chen Q L,Hu J,Wang H C,et al. Effects of bioorganic fertilizer application on population of Ralstonia solanacearum and Brevibacillus brevis in tobacco rhizosphere(In Chinese). Journal of Nanjing Agricultural University,2012,35(1):75—79

        [20] Cattelan A J,Hartel P G,F(xiàn)uhrmann J J. Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal,1999,63(6):1670—1680

        [21] Kumar V,Singh K P. Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresource Technology,2001,76(2):173—175

        [22] 陳玉婷,林威鵬,范雪瀅,等. 硅介導(dǎo)番茄青枯病抗性的土壤定量蛋白質(zhì)組學(xué)研究. 土壤學(xué)報(bào),2015,52 (1):162—173

        Chen Y T,Lin W P,F(xiàn)an X Y,et al. Soil quantitative proteomic analysis of silicon-mediated resistance of tomato(Solanum lycopersicum)to Ralstonia solanacearum(In Chinese). Acta Pedologica Sinica,2015,52(1):162—173

        [23] 吳學(xué)宏,盧志軍,王品品,等. 西瓜枯萎病綜合防治研究進(jìn)展. 植物保護(hù),2011,37(4):27—32

        Wu X H,Lu Z J,Wang P P,et al. Current advances in integrated management of watermelon Fusarium wilt (In Chinese). Plant Protection,2011,37(4):27—32

        [24] 李紅麗,郭夏麗,李清飛,等.抑制煙草青枯病生物有機(jī)肥的研制及其生防效果研究. 土壤學(xué)報(bào),2010,47 (4):798—801

        Li H L,Guo X L,Li Q F,et al. Tobacco wilt suppressing bio-manure and its bio-control effect(In Chinese). Acta Pedologica Sinica,2010,47(4):798—801

        [25] Wang B B,Shen Z Z,Zhang F G,et al. Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress Fusarium wilt in banana under greenhouse and field conditions. Pedosphere,2016,26 (5):733—744

        [26] Hu H Q,Li X S,He H,et al. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control,2010,54 (3):359—365

        [27] 鞏子毓,高旭,黃炎,等. 連續(xù)施用生物有機(jī)肥提高設(shè)施黃瓜產(chǎn)量和品質(zhì)的研究. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,39(5):777—783

        Gong Z Y,Gao X,Hang Y,et al. Research on continuous application of bio-organic fertilizer for improving greenhouse cucumber yield and quality(In Chinese). Journal of Nanjing Agricultural University,2016,39(5):777—783

        Screening of Plant Growth-Promoting Rhizobacteria from Watermelon and Development of Bio-nursery Substrates

        ZHANG Yang1WANG Tiantian1SUN Yuhan1HU Guanmo1LI Rong1?YU Ping2SHEN Qirong1
        (1 College of Resources and Environmental Sciences / National Engineering Research Center for Organic-based Fertilizer/ Jiangsu Key Laboratory of Solid Organic Waste Utilization/ Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization,Nanjing Agricultural University,Nanjing 210095,China)
        (2 Nanjing Qinbang Jipin Agricultural Development Co. Ltd. ,Nanjing 211516,China)

        【Objective】In order to improve the technical level of industrialized seedling culture andfind new methods to make use of plant growth-promoting rhizobacteria(PGPR),a new strain of functional bacteria that would promote growth of watermelon was isolated,cultured and inoculated into ordinary nursery substrate,thus forming a kind of bio-nursery substrate.【Method】A number of strains of bacteria were isolated randomly from the rhizosphere soil of watermelon plants and screened by plant growth-promoting properties. One strain which was found to possess complex functions and efficient rhizospheric colonization ability was further cultured and then inoculated into in ordinary nursery substrate in developing bionursery substrates. Repeated seedling nursing tests and pot experiments were performed in greenhouse and subsequently in the field to further validate effect of the novel bio-nursery substrate prepared by inoculating this bacterial strain into ordinary nursery substrate. In the end this strain was proved to be the right one for preparation of bio-nursery substance.【Result】Through screening,a strain of bacteria,N23,capable of both producing indole acetic acid and NH3simultaneously and acting in antagonism against Fusarium oxysporum f. sp. niveum and Ralstonia solanacearum,was isolated from the rhizospheric soil of watermelon plants. Seedling raising experiments show that in the substrate inoculated with Strain N23,watermelon seedlings grew much better than those in the ordinary nursery substrate,in plant height,stem diameter and leaf area. Such an effect was further demonstrated in another three seedlings raising experiments,showing that the strain steadily promotes seedling growth in a number of growth indices. The pot experiments show that the plants growing in the bio-nursery substrate were significantly higher than those in the ordinary nursery substrate,in all measured parameters except SPAD(Soil and Plant Analyzer Development),which differed very slightly. In the field experiments,watermelon,cucumber,tomato,and pepper seedlings cultured in the bio-nursery substrate grew better than those cultured in ordinary nursery substrate,in plant height and stem diameter,which coincided with the results in the pot and seedling experiments. And in the two seasons of field experiments,the watermelon in the former was 12.5% and 25.4% higher than that in the latter,respectively. In the field experiments cucumber,tomato,and pepper in the former was 18%,60% and 25%,than their respective one in the latter. Morphological and biochemical analysis and 16S rDNA gene sequencing of Stain N23 shows that the strain is one of Bacillus sp.【Conclusion】All the findings in this study demonstrate that the bio-nursery substrate prepared by inoculating Bacillus sp. N23 into ordinary nursery substances promotes seedlings and plant growth as well as yield of the crop. Consequently,this study has provided some novel ideas for making use of rhizobacteria and some theoretical and technical support to the development of PGPR agents for preparation of bio-nursery substances.

        Plant growth-promoting rhizobacteria;Bio-nursery substrates;Seedling raising;Plant growth promotion;Bacillus sp.

        S144.9

        A

        (責(zé)任編輯:陳榮府)

        * 江蘇省科技計(jì)劃項(xiàng)目(BY2016077-05)、南京市科技計(jì)劃項(xiàng)目(201505041)和江蘇省高校品牌專業(yè)建設(shè)工程資助項(xiàng)目(PPZY2015A061)共同資助 Supported by the Science and Technology Project of Jiangsu Province(No. BY2016077-05),the Science and Technology Project of Nanjing(No. 201505041)and the Top-notch Academic Programs Project of Jiangsu Higher Education Institution (No. PPZY2015A061)

        ? 通訊作者 Corresponding author,E-mail:lirong@njau.edu.cn

        張 楊(1991—),女,吉林人,博士研究生,主要研究領(lǐng)域植物營(yíng)養(yǎng)學(xué)。E-mail:yczhang_0831@163.com

        2016-08-30;

        2016-12-19;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-01-13

        10.11766/trxb201608300287

        猜你喜歡
        根際種苗西瓜
        根際微生物對(duì)植物與土壤交互調(diào)控的研究進(jìn)展
        鼎牌種苗有限公司
        《園藝與種苗》征稿啟事
        園藝與種苗(2021年5期)2021-06-30 02:26:22
        大小西瓜
        黃花蒿葉水提物對(duì)三七根際尖孢鐮刀菌生長(zhǎng)的抑制作用
        當(dāng)夏天遇上西瓜
        促植物生長(zhǎng)根際細(xì)菌HG28-5對(duì)黃瓜苗期生長(zhǎng)及根際土壤微生態(tài)的影響
        巧切西瓜
        小小種苗不簡(jiǎn)單 一年賺回上百萬
        高錳酸鉀在種苗上的應(yīng)用
        色 综合 欧美 亚洲 国产| 1000部夫妻午夜免费| 国产精品-区区久久久狼| 色婷婷六月天| av中文字幕不卡无码| 女同成片av免费观看| 日韩美女av一区二区| 欧美综合天天夜夜久久| 精品久久久久久中文字幕| 狠狠丁香激情久久综合| 少妇一区二区三区精选| 日本xxxx色视频在线观看免费| 亚洲精品乱码久久久久久日本蜜臀| 久久久久中文字幕无码少妇| 在线免费午夜视频一区二区| 亚洲国产精品一区二区毛片| 麻豆国产精品va在线观看不卡 | 国产一区二区视频在线看| 国产精品熟女少妇不卡| 免费看又色又爽又黄的国产软件| 中文字幕人妻偷伦在线视频| 亚洲AV无码乱码一区二区三区 | 中文字幕一区二区在线| 国产乱人伦偷精品视频免观看| 99久久人妻精品免费二区| 欧美刺激午夜性久久久久久久| 国产在线视频一区二区三区| 夜夜躁日日躁狠狠久久av| 亚洲日韩精品欧美一区二区一 | 色综合久久久久久久久五月| 一区二区久久精品66国产精品| 不卡av一区二区在线| 国产播放隔着超薄丝袜进入| 97免费人妻在线视频| 男女在线免费视频网站| 91自拍视频国产精品| 免费a级毛片无码a∨男男| 丝袜美腿网站一区二区| 永久中文字幕av在线免费| 激情综合五月| 国产免费人成视频在线观看|