李倩男++洪莉
[摘要] 膠原蛋白是一類結(jié)構(gòu)獨(dú)特的蛋白質(zhì),廣泛存在于哺乳動(dòng)物中,是結(jié)締組織的主要結(jié)構(gòu)元素,與機(jī)體的疾病和衰老關(guān)系密切。膠原的代謝過程由一系列信號(hào)轉(zhuǎn)導(dǎo)通路和細(xì)胞因子共同調(diào)控,TGF-β/Smad、PI3K/Akt、MAPK、Wnt、NF-κB等眾多信號(hào)通路網(wǎng)絡(luò)交互影響,共同介導(dǎo)膠原合成與分解的代謝過程。本文將對(duì)參與膠原代謝主要的信號(hào)通路進(jìn)行綜述。
[關(guān)鍵詞] 膠原代謝;MMPs;TIMPs;信號(hào)通路
[中圖分類號(hào)] R589 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)04(a)-0056-04
[Abstract] Collagen, a kind of protein with special structure, which is widely found in mammalian tissues. It is the main structural element of connective tissue, which is closely related to the disease and aging. Collagen metabolism is mediated by cytokines and a series of signaling transduction pathways.Signaling pathways such as TGF-β/Smad, PI3K/Akt, MAPK, Wnt, NF-κB and many other signaling pathways interactions co-regulate the procedure of collagen synthesis and degradation. This paper will review the main signaling pathways involved in collagen metabolism.
[Key words] Collagen metabolism; MMPs; TIMPs; Signaling pathways
膠原蛋白是結(jié)締組織的主要成分,存在于大多數(shù)薄壁器官的間質(zhì),作為細(xì)胞外基質(zhì)的支架結(jié)構(gòu)起到穩(wěn)定組織的作用并維持它們的完整性。膠原代謝對(duì)某些疾病的發(fā)生發(fā)展至關(guān)重要,纖維化病變最常見類型由Ⅰ、Ⅲ型膠原蛋白比例失衡導(dǎo)致,Ⅰ、Ⅲ型膠原的合成和降解失衡是肝纖維化的重要機(jī)制[1-2],Ⅳ型膠原合成異??蓪?dǎo)致腎細(xì)胞外基質(zhì)沉積,腎小球間質(zhì)纖維化,最終可發(fā)展為腎功能衰竭[3]。膠原代謝是由一系列信號(hào)通路共同控制的結(jié)果,研究膠原代謝的信號(hào)通路對(duì)診斷及治療由膠原代謝異常引起的疾病具有重要的意義。
1膠原蛋白生物學(xué)特性及代謝
1.1 膠原蛋白的類型、結(jié)構(gòu)與分布
目前在脊椎動(dòng)物中確認(rèn)的膠原類型有28種,由至少46個(gè)不同的多肽鏈(α鏈)形成[4],每種膠原蛋白均由3條左手螺旋構(gòu)型的α鏈組成,3條鏈又相互纏繞形成右手超螺旋結(jié)構(gòu),α鏈由重復(fù)的GXY序列組成,G是甘氨酸,起著限制螺旋結(jié)構(gòu)的作用,X和Y代表其他氨基酸,大多為脯氨酸和羥脯氨酸[5]。根據(jù)膠原的結(jié)構(gòu)和功能不同,可分為以下7類:①纖維膠原,包括Ⅰ、Ⅱ、Ⅲ、Ⅴ、Ⅺ、ⅩⅩⅣ和ⅩⅩⅦ型膠原,分布在皮膚、骨、韌帶等部位;②網(wǎng)狀膠原,包括Ⅳ、Ⅷ和Ⅹ型膠原,分布于皮膚、基底膜、腎臟等部位;③FACITs(纖維相關(guān)膠原),包括Ⅸ、Ⅻ、ⅩⅣ、ⅩⅥ、ⅩⅨ~ⅩⅩⅡ型膠原,分布于皮膚、胃腸、軟骨等部位;④MACITs(膜相關(guān)膠原),包括ⅩⅢ、ⅩⅦ、ⅩⅩⅢ、ⅩⅩⅤ型膠原,分布于心、上皮等處;⑤錨狀纖維,主要是皮膚和膀胱的Ⅶ型膠原;⑥串珠狀膠原,包括Ⅵ、ⅩⅩⅥ和ⅩⅩⅧ型膠原,軟骨、肌肉等部位較多;⑦內(nèi)皮抑素膠原,包括ⅩⅤ和ⅩⅧ型膠原,主要分布于基底膜等部位[4]。
1.2 膠原蛋白合成與降解
膠原蛋白主要由成纖維細(xì)胞合成和分泌,再經(jīng)過一系列修飾后形成。首先以mRNA為模板在粗面內(nèi)質(zhì)網(wǎng)核糖體上合成前肽鏈,鏈間再形成二硫鍵以合成前膠原α鏈,每三條鏈羥化形成前膠原分子后由高爾基體分泌至胞外,前膠原肽酶切除其N和C端肽形成原膠原,最后經(jīng)共價(jià)交聯(lián)聚合成膠原纖維。正常情況下,大部分新合成膠原分泌至胞外前已被降解,只有少部分膠原形成成熟的膠原纖維。
膠原蛋白的降解主要通過膠原酶實(shí)現(xiàn),膠原酶一般以無活性形式存在于組織中,膠原代謝與基質(zhì)金屬蛋白酶MMPs的表達(dá)及活性有關(guān),MMPs是一類含鋅原子并依賴鈣原子的內(nèi)切酶,包括80個(gè)氨基酸殘基組成的氨基端結(jié)構(gòu)域和200個(gè)氨基酸的血紅蛋白組成的羧基端結(jié)構(gòu)域,除能降解膠原蛋白等細(xì)胞外基質(zhì)外,還能激活其他MMPs[6]。組織可合成膠原酶抑制劑,如組織金屬蛋白酶抑制劑(TIMPs),TIMPs可與活化的MMPs等比例結(jié)合成復(fù)合體以抑制其活性,進(jìn)而抑制對(duì)Ⅰ、Ⅲ型膠原的降解[7]。生理情況下,膠原酶活化與抑制保持相對(duì)平衡,膠原的轉(zhuǎn)化率維持相對(duì)穩(wěn)定。
2 膠原代謝相關(guān)信號(hào)通路
膠原代謝受TGF-β/Smad、PI3K/Akt、MAPK、Wnt、NF-κB等信號(hào)通路的調(diào)控,各通路之間縱橫交錯(cuò)、相互影響,共同介導(dǎo)膠原代謝過程。
2.1 TGF-β/Smad通路
轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)是與膠原代謝關(guān)系最密切的細(xì)胞因子,目前已在哺乳動(dòng)物體內(nèi)發(fā)現(xiàn)了3種異構(gòu)體,即 TGF-βl、TGF-β2、TGF-β3,其中以TGF-β1生物活性最強(qiáng)。Sefat等[8]發(fā)現(xiàn)3種TGF-β異構(gòu)體均可增加骨細(xì)胞中I型膠原表達(dá)。TGF-β1能使大多數(shù)膠原基因mRNA水平提高或蛋白產(chǎn)物增加,還能抑制MMPs分泌和促進(jìn)TIMPs表達(dá)來抑制膠原蛋白的降解[9]。TGF-β對(duì)膠原的調(diào)控機(jī)制主要有以下幾種:①刺激膠原mRNA表達(dá),在轉(zhuǎn)錄水平調(diào)控膠原基因表達(dá);②抑制膠原酶等金屬蛋白酶的分泌和刺激金屬蛋白酶抑制劑的表達(dá),抑制膠原降解;③增加成纖維細(xì)胞內(nèi)脯氨酸強(qiáng)化,穩(wěn)定原膠原分子;④抑制溶酶體產(chǎn)物,抑制細(xì)胞內(nèi)部原膠原降解;⑤通過自分泌方式間接調(diào)控膠原表達(dá)。
Smad蛋白為TGF-β信使蛋白分子,通過介導(dǎo)TGF-β信號(hào)從胞膜傳入胞核發(fā)揮功能。Yao等[10]發(fā)現(xiàn)Smad2和Smad3均可以激活纖維化過程;TGF-β可以誘導(dǎo)TIMP-1生成以抑制細(xì)胞外基質(zhì)降解,肝星狀細(xì)胞中Smad2基因敲減可以增加I型膠原蛋白表達(dá),過表達(dá)Smad2可抑制TIMP-1,增加MMP-2表達(dá)來減少膠原蛋白表達(dá),而敲減Smad3基因可減少I型膠原蛋白表達(dá)來減輕纖維化[11];研究發(fā)現(xiàn)[12]腎小管Smad4基因敲除可以減少TGF-β1作用下腎臟成纖維細(xì)胞的細(xì)胞外基質(zhì)降解。Smad在TGF-β信號(hào)轉(zhuǎn)導(dǎo)中的作用可以分為3種類型:途徑限制性Smad蛋白(R-Smads),公共介體性Smad蛋白(Co-Smads),抑制性Smad蛋白(I-Smads)。當(dāng)TGF-β1與細(xì)胞膜上受體TβRII結(jié)合后,TβRI激活,Smad2 或Smad3 C末端磷酸化再與Smad4形成異聚體轉(zhuǎn)錄復(fù)合物,移位至胞核與特定DNA結(jié)合,通過與轉(zhuǎn)錄因子相互作用來誘導(dǎo)目的基因轉(zhuǎn)錄,Smad7是抑制性Smad,抑制Smad2或Smad3磷酸化。
2.2 PI3K/AKT通路
PI3K/AKT通路是細(xì)胞中主要參與增殖、分化、凋亡等功能的重要通路,當(dāng)受到胞外信號(hào)刺激后,PI3K的催化亞基將底物PIP2轉(zhuǎn)變?yōu)镻IP3,PIP3與細(xì)胞內(nèi)信號(hào)蛋白AKT和PDK1結(jié)合,促使PDK1磷酸化AKT蛋白的Ser473和Thr308,進(jìn)而完全活化通路。PTEN是通路的負(fù)性調(diào)控因子,可拮抗PI3K作用,有磷酸酶活性,使PI3K作用的底物發(fā)生去磷酸化,PIP3脫磷酸形成PIP2來阻斷通路[13]。
PI3K/AKT通路是膠原代謝中重要的信號(hào)通路。研究[14]發(fā)現(xiàn)PI3K/AKT通路激活與Ⅰ型膠原蛋白增加有關(guān),應(yīng)用PI3K/AKT通路抑制劑可抑制Ⅰ型膠原蛋白增加。Yu等[15]研究發(fā)現(xiàn),在結(jié)膜下注射miR-29b可以抑制PI3K/AKT通路,從而減少膠原沉積和抑制成纖維細(xì)胞增殖。王慧等[16]發(fā)現(xiàn)在大鼠肝星狀細(xì)胞中應(yīng)用硫化氫可以激活PI3K/AKT通路來增加Ⅰ、Ⅲ型膠原蛋白的表達(dá)。
2.3 MAPK通路
MAPK是細(xì)胞質(zhì)與胞核聯(lián)系的重要通路,在細(xì)胞生理過程中起重要調(diào)節(jié)作用。MAPK家族主要分為三大類:p38絲裂原活化蛋白激酶(p38)、細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)和c-Jun氨基末端激酶(JNK)。MAPK級(jí)聯(lián)反應(yīng)中心環(huán)節(jié)主要由MAP3K、MAP2K和MAPK組成。當(dāng)特異性刺激因素作用時(shí),下游MAP3K激活,MAP2K的Ser/Thr殘基磷酸化,活化的MAP2K磷酸化MAPK的Thr/Tyr位點(diǎn),最大程度激活MAPK。
MAPK通路對(duì)膠原代謝有顯著調(diào)節(jié)作用。研究[17]發(fā)現(xiàn)磷酸化的p38MAPK參與介導(dǎo)軟骨細(xì)胞中MMP-13的合成,可導(dǎo)致Ⅱ型膠原降解。ERK通路由ERK1和ERK2組成,Ras/Raf/MEK/ERK是ERK通路的主要途徑。研究[18]表明ERK通路與膠原代謝相關(guān),絲氨酸蛋白酶抑制劑SERPINE2通過抑制ERK1/2通路和下游NF-κB轉(zhuǎn)錄因子來抑制MMP-13活性;Zhang等[19]報(bào)道在大鼠肺纖維化模型中,纖溶酶原激活抑制劑在抑制ERK1/2通路后,肺組織內(nèi)Ⅰ、Ⅲ型膠原蛋白的表達(dá)明顯下降;Huang等[20]抑制壓力性尿失禁患者的原代陰道成纖維細(xì)胞ERK1/2通路后,發(fā)現(xiàn)陰道成纖維細(xì)胞分泌Ⅰ、Ⅲ型膠原蛋白的能力明顯下降。
2.4Wnt信號(hào)通路
Wnt信號(hào)通路與細(xì)胞分化、生長(zhǎng)、凋亡等過程有關(guān),主要有Wnt/β-catenin、Wnt/Ca2+和Wnt/PCP 3條胞內(nèi)轉(zhuǎn)導(dǎo)途徑,Wnt/β-catenin通路是最經(jīng)典的信號(hào)通路。Wnt信號(hào)通路參與了人體肝、肺、腎等纖維化過程,有學(xué)者將β-catenin SiRNA轉(zhuǎn)染至肝星狀細(xì)胞發(fā)現(xiàn)Ⅰ、Ⅲ型膠原的合成明顯下降[21]。He等[22]在梗阻腎模型中應(yīng)用Wnt通路拮抗劑DKK-1發(fā)現(xiàn)Ⅰ、Ⅲ型膠原減少。MMP-13是Wnt/β-catenin信號(hào)傳導(dǎo)通路的下游分子,能裂解Ⅱ型膠原,研究[23-24]發(fā)現(xiàn)β-catenin的過度表達(dá)會(huì)使軟骨細(xì)胞中MMP-9、MMP-13基因表達(dá)明顯增加,應(yīng)用Wnt/β-catenin通路中關(guān)鍵蛋白LRP5的抑制劑能夠使軟骨細(xì)胞MMP-13的mRNA表達(dá)量明顯下降。
2.5 NF-κB信號(hào)通路
NF-κB是一個(gè)轉(zhuǎn)錄因子蛋白家族,當(dāng)其抑制因子I-κB磷酸化,失去與NF-κB結(jié)合的能力時(shí)釋放出NF-κB,NF-κB激活后通過一系列級(jí)聯(lián)放大反應(yīng)調(diào)節(jié)基因轉(zhuǎn)錄。Makino等[25]發(fā)現(xiàn)抑制瘢痕成纖維細(xì)胞中NF-κB通路可有效減少Ⅰ型膠原積累。糖基化終產(chǎn)物AGE-RAGE 可通過NF-κB通路調(diào)節(jié)Ⅰ型膠原表達(dá)[26]。Wei等[27]抑制新生大鼠成纖維細(xì)胞NF-κB通路發(fā)現(xiàn)Ⅰ型膠原和CTGF的表達(dá)明顯降低。研究[28]表明NF-κB在成骨細(xì)胞中還可通過增加β-catenin降解來抑制Wnt/β-catenin通路從而調(diào)節(jié)膠原代謝。
2.6其他
影響膠原代謝的因素很多,除了上述信號(hào)通路外,整合素和JAK/STAT等也參與膠原代謝。整合素(integrin)是表達(dá)在細(xì)胞表面的跨膜糖蛋白受體,可介導(dǎo)細(xì)胞與基質(zhì)間的信號(hào)轉(zhuǎn)導(dǎo)。有學(xué)者用低強(qiáng)度脈沖超聲波作用于軟骨細(xì)胞,可促進(jìn)整合素βl的表達(dá),進(jìn)而誘導(dǎo)FAK磷酸化,并激活ERK1/2,p38信號(hào)通路,促進(jìn)Ⅱ型膠原的合成[29]。研究[30]表明在單側(cè)輸尿管梗阻腎纖維化模型中,JAK/STAT通路介導(dǎo)MMP-2激活,起到抑制纖維化的保護(hù)作用。Wang等[31]發(fā)現(xiàn)用氯沙坦抑制JAK/STAT通路,可以下調(diào)TGF-β來改善心肌纖維化。研究[32]發(fā)現(xiàn)用IL-27抑制JAK/STAT通路可增加MMP-2、MMP-9,減少TIMP1表達(dá)來促進(jìn)細(xì)胞外基質(zhì)降解。
離子通道、細(xì)胞因子等也對(duì)膠原蛋白的代謝也起著重要作用。離子通道如Ca2+通道,Hwang 等[33]發(fā)現(xiàn)使用鈣離子螯合劑來減少腫瘤細(xì)胞內(nèi)鈣離子能抑制MMP-9分泌;細(xì)胞因子如人類結(jié)締組織生長(zhǎng)因子(CTGF),有學(xué)者在體外培養(yǎng)成纖維細(xì)胞中發(fā)現(xiàn),CTGF基因敲減可降低Ⅰ型膠原表達(dá)[34];電流也能影響膠原代謝,有學(xué)者用20 μA,5 min低頻電流作用于小鼠耳廓軟骨,發(fā)現(xiàn)MMP-2活性明顯改變[35]。
3 小結(jié)與展望
膠原代謝是由TGF-β/Smad、PI3K/Akt、MAPK、Wnt、NF-κB、整合素、JAK/STAT等多種信號(hào)轉(zhuǎn)導(dǎo)通路參與的復(fù)雜生理過程,隨著研究不斷深入,目前還有更多信號(hào)通路如RhoA/ROCK、Notch、Hedgehog等被證實(shí)與膠原代謝關(guān)系密切。信號(hào)分子可以是多條通路的共同因子,也可激活或抑制其他信號(hào)通路的轉(zhuǎn)導(dǎo),因此各信號(hào)通路間并非互相獨(dú)立,而是縱橫交錯(cuò)、相互影響。雖然膠原代謝信號(hào)通路的具體機(jī)制還未完全闡明,但其代謝過程常由多條信號(hào)通路共同介導(dǎo)的。研究膠原代謝信號(hào)通路,不僅可以深入探討膠原代謝相關(guān)疾病的病生過程,也為相關(guān)疾病的防治提供更可靠的干預(yù)靶點(diǎn)。
[參考文獻(xiàn)]
[1] Coelho NM,Mcculloch CA. Contribution of collagen adhesion receptors to tissue fibrosis [J]. Cell Tissue Res,2016, 365(3):521-538.
[2] Friedman SL. Evolving challenges in hepatic fibrosis[J]. Nat Rev GastroenterolHepatol,2010,7(8):425-436.
[3] Van Agtmael T,Bruckner-Tuderman L. Basement membranes and human disease[J]. Cell and Tissue Research,2010,339(1):167-188.
[4] Theocharis AD,Skandalis SS,Gialeli C,et al. Extracellular matrix structure[J]. Adv Drug Deliv Rev,2016,97:4-27.
[5] Sun L,Xiong Y,Bashan A,et al. A Recombinant collagen-mRNA platform for controllable protein synthesis[J]. Chembiochem,2015,16(10):1415-1419.
[6] Kang M,Zhao L,Ren M,et al. Zinc mediated hepatic stellate cell collagen synthesis reduction through TGF-beta signaling pathway inhibition [J]. Int J Clin Exp Med,2015, 8(11):20463-20471.
[7] Ni WJ,Ding HH,Zhou H,et al. Renoprotective effects of berberine through regulation of the MMPs/TIMPs system in streptozocin-induced diabetic nephropathy in rats [J]. Eur J Pharmacol,2015,764:448-456.
[8] Sefat F,Denyer MC,Youseffi M. Effects of different transforming growth factor beta (TGF-beta) isomers on wound closure of bone cell monolayers [J]. Cytokine,2014,69(1):75-86.
[9] Xu F,Liu C,Zhou D,et al. TGF-/SMAD Pathway and its regulation in hepatic fibrosis [J]. Journal of Histochemistry&Cytochemistry,2016,64(3):157-167.
[10] Yao Q,Xu B,Wang J,et al. Inhibition by curcumin of multiple sites of the transforming growth factor-beta1 signalling pathway ameliorates the progression of liver fibrosis induced by carbon tetrachloride in rats [J]. BMC Comp?鄄lementary and Alternative Medicine,2012,12(1):156.
[11] Zhang L,Liu C,Meng XM,et al. Smad2 protects against TGF-beta1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis [J]. Mol Cell Biochem,2015,400(1-2):17-28.
[12] Meng X,Huang XR,Xiao J,et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro [J]. Kidney International,2012,81(3):266-279.
[13] Mueller S,Phillips J,Onar-Thomas A,et al. PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome [J]. Neuro Oncol,2012,14(9):1146-1152.
[14] Urtasun R,Lopategi A,George J,et al. Osteopontin,an oxidant stress sensitive cytokine,up-regulates collagen-I via integrin αVβ3 engagement and PI3K/pAkt/NFκB signaling [J]. Hepatology,2012,55(2):594-608.
[15] Yu J,Luo H,Li N,et al. Suppression of type Ⅰ collagen expression by miR-29b via PI3K,Akt,and Sp1 pathway,part Ⅱ: an in vivo investigation [J]. Invest Ophthalmol Vis Sci,2015,56(10):6019-6028.
[16] 王慧,任嬙,陳衛(wèi)剛,等.PI3K/Akt信號(hào)轉(zhuǎn)導(dǎo)通路在硫化氫影響肝星狀細(xì)胞Ⅰ和Ⅲ型膠原表達(dá)中的作用[J].中華肝臟病雜志,2014,22(6):430-433.
[17] Long DL,Loeser RF. p38gamma mitogen-activated protein kinase suppresses chondrocyte production of MMP-13 in response to catabolic stimulation [J]. Osteoarthritis Cartilage,2010,18(9):1203-1210.
[18] Santoro A,Conde J,Scotece M,et al. SERPINE2 inhibits IL-1α-induced MMP-13 expression in human chondrocytes: involvement of ERK/NF-κB/AP-1 pathways [J]. Plos One,2015,10(8):e135979.
[19] Zhang Y,Li W,Wang W,et al. siRNA against plasminogen activator inhibitor-1 ameliorates bleomycin-induced lung fibrosis in rats [J]. Acta Pharmacologica Sinica,2012, 33(7):897-908.
[20] Huang Q,Jin H,Xie Z,et al. The role of the ERK1/2 signalling pathway in the pathogenesis of female stress urinary incontinence [J]. Journal of International Medical Research,2013,41(4):1242-1251.
[21] Ge WS,Wang YJ,Wu JX,et al. beta-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/beta-catenin signaling inhibits hepatic stellate cell activation [J]. Mol Med Rep,2014,9(6):2145-2151.
[22] He W,Tan R J,Li Y,et al. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/beta-catenin activity in CKD [J]. J Am Soc Nephrol,2012,23(2):294-304.
[23] Papathanasiou I,Malizos KN,Tsezou A. Low-density lipoprotein receptor-related protein 5 (LRP5) expression in human osteoarthritic chondrocytes [J]. J Orthop Res,2010,28(3):348-353.
[24] Liu SS,Zhou PU,Zhang Y. Abnormal expression of key genes and proteins in the canonical Wnt/β-catenin pathway of articular cartilage in a rat model of exercise-induced osteoarthritis [J]. Molecular Medicine Reports,2016, 13(3):1999-2006.
[25] Makino S,Mitsutake N,Nakashima M,et al. DHMEQ,a novel NF-kappaB inhibitor,suppresses growth and type Ⅰ collagen accumulation in keloid fibroblasts [J]. J Dermatol Sci,2008,51(3):171-180.
[26] Peng Y,Kim JM,Park HS,et al. AGE-RAGE signal gen?鄄erates a specific NF-kappaB RelA “barcode” that directs collagen I expression [J]. Sci Rep,2016,6:18822.
[27] Wei C,Kim I K,Kumar S,et al. NF-kappaB mediated miR-26a regulation in cardiac fibrosis [J]. J Cell Physiol,2013, 228(7):1433-1442.
[28] Chang J,Liu F,Lee M,et al. NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation [J]. Proc Natl AcadSci USA,2013,110(23):9469-9474.
[29] Ren L,Yang Z,Song J,et al. Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells [J]. Ultrasonics,2013,53(3):686-690.
[30] Koike K,Ueda S,Yamagishi S,et al. Protective role of JAK/STAT signaling against renal fibrosis in mice with unilateral ureteral obstruction [J]. Clinical Immunology,2014,150(1):78-87.
[31] Wang L,Li J,Li D. Losartan reduces myocardial interstitial fibrosis in diabetic cardiomyopathy rats by inhibiting JAK/STAT signaling pathway [J]. Int J Clin Exp Pathol,2015,8(1):466-473.
[32] Dong Z,Zhao X,Tai W,et al. IL-27 attenuates the TGF-β1-induced proliferation,differentiation and collagen syn?鄄thesis in lung fibroblasts [J]. Life Sciences,2016,146:24-33.
[33] Hwang YP,Kim HG,Choi JH,et al. Acteoside inhibits PMA-induced matrix metalloproteinase-9 expression via CaMK/ERK- and JNK/NF-κB-dependent signaling [J]. Molecular Nutrition & Food Research,2011,55(S1):S103-S116.
[34] Quan T,Shao Y,He T,et al. Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin [J]. J Invest Dermatol,2010,130(2):415-424.
[35] TangerinoFilho EP,F(xiàn)achi JL,Vasconcelos IC,et al. Effects of microcurrent therapy on excisional elastic cartilage defects in young rats [J]. Tissue and Cell,2016,48(3):224-234.
(收稿日期:2016-11-29 本文編輯:蘇暢)