沈祖樂(lè) 李翌菡 周雅婷 許煒明 邱寶利
摘 要 在農(nóng)業(yè)生產(chǎn)中由于化學(xué)農(nóng)藥的長(zhǎng)期不合理使用,導(dǎo)致“3R”問(wèn)題持續(xù)存在和人類賴以生存的環(huán)境日益惡化,生物防治產(chǎn)品及技術(shù)在有害生物綜合治理中的作用越發(fā)重要。天敵昆蟲(chóng)的生長(zhǎng)發(fā)育及存活期往往很短,探索其儲(chǔ)存技術(shù)是天敵昆蟲(chóng)規(guī)?;a(chǎn)中的關(guān)鍵性環(huán)節(jié)。低溫貯藏可以延長(zhǎng)天敵昆蟲(chóng)的壽命,進(jìn)而可以為生物防治提供充足、穩(wěn)定的天敵產(chǎn)品。因此,天敵昆蟲(chóng)低溫貯藏一直是生物防治領(lǐng)域研究的熱點(diǎn)。本文圍繞天敵昆蟲(chóng)低溫貯藏這一環(huán)節(jié),就低溫誘導(dǎo)天敵昆蟲(chóng)滯育蟲(chóng)態(tài)、冷馴化對(duì)昆蟲(chóng)低溫貯藏效果的影響、低溫貯藏對(duì)天敵昆蟲(chóng)適合度(壽命、羽化率、性比、個(gè)體尺寸大小、飛行擴(kuò)散能力等)的影響等方面進(jìn)行綜述,以期為天敵昆蟲(chóng)產(chǎn)品的規(guī)模化生產(chǎn)及應(yīng)用技術(shù)提供參考。
關(guān)鍵詞 天敵昆蟲(chóng);低溫貯藏;滯育;冷馴化;適合度
中圖分類號(hào) S895 文獻(xiàn)標(biāo)識(shí)碼 A
Abstract The irrational use of chemical pesticides for agricultural production has resulted in the consistent“3R”problem which leads to environmental pollution and adverse effects on humans. Hence, the search for effective products and technology of biological control is of great importance in integrated pest management programs. For natural enemies, the growth and persistence are often very low. Exploring the storage methods is a key step for large scale production of natural enemies. Low temperature for storage could increase the persistence of natural enemies, which could in turn provide adequate and stable products for biological control. This paper briefly reviews the influences of low temperature storage on induction of diapauses, cold acclimation and fitness characteristics of natural enemies(longevity, emergence, sex ratio, size and dispersal ability)based on the available literature. This work could offer a reference for the technology of large scale production and application for natural enemies.
Key words insect natural enemies; cold storage; diapause; cold acclimatization; fitness
doi 10.3969/j.issn.1000-2561.2017.02.029
化學(xué)農(nóng)藥長(zhǎng)期大量的使用,已嚴(yán)重威脅食品和生態(tài)環(huán)境這兩塊人類賴以生存和發(fā)展的基石,而化學(xué)農(nóng)藥污染產(chǎn)生的一系列問(wèn)題不僅需要逐步減少化學(xué)藥劑的使用量,更需要逐步尋求優(yōu)化升級(jí)與替代傳統(tǒng)藥劑防治的技術(shù)和方法。生物防治不造成環(huán)境污染,對(duì)人、畜及農(nóng)作物無(wú)毒害,不會(huì)引起抗藥性,可以給人類清潔的生存空間,在害蟲(chóng)綜合治理(IPM)中發(fā)揮著越來(lái)越重要的作用[1-2]。
在利用天敵昆蟲(chóng)控制農(nóng)林業(yè)害蟲(chóng)時(shí),天敵昆蟲(chóng)的釋放首先要在一定時(shí)間內(nèi)積累足夠的個(gè)體數(shù)量,根據(jù)害蟲(chóng)的發(fā)生危害時(shí)期進(jìn)行貯藏期調(diào)控,繼而實(shí)現(xiàn)田間的同步釋放[3]。為了減緩天敵昆蟲(chóng)生長(zhǎng)發(fā)育和降低新陳代謝速率,低溫貯藏天敵昆蟲(chóng)適宜蟲(chóng)態(tài)在延緩其發(fā)育進(jìn)程中扮演了重要的角色,但天敵昆蟲(chóng)長(zhǎng)時(shí)間暴露在低溫環(huán)境下也會(huì)產(chǎn)生一系列的不利影響,導(dǎo)致天敵昆蟲(chóng)滯育后致死或亞致死效應(yīng)顯著增強(qiáng)[4]。首先,低溫可以使部分寄生性天敵昆蟲(chóng)發(fā)生滯育,天敵昆蟲(chóng)滯育類型非常復(fù)雜,不僅有兼性滯育,還有專性滯育;滯育蟲(chóng)態(tài)大多數(shù)為預(yù)蛹期,少數(shù)為老熟幼蟲(chóng)或成蟲(chóng)期;滯育有冬滯育和夏滯育兩種時(shí)段[5];其次,低溫致使蟲(chóng)體能量大量消耗,直接影響昆蟲(chóng)體內(nèi)生理過(guò)程和組織結(jié)構(gòu);第三,由于大多數(shù)天敵昆蟲(chóng)其自身不能合成脂肪,經(jīng)過(guò)低溫貯藏后的冷傷害效應(yīng)不會(huì)立刻出現(xiàn),可能會(huì)影響到后一個(gè)發(fā)育階段和后代[6],對(duì)天敵昆蟲(chóng)的適合度特征(壽命、羽化率、性比、個(gè)體大小、飛行擴(kuò)散能力等)產(chǎn)生不利影響。
鑒于上述原因,本研究以低溫貯藏環(huán)境下的天敵昆蟲(chóng)為對(duì)象,對(duì)低溫誘導(dǎo)天敵昆蟲(chóng)滯育、冷馴化對(duì)昆蟲(chóng)低溫貯藏效果的影響、低溫貯藏后對(duì)天敵昆蟲(chóng)適合度特征的影響等方面加以綜述,以期為天敵昆蟲(chóng)產(chǎn)品的規(guī)?;a(chǎn)及應(yīng)用技術(shù)提供參考。
1 低溫誘導(dǎo)天敵昆蟲(chóng)滯育
低溫可以誘導(dǎo)部分寄生性天敵昆蟲(chóng)發(fā)生滯育,滯育昆蟲(chóng)在生理上的表現(xiàn)是:生長(zhǎng)發(fā)育進(jìn)程停滯,呼吸速率減緩,昆蟲(chóng)體內(nèi)含水量降低,脂肪含量有所增加,某些酶系活性參數(shù)降低,抗寒能力和抗藥性增加[7-8]。滯育屬性可以延長(zhǎng)產(chǎn)品貨架期、增長(zhǎng)防控作用時(shí)間、提高昆蟲(chóng)抗逆性和繁殖力,為天敵昆蟲(chóng)的貯藏提供了可靠有效的途徑。由于寄生性天敵昆蟲(chóng)生長(zhǎng)發(fā)育的特殊性,其滯育蟲(chóng)態(tài)大多固定于某一發(fā)育時(shí)期,兼有兩個(gè)及以上蟲(chóng)態(tài)滯育者甚少[9]。進(jìn)入滯育狀態(tài)的寄生蜂存活時(shí)間相對(duì)較長(zhǎng),如煙蚜繭蜂Aphidius gifuensis Ashmead在12 ℃全黑暗條件下滯育可保存120 d[10-11];黑折脈蚜繭蜂Aphidius nigripes Ashmead以預(yù)蛹滯育,其滯育期長(zhǎng)達(dá)8個(gè)月[12];西方蚜外繭蜂Praon occidentalis Baker滯育期也長(zhǎng)達(dá)8個(gè)月之久[13];短期的滯育也會(huì)減少寄生蜂體內(nèi)的能量消耗,使滯育后的個(gè)體具有更強(qiáng)的生命力[14]。將寄生蜂產(chǎn)品誘導(dǎo)至滯育態(tài),可實(shí)現(xiàn)較長(zhǎng)時(shí)間的保存,為周年擴(kuò)繁天敵昆蟲(chóng)提供了可能。
昆蟲(chóng)的種類不同,其滯育類型、滯育蟲(chóng)態(tài)及滯育時(shí)段也存在差異。如短翅蚜小蜂Aphelinus asychis Walker[15]和環(huán)食甲繭蜂Microctonus vittatae Muesebeck[16]屬于兼性滯育類型,微紅絨繭蜂Cotesia rubecula Marshall[17]、桃瘤蚜繭蜂Ephedrus persicae Froggatt[18]及方柄蚜繭蜂Monoctonia pistaciaecola Stary[19]則屬于專性滯育類型。滯育在昆蟲(chóng)生長(zhǎng)發(fā)育的任何時(shí)期都可發(fā)生,包括卵、各齡幼蟲(chóng)、預(yù)蛹期、蛹期及成蟲(chóng)期。在昆蟲(chóng)的滯育誘導(dǎo)中,其滯育蟲(chóng)態(tài)的前一蟲(chóng)態(tài)或滯育發(fā)生的蟲(chóng)態(tài)是感應(yīng)環(huán)境刺激的敏感階段[20],總結(jié)當(dāng)前已研究的寄生蜂滯育蟲(chóng)態(tài),能在卵期發(fā)生滯育的很少,以幼蟲(chóng)滯育的如相似蚜外繭蜂Praon simulans(Provancher)[13],豌豆蚜繭蜂Aphidius pisivorus Smith[13],煙蚜繭蜂A. gifuensis[9,21],安氏絨繭蜂Apanteles angaleti Muesebeck[22]等,以預(yù)蛹滯育的如麗頭短角平腹小蜂Mesocomys pulchriceps Cameron[23],長(zhǎng)尾嚙小蜂Aprostocetus daira(Walker)[24],點(diǎn)緣跳小蜂Copidosoma sp.[25],松毛蟲(chóng)赤眼蜂Trichogramma dendrolimi(Matsumura)[26],黃毒蛾赤眼蜂Trichogramma euproctidis(Girault)[27],菜蛾盤(pán)絨繭蜂Apanteles plutellae(Kurdjumov)[28],翼蚜外繭蜂Praon volucre Haliday[29]等,以蛹期滯育的如細(xì)蛾多胚跳小蜂Holcothorax testaceipes(Ratzeburg)[30],木虱跳小蜂Psyllaephagus pistaciae Ferrière[31];以成蟲(chóng)滯育的如麥蛾柔繭蜂Habrobracon hebetor(Say)[32],卵跳小蜂Ooencyrtus nezarae Ishii[33]等??梢?jiàn),對(duì)于小型寄生蜂而言,以預(yù)蛹為滯育態(tài)的居多,偶見(jiàn)以卵、老熟幼蟲(chóng)或成蟲(chóng)滯育者。溫度是誘導(dǎo)昆蟲(chóng)滯育的一個(gè)重要因素,天敵昆蟲(chóng)種類不同其滯育時(shí)段也存在差異,如蚜繭蜂Falciconus pseudoplatani (Marshall)[34]和西方蚜外繭蜂P. occidentalis[35]分別屬于夏滯育和冬滯育。
2 天敵昆蟲(chóng)貯藏中冷馴化效果的影響因素
影響天敵昆蟲(chóng)低溫貯藏耐受性的因素很多,包括溫度、濕度、光周期、營(yíng)養(yǎng)、年齡(齡期)等,外界環(huán)境條件的改變對(duì)昆蟲(chóng)的表型可塑性產(chǎn)生深遠(yuǎn)的影響[36],而且這類可塑性變化具有遺傳性,在生理、形態(tài)或者生長(zhǎng)發(fā)育方面發(fā)生改變,繼而產(chǎn)生不同的表型[37]。冷馴化是指將昆蟲(chóng)在亞致死低溫暴露一定時(shí)期后,可顯著地提高其在致死低溫下存活率的現(xiàn)象,這一過(guò)程可能是昆蟲(chóng)應(yīng)對(duì)不良環(huán)境的適應(yīng)性進(jìn)化[38],在自然環(huán)境中,昆蟲(chóng)經(jīng)歷的溫度漸變過(guò)程在某種程度上便是受到自然界的氣候馴化(acclimatzation),是其在生理上為度過(guò)低溫環(huán)境做一些復(fù)雜的準(zhǔn)備[39]。在諸多天敵昆蟲(chóng)低溫貯藏的研究中,經(jīng)過(guò)冷馴化后的昆蟲(chóng)耐寒性顯著提高,明顯降低了半致死溫度,半致死時(shí)間也明顯延長(zhǎng)[40-41],解決了天敵昆蟲(chóng)的“貨架期短”和“低抗逆”等潛在問(wèn)題。
2.1 冷馴化方式對(duì)天敵昆蟲(chóng)冷馴化效果的影響
冷馴化包括長(zhǎng)時(shí)冷馴化和快速冷馴化兩種方式。長(zhǎng)時(shí)冷馴化下的處理溫度相對(duì)溫和,且需要幾天,幾周甚至幾個(gè)月的時(shí)間,可使昆蟲(chóng)在亞致死低溫下的存活時(shí)間顯著延長(zhǎng);快速冷馴化的處理溫度較低,需要的時(shí)間僅為幾小時(shí),甚至幾十分鐘,在短時(shí)間內(nèi)提高昆蟲(chóng)的耐寒性。兩者差異不僅是處理時(shí)間上的不同[42],對(duì)昆蟲(chóng)耐寒性參數(shù)的提高也存在較大差異,如玉米螟赤眼蜂Trichogramma ostriniae Pang et Chen經(jīng)15 ℃馴化10 d,其耐寒能力顯著提高[43]。梯度降溫(依次在15、10、4 ℃各馴化4 h)比快速冷馴化更能提高蠋蝽Arma chinensis (Fallou)成蟲(chóng)暴露在-10 ℃下的存活率[44]。非滯育狀態(tài)的捕食螨Euseius finlaandicus(Oudemans)在緩慢降溫過(guò)程后,總生殖能力降低,后代的存活率也比對(duì)照要低[45]。
長(zhǎng)時(shí)冷馴化和快速冷馴化可能分別在昆蟲(chóng)的不同生長(zhǎng)發(fā)育階段發(fā)揮作用,異色瓢蟲(chóng)Harmonia axyridis Pallas親代經(jīng)歷長(zhǎng)時(shí)冷馴化后,后代卵的發(fā)育歷期顯著延長(zhǎng),幼蟲(chóng)(1~4齡)和蛹的發(fā)育歷期則縮短;然而,經(jīng)歷快速冷馴化后,除對(duì)1齡幼蟲(chóng)的發(fā)育歷期有顯著的影響外,對(duì)其他發(fā)育階段(卵期、2~3齡和蛹期)的影響并不明顯[46]。Ju等[47]發(fā)現(xiàn),不管在何種強(qiáng)度的低溫處理下,快速冷馴化比長(zhǎng)時(shí)冷馴化更能增強(qiáng)懸鈴木方翅網(wǎng)蝽Corythucha ciliata Say的耐寒性。Shintani和Ishikawa報(bào)道,經(jīng)長(zhǎng)時(shí)冷馴化和快速冷馴化聯(lián)合處理更能有效地提升黃星天牛Psacothea hilaris Pascoe卵的耐寒性,其在16 ℃冷休克條件下的半數(shù)致死時(shí)間(LT50)比單獨(dú)用某一種冷馴化方式延長(zhǎng)了1~3 d的時(shí)間[48]。因此,對(duì)天敵昆蟲(chóng)冷馴化的處理方式不同,其耐寒效果的影響存在差異。
2.2 冷馴化強(qiáng)度對(duì)天敵昆蟲(chóng)冷馴化效果的影響
冷馴化強(qiáng)度包括變溫周期、降溫速率及冷馴化持續(xù)時(shí)間等。大量研究表明,即使冷馴化的方式相同,馴化條件和具體過(guò)程的不同也會(huì)對(duì)昆蟲(chóng)耐寒性的提高產(chǎn)生不同影響,與固定溫度下的處理相比,變溫冷馴化顯著提高了昆蟲(chóng)的耐寒性參數(shù)。對(duì)廣聚螢葉甲Ophraella cammuna Lesage成蟲(chóng)進(jìn)行了不同溫度(-4、0、4、8 ℃)下4 h的快速冷馴化,除8 ℃ 4 h外,其余冷馴化處理均使廣聚螢葉甲O. cammuna成蟲(chóng)過(guò)冷卻點(diǎn)顯著降低[49];對(duì)同一時(shí)間羽化的異色瓢蟲(chóng)H. axyridis經(jīng)過(guò)10 ℃→5 ℃→0 ℃,24 h循環(huán)一次,誘導(dǎo)3 d和5 d后,經(jīng)過(guò)5 d變溫誘導(dǎo)的后代雌蟲(chóng)產(chǎn)卵前期明顯延長(zhǎng),且生殖力下降、壽命縮短[50]。昆蟲(chóng)快速冷馴化的能力受降溫速率的影響尤為顯著,如德國(guó)小蠊Blattella germanica L.以0.1 ℃/min的較慢速率降溫比1.0 ℃/min的較快速率降溫存活率高2倍多[51]。
3 低溫貯藏對(duì)天敵昆蟲(chóng)適合度的影響
天敵昆蟲(chóng)長(zhǎng)期暴露在低溫環(huán)境下會(huì)對(duì)其種群適合度產(chǎn)生顯著影響,低溫傷害的累積會(huì)對(duì)昆蟲(chóng)體內(nèi)許多生理過(guò)程和組織結(jié)構(gòu)產(chǎn)生直接影響,例如新陳代謝紊亂、膜脂相變受阻及離子調(diào)節(jié)失去平衡等[52]。低溫下貯藏的蟲(chóng)體會(huì)消耗大量脂肪維持自身的營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng),然而,天敵昆蟲(chóng)尤其是寄生蜂不能自身合成脂肪,在低溫貯藏環(huán)境下是以生殖和存活為代價(jià)的。有時(shí)低溫貯藏的脅迫效應(yīng)不會(huì)立即出現(xiàn),可能會(huì)傳遞到下一個(gè)發(fā)育階段或者后代,對(duì)存活、發(fā)育等產(chǎn)生不利影響[53]。
3.1 壽命
寄生性的天敵昆蟲(chóng)不能自身合成脂肪[54],因此脂肪的消耗能顯著影響其存活和生殖間的能量分配,導(dǎo)致羽化后的成蟲(chóng)壽命縮短。很多寄生性天敵昆蟲(chóng)與寄主在低溫下一并貯藏時(shí),發(fā)育初期的寄主冷藏也會(huì)消耗能量維持自身生長(zhǎng),使寄生性天敵昆蟲(chóng)壽命縮短。蚜繭蜂A. vulgaris低溫暴露期間脂肪含量與初羽化成蟲(chóng)的壽命均呈線性降低,當(dāng)體內(nèi)貯存大量的脂肪時(shí)利于成蟲(chóng)羽化[55]。貯藏時(shí)間的延長(zhǎng)顯著縮短了成蟲(chóng)的壽命,這在很多天敵昆蟲(chóng)中很常見(jiàn),例如:將異色瓢蟲(chóng)H. axyridis同批羽化成蟲(chóng)放置到不同冷藏溫度條件下保存,0 ℃冷藏溫度過(guò)低, 成蟲(chóng)存活率急劇下降,但在10 ℃條件下冷藏保存30 d時(shí)存活率卻能達(dá)到80%[56];低溫下隨著暴露時(shí)間的延長(zhǎng),淺黃恩蚜小蜂Encarsia sophia (Girault et Dodd)的壽命明顯縮短,最終導(dǎo)致死亡[57]。而不同低溫下的處理對(duì)菜蚜繭蜂Diaeretiella rapae Mintosh的成蜂壽命沒(méi)有太大影響[58]。
3.2 存活率
低溫貯藏天敵昆蟲(chóng)只是減緩了其發(fā)育速度,并非完全阻止了天敵昆蟲(chóng)的發(fā)育歷程。低溫貯藏結(jié)束后其生長(zhǎng)發(fā)育恢復(fù)正常,貯藏期間大量的能量消耗不能使天敵昆蟲(chóng)繼續(xù)完成發(fā)育或者羽化,因此其羽化率一般會(huì)隨著貯藏時(shí)間的延長(zhǎng)而降低[59],如菜蚜繭蜂D. rapae在增加低溫貯藏時(shí)間的情況下,其成蟲(chóng)羽化率有所降低[58],然而,較高的貯藏溫度能提高白蛾周氏嚙小蜂Chouioia cunea Yang的羽化率[60],在4、8 ℃下淺黃恩蚜小蜂E sophia貯藏14 d后羽化率為67%~87.5%,而貯藏21 d時(shí)則不羽化[57]。麥蛾柔繭蜂H. hebetor在12 ℃下貯藏7 d,其羽化率與對(duì)照相比下降了一半[61]。中華通草蛉Chrysoperla sinica(Tjeder)的卵在5 ℃下貯藏時(shí),隨著貯存期的延長(zhǎng),卵的孵化率逐漸降低[62]。低溫冷藏時(shí)間增加對(duì)南方小花蝽Orius similis Zheng卵的孵化也產(chǎn)生直接影響[63]。加州新小綏螨Neoseiulus californicus (McGregor)在4、7、10 ℃貯藏10 d后,其存活率均低于50%[64]。天敵昆蟲(chóng)在羽化過(guò)程中需要消耗大量的能量來(lái)強(qiáng)化肌肉收縮,而低溫暴露中的能量消耗致使肌肉功能發(fā)生障礙[65]。因此,低溫貯藏時(shí)的能量消耗可能是天敵昆蟲(chóng)羽化率降低的重要因素。
3.3 性比
昆蟲(chóng)經(jīng)過(guò)長(zhǎng)時(shí)間的低溫暴露后,其性比也可能發(fā)生變化。性比的變化可能有不同原因,有研究稱,低溫脅迫使受精卵的比例發(fā)生改變,從而致使雌蟲(chóng)生殖策略改變,或者使雄蟲(chóng)不能完成交配[66],產(chǎn)出有活力的精子[67]。也有報(bào)道稱性比的改變是寄生蜂在低溫環(huán)境下免疫作用的體現(xiàn)[68]。對(duì)于不同種類的寄生蜂,經(jīng)低溫貯藏后,有的雌蟲(chóng)死亡率升高[69],有的雄蟲(chóng)死亡率升高[70],還有的雌、雄死亡率相當(dāng)[71]。如豆柄瘤蚜繭蜂Lysiphlebus fabarum(Marshall)分別經(jīng)過(guò)6、8 ℃的貯藏后,其初羽化的雄蟲(chóng)比雌蟲(chóng)更易受到影響,從而后代中的雌蟲(chóng)比率升高[72];7 ℃下對(duì)傘裙追寄蠅Exorista civilis Rondani的預(yù)蛹階段冷藏,后代的雌雄性比不明顯,對(duì)傘裙追寄蠅E. civilis的不同蟲(chóng)態(tài)分別移入低溫下貯藏,其后代的雌雄比影響亦不明顯[73]。
3.4 生殖力
溫度可以影響昆蟲(chóng)卵巢的發(fā)育進(jìn)程及精巢大小,過(guò)低的溫度顯著影響精巢和卵巢的發(fā)育情況,引發(fā)不育,長(zhǎng)期的低溫暴露也會(huì)使卵母細(xì)胞成熟率下降,導(dǎo)致卵巢管畸形,從而致使雌蜂不育[74]。溫度還會(huì)影響昆蟲(chóng)雄性附腺的生理活動(dòng),高溫使腺體細(xì)胞質(zhì)中的粗面內(nèi)質(zhì)網(wǎng)和線粒體受到破壞,進(jìn)而阻礙了附腺分泌物中的蛋白質(zhì)合成路徑,從而降低雄性生殖力;而低溫暴露會(huì)影響能量代謝平衡,能量代謝的酶在一定程度低溫下活性受到抑制,物質(zhì)轉(zhuǎn)化為能量的路徑受到抑制,從而投入到生殖方面的能量大大減少。此外,低溫暴露中寄生蜂的生殖器容易受到損害[75],寄生蜂的生殖力一般隨著貯藏溫度的降低和時(shí)間的延長(zhǎng)而下降,如低溫可以致使卡氏小蜂Euchalcidia caryobori Hanna[70]和豆象金小蜂Dinarmus basalis(Rondani)[76]精子形成延遲。
低溫貯藏也會(huì)對(duì)天敵昆蟲(chóng)的產(chǎn)卵行為產(chǎn)生影響,降低天敵昆蟲(chóng)的群體繁殖能力。如異色瓢蟲(chóng)H. axyridis的產(chǎn)卵量隨冷藏天數(shù)的增加顯著升高[56];中紅側(cè)溝繭蜂Microplitis mediator(Haliday)蛹長(zhǎng)期貯藏后,其后代雌蜂產(chǎn)卵時(shí)間顯著縮短[77]。因此,生殖力的降低和產(chǎn)卵時(shí)間的縮短都是天敵昆蟲(chóng)低溫貯藏后生殖代價(jià)的表現(xiàn)。但也有研究發(fā)現(xiàn)低溫貯藏后對(duì)天敵昆蟲(chóng)的生殖力起到促進(jìn)作用。廣聚繭葉甲O. cammuna經(jīng)過(guò)低溫馴化后,其成蟲(chóng)的存活率提高,且壽命也顯著延長(zhǎng),繁殖力增強(qiáng)[78];等足黑卵蜂Telenomus podisi(Ashmead)隨著貯藏時(shí)間的延長(zhǎng),生殖力顯著下降,但是以蛹貯藏7 mon后,生殖力又達(dá)到了對(duì)照水平[79]。然而,低溫貯藏對(duì)天敵昆蟲(chóng)的生殖力產(chǎn)生促進(jìn)作用的情況甚少,其原因有待進(jìn)一步研究。
3.5 寄生行為
寄生蜂的寄生過(guò)程是一系列的復(fù)雜行為,包括寄主的定位、寄主的檢查、寄主的選擇和接受、寄主取食或寄生。大量研究表明,隨著低溫貯藏時(shí)間的延長(zhǎng),寄生蜂寄生率降低[80],低溫貯藏后寄生蜂在田間的寄生能力同樣也會(huì)降低。毀側(cè)溝繭蜂Microplitis demolitor Wilkinson 蛹低溫貯藏4 d后,羽化的雌蟲(chóng)甚至不能對(duì)寄主釋放的氣味做出反應(yīng)[81],管氏腫腿蜂Scleroderma guani Xiao et Wu雌蜂在低溫貯藏后,其雌蜂對(duì)黃粉甲 Tenebrio molitor L.蛹的上蜂時(shí)間和蟄刺率存在顯著差異[82],長(zhǎng)緣纓小蜂Anaphes victus Huber低溫貯藏后,羽化出的雌蜂產(chǎn)卵量明顯下降,且不能對(duì)寄主是否已被寄生做出適當(dāng)?shù)呐袛郲83],因此,重寄生率特別高。但也有研究發(fā)現(xiàn),枸杞木虱嚙小蜂Tamarixia lyciumi Yang在9.5 ℃下貯藏15 d以上,其寄生能力沒(méi)有受到顯著影響[84]。可以看出,寄生蜂寄生行為的改變與低溫貯藏時(shí)間存在必然的相關(guān)性。
此外,天敵昆蟲(chóng)的活動(dòng)能力是影響害蟲(chóng)生物防治的重要因素,為實(shí)現(xiàn)天敵昆蟲(chóng)在田間良好的控制效果,要保證天敵昆蟲(chóng)具有一定的飛行能力。低溫下的長(zhǎng)時(shí)間暴露會(huì)減弱天敵昆蟲(chóng)的飛行能力,翼蚜外繭蜂P. volucre的預(yù)蛹冷藏10 d后其飛行能力有輕微的減弱,麗蚜小蜂Encarsia formosa Gahan和槳角蚜小蜂Eretmocerus eremicus Rose et Zolnerowich的飛行能力隨著貯藏時(shí)間的延長(zhǎng)而降低[85]。脂肪和糖原為昆蟲(chóng)的飛行提供了大量能量,低溫貯藏中的能量消耗可能是運(yùn)動(dòng)能力降低的一個(gè)重要原因,另有報(bào)道表明低溫暴露可以導(dǎo)致天敵昆蟲(chóng)神經(jīng)肌肉機(jī)能發(fā)生障礙,從而顯著影響昆蟲(chóng)的運(yùn)動(dòng)能力,使運(yùn)動(dòng)不協(xié)調(diào)[52]。然而,在不同溫度梯度下釋放麗草蛉Chrysopa formosa Brauer,隨著溫度的升高,其平均飛行距離會(huì)逐漸變大[60];低溫使蚜繭蜂F. pseudoplatani的行走速度降低,但在變溫環(huán)境下貯藏,其運(yùn)動(dòng)能力影響不大,說(shuō)明周期性的溫度變換能有效地修復(fù)低溫傷害。
3.6 形態(tài)特征
低溫貯藏后,會(huì)對(duì)天敵昆蟲(chóng)不同蟲(chóng)期的形態(tài)特征產(chǎn)生影響。例如:在6 ℃下對(duì)豆柄瘤蚜繭蜂L. fabarum進(jìn)行冷藏,其產(chǎn)出卵的大小有所改變,這可以作為后代健康水平的重要參數(shù)。低溫貯藏對(duì)觸角的形態(tài)也會(huì)產(chǎn)生影響,觸角在求偶時(shí)起著重要作用,豆柄瘤蚜繭蜂L. fabarum經(jīng)低溫貯藏后,羽化成蟲(chóng)的感受器不正常,觸角波動(dòng)不對(duì)稱性隨著低溫暴露時(shí)間的延長(zhǎng)而加劇[86],而觸角形態(tài)改變對(duì)嗅覺(jué)和行為的發(fā)生也會(huì)產(chǎn)生消極影響。隨著低溫貯藏時(shí)間的延長(zhǎng),赤眼蜂Trichogramma spp.翅膀畸形的比例甚至?xí)_(dá)到100%[87],這嚴(yán)重影響了赤眼蜂Trichogramma spp.在田間的飛行擴(kuò)散能力。另外,低溫還會(huì)造成天敵昆蟲(chóng)足脛節(jié)長(zhǎng)度的改變等[88]。
4 結(jié)語(yǔ)
天敵昆蟲(chóng)作為生物防治中的重要內(nèi)容,在大面積釋放之前往往要進(jìn)行數(shù)量?jī)?chǔ)備和運(yùn)輸。低溫貯藏是天敵昆蟲(chóng)商品化生產(chǎn)、運(yùn)輸和釋放應(yīng)用的重要環(huán)節(jié),自20世紀(jì)30年代起,關(guān)于天敵昆蟲(chóng)低溫貯藏的研究就陸續(xù)開(kāi)展,至今仍然是研究的熱點(diǎn)。滯育對(duì)提高產(chǎn)品貯存時(shí)間、增加控害時(shí)長(zhǎng)、適時(shí)防控害蟲(chóng)等具有積極意義。昆蟲(chóng)滯育期間代謝速率極低,外表形態(tài)學(xué)變化不明顯,這一表面看似平靜的狀態(tài)其內(nèi)部生理學(xué)及生物化學(xué)基礎(chǔ)異常復(fù)雜。天敵昆蟲(chóng)的滯育與溫度和光周期密切相關(guān),許多研究將昆蟲(chóng)在低溫下誘導(dǎo)滯育后進(jìn)行貯藏,寄生性天敵昆蟲(chóng)短期滯育解除后,主要生命和生防能力指標(biāo),如產(chǎn)卵量、產(chǎn)卵持續(xù)時(shí)間、壽命等呈正向增長(zhǎng)者居多,這對(duì)于害蟲(chóng)生物防治實(shí)踐具有積極意義,持續(xù)長(zhǎng)期滯育對(duì)昆蟲(chóng)具有一定的負(fù)面作用,導(dǎo)致當(dāng)代的死亡率偏高,這也正是天敵昆蟲(chóng)產(chǎn)品生產(chǎn)中的兩難選擇,一方面希望通過(guò)滯育延長(zhǎng)天敵昆蟲(chóng)產(chǎn)品貨架期,另一方面又面臨著經(jīng)過(guò)貯藏后天敵昆蟲(chóng)大量死亡的潛在風(fēng)險(xiǎn),因此確定最佳滯育蟲(chóng)態(tài)和貯存時(shí)間具有重要的現(xiàn)實(shí)指導(dǎo)意義。冷馴化對(duì)昆蟲(chóng)耐寒性提高的效果受多種因素影響,但目前研究多針對(duì)單一因素,與昆蟲(chóng)的行為習(xí)性和所處生境聯(lián)系甚少;低溫在誘導(dǎo)天敵昆蟲(chóng)延長(zhǎng)貯藏期的同時(shí),也會(huì)對(duì)其適合度等特征產(chǎn)生一定程度的不利影響,并在世代間傳遞,影響生物防治的效果。
總之,誘導(dǎo)天敵昆蟲(chóng)滯育和進(jìn)行冷馴化理論上都可以延長(zhǎng)低溫下的貯藏時(shí)間,評(píng)價(jià)一種貯藏方法的優(yōu)劣最終還是取決于田間實(shí)際應(yīng)用效果,但是通過(guò)調(diào)查田間實(shí)際效果來(lái)評(píng)價(jià)天敵昆蟲(chóng)低溫貯藏后品質(zhì)的研究較少,因此應(yīng)將室內(nèi)觀測(cè)與田間試驗(yàn)相結(jié)合,為其商品化生產(chǎn)和應(yīng)用提供技術(shù)參數(shù)。隨著生物防治產(chǎn)業(yè)的快速發(fā)展,關(guān)于低溫貯藏技術(shù)的研究將更加完善,降低天敵昆蟲(chóng)的應(yīng)用成本,使應(yīng)用更加簡(jiǎn)單、經(jīng)濟(jì)。
參考文獻(xiàn)
[1] 萬(wàn)方浩, 王 韌, 葉正楚. 我國(guó)天敵昆蟲(chóng)產(chǎn)品產(chǎn)業(yè)化的前景分析[J]. 中國(guó)生物防治, 1999, 15(3): 135-138.
[2] 萬(wàn)方浩, 葉正楚, 郭建英, 等. 我國(guó)生物防治研究的進(jìn)展及展望[J]. 昆蟲(chóng)知識(shí), 2000, 37(2): 65-74.
[3] Venkatesan T, Singh S P, Jalali S K. Effect of cold storage on cocoons of Goniozus nephantidis Muesebeck (Hymenoptera: Bethylidae) stored for varying periods at different temperature regimes[J]. Journal of Entomological Research, 2000, 24(1): 43-47.
[4] Hance T, van Baaren J, Vernon P, et al. Impact of extreme temperatures on parasitoids in a climate change perspective[J]. Annual Review of Entomology, 2007, 52: 107-126.
[5] 張禮生, 陳紅印, 王孟卿, 等. 寄生蜂的滯育研究進(jìn)展[J]. 中國(guó)生物防治學(xué)報(bào), 2014, 30(2): 149-164.
[6] Visser B, Le Lann C, den Blanken F J, et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8 677-8 682.
[7] 趙章武, 黃永平. 昆蟲(chóng)滯育及其調(diào)控機(jī)制[J]. 山西大學(xué)學(xué)報(bào), 1995, 18(1): 105-118.
[8] Kostal V. Eco-physiological phases of insect diapause[J]. Journal of Insect Physiology, 2006, 52(2): 113-127.
[9] 張 潔, 張禮生, 陳紅印, 等. 小蜂滯育的研究進(jìn)展[J]. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2013, 50(6): 1 706-1 718.
[10] 李玉艷, 張禮生, 陳紅印, 等. 煙蚜繭蜂滯育誘導(dǎo)的溫光周期反應(yīng)[J]. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2013, 50(3): 718-726.
[11] 李玉艷. 煙蚜繭蜂滯育誘導(dǎo)的溫光周期反應(yīng)及滯育生理研究[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2011.
[12] Brodeur J, McNeil J N. Biotic and abiotic factors involved in diapause induction of the parasitoid, Aphidius nigripes (Hymenoptera: Aphididae)[J]. Journal of Insect Physiology, 1989, 35(12): 959-974.
[13] Schlinger E I, Hall J C. Biological notes on pacific coast aphid parasites and lists of california parasites (Aphidiinae) and their aphid hosts (Hymenoptera: Braconidae)[J]. Annals of the Entomological Society of America, 1960, 53(3): 404-415.
[14] Menu F, Desouhant E. Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause[J]. Oecologia, 2002, 132(2): 167-174.
[15] Tatsumi E, Takada H. Effects of photoperiod and temperature on adult oligopause of Aphelinus asychis and larval diapause of A. albipodus (Hymenoptera: Aphelinidae)[J]. Applied Entomology and Zoology, 2005, 40(3): 447-456.
[16] Wylie H G. Factors affecting facultative diapause of Microctonus vittatae (Hymenoptera: Braconidae)[J]. The Canadian Entomologist, 1980, 112(7): 747-749.
[17] Nealis V. Diapause and the seasonal ecology of the introduced parasite, Cotesia (Apanteles) rubecula (Hymenoptera: Braconidae)[J]. The Canadian Entomologist, 1985, 117(3): 333-342
[18] Stary P. Aphid Parasites (Hymenoptera, Aphidiidae) of the Mediterranean Area[M]. Kluwer: Academic Publishers, 1976.
[19] Stary P. Diapause in Monoctonia pistaciaecola Stary, a parasite of gall aphids (Hymenoptera: Aphidiidae; Homoptera: Aphidoidea)[J]. Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri, 1968, 26: 241-250.
[20] Tauber M J, Tauber C A, Masaki S. Seasonal Adaptations of Insect[M]. Oxford University Press, New York. , 1986.
[21] 張禮生, 陳紅印, 張 潔, 等. 滯育煙蚜繭蜂的親代效應(yīng)評(píng)價(jià)[J]. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2014, 51(1): 35-44.
[22] Al-Izzi M A J, Al-Maliky S K, Khalaf M Z. Low temperature for predicting induction and termination of diapause in Apanteles angaleti (Musebeck) (Hymenoptera: Braconidae)[J]. Annales de la Societe Entomologique de France, 1992, 28(4): 385-389.
[23] Berg M A. Studies on the induction and termination of diapause in Mesocomys pulchriceps Cam. (Hymenoptera: Eupelmidae) an egg parasite of Saturniidae (Lepidoptera)[J]. Phytophylactica, 1971(3): 85-88.
[24] Arretz P, Santis L, Guerrero M A, et al. Presence of Aprostocetus daira (Walker) (Hymenoptera: Eulophidae) in Chile[J]. Acta Entomologica Chilena, 1989, 15: 275-276.
[25] El-Heneidy A H, Abbas M S. Biological notes on Copidosoma sp. (Hym., Encyrtidae), an egg-larval parasite of Heliothis armigera Hb. (Lep., Noctuidae) in Egypt[J]. Zeitschrift fuer Angewandte Entomologie, 1983, 96: 74-77.
[26] 馬春森, 陳玉文. 二步中低變溫對(duì)松毛蟲(chóng)赤眼蜂滯育的誘導(dǎo)作用[J]. 植物保護(hù)學(xué)報(bào), 2005, 32(2): 174-178.
[27] Zaslavskii V, Umarova T. Environmental and endogenous control of diapause in Trichogramma species[J]. Entomophaga, 1990, 35(1): 23-29.
[28] Alvi S M, Momoi S. Environmental regulation and geographical adaptation of diapause in Cotesia plutellae (Hymenoptera: Braconidae), a parasitoid of the diamondback moth larvae[J]. Applied Entomology and Zoology, 1994, 29(1): 89-95.
[29] Polgar L, Mackauer M, Volkl W. Diapause induction in two species of aphid parasitoids: the influence of aphid morph[J]. Journal of Insect Physiology, 1991, 37(9): 699-702.
[30] Wang T, Laing J E. Diapause termination and morphogenesis of Holcothorax testaceipes Ratzeburg (Hymenoptera: Encyrtidae), an introduced parasitoid of the spotted tentiform leafminer, Phyllonorycter blancardella (F.) (Lepidoptera: Gracillariidae)[J]. The Canadian Entomologist, 1989, 121(1): 65-74.
[31] Mehrnejad M R, Copland M J W. Diapause strategy in the parasitoid Psyllaephagus pistaciae[J]. Entomologia Experimentalis et Applicata, 2005, 116(2): 109-114.
[32] Chen H, Zhang H, Zhu K Y, et al. Induction of reproductive diapause in Habrobracon hebetor (Hymenoptera: Braconidae) when reared at different photoperiods at low temperatures[J]. Environmental Entomology, 2012, 41(3): 697-705.
[33] Teraoka T, Numata H. Seasonal changes in the intensity of adult diapause in a parasitoid wasp, Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae)[J]. Applied Entomology and Zoology, 2000, 35(3): 353-356.
[34] Stary P. Pseudopraon mindariphagum, gen.n., sp.n. (Hymenoptera, Aphidiidae) description and life-history of a parasite of Mindarus abietinus (Homoptera, Mindaridae) in Central Europe[J]. Acta Entomologica Bohemoslovaca, 1995, 72: 249-258.
[35] Schlinger E I, Hall J C. Biological notes on pacific coast aphid parasites, and lists of california parasites (Aphidiinae) and their aphid hosts (Hymenoptera: Braconidae)[J]. Annals of the Entomological Society of America, 1960, 53(3): 404-415.
[36] Gotthard K, Nylin S. Adaptive plasticity and plasticity as an adaptation: a selective review of plasticity in animal morphology and life history[J]. Oikos, 1995, 74(1): 3-17.
[37] Pigliucci M. Evolution of phenotypic plasticity: where are we going now?[J]. Trends in Ecology and Evolution, 2005, 20(9): 481-486.
[38] 王憲輝, 齊憲磊, 康 樂(lè). 昆蟲(chóng)的快速冷馴化現(xiàn)象及其生態(tài)適應(yīng)意義[J]. 自然科學(xué)進(jìn)展, 2003, 13(11): 1 128-1 133.
[39] Chown S L, Terblanche J S. Physiological diversity in insects: ecological and evolutionary contexts[J]. Advances in insect physiology, 2006, 33: 50.
[40] Lee R E, Chen C, Denlinger D L. A rapid cold-hardening process in insects[J]. Science, 1987, 238(4832): 1 415-1 417.
[41] Kristensen T N, Hoffmann A A, Overgaard J, et al. Costs and benefits of cold acclimation in field-released Drosophila[J]. Proceedings of the National Academy of Sciences, 2008, 105(1): 216-221.
[42] Sinclair B J, Roberts S P. Acclimation, shock and hardening in the cold[J], Journal of Thermal Biology, 2005, 30(8): 557-562.
[43] 張 燁, 連梅力, 李 唐, 等. 不同低溫馴化條件對(duì)玉米螟赤眼蜂低溫貯藏的影響[J]. 中國(guó)生物防治學(xué)報(bào), 2016, 32(2); 277-281.
[44] 李興鵬, 宋麗文, 張宏浩, 等. 蠋蝽抗寒性對(duì)快速冷馴化的響應(yīng)及其生理機(jī)制[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(3): 791-797.
[45] Broufas G D, Koveos D S. Rapid cold hardening in the predatorymite Euseius (Amblyseius) finlaandicus (Acari: Phytoseiidae)[J]. Journal of Insect Physiology, 2001, 47: 699-708.
[46] 趙 靜, 陳珍珍, 鄭方強(qiáng), 等. 冷馴化對(duì)異色瓢蟲(chóng)后代生長(zhǎng)發(fā)育及適合度的影響[J]. 昆蟲(chóng)學(xué)報(bào), 2012, 55(7): 810-815.
[47] Ju R T, Xiao Y Y, Li B. Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae)[J]. Journal of Insect Physiology, 2011, 57(11): 1 577-1 582.
[48] Shintani Y, Ishikawa Y. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris[J]. Journal of insect physiology, 2007, 53(10): 1 055-1 062.
[49] 岳 雷, 周忠實(shí), 劉志邦, 等. 不同強(qiáng)度快速冷馴化對(duì)廣聚螢葉甲成蟲(chóng)耐寒性生理指標(biāo)的影響[J]. 昆蟲(chóng)學(xué)報(bào), 2014, 57(6): 631-638.
[50] 趙 靜, 陳珍珍, 鄭方強(qiáng), 等. 冷馴化對(duì)異色瓢蟲(chóng)后代生長(zhǎng)發(fā)育及適合度的影響[J]. 昆蟲(chóng)學(xué)報(bào), 2012, 55(7): 810-815.
[51] Liu F, Lai S H. Study on cold resistance of Blattella germanica method[J]. Journal of Medical Pest Control, 2004, 20(7): 396-397.
[52] Kostál V, Yanagimoto M, Bastl J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2006, 143(2): 171-179.
[53] Barbehenn, Raymond1. Insect Physiological Ecology: Mechanisms and Patterns[J]. Quarterly Review of Biology, 2005, 80(2): 248-249.
[54] Visser B, Le Lann C, den Blanken F J, et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle[J]. Proceedings of the National Academy of Sciences, 2010, 107(19): 8 677-8 682.
[55] Colinet H, Hance T, Vernon P. Water relations, fat reserves, survival, and longevity of a cold-exposed parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae)[J]. Environmental Entomology, 2006, 35(2): 228-236.
[56] 潘 悅, 常壽榮, 張曉龍, 等. 不同冷藏條件對(duì)越冬代異色瓢蟲(chóng)成蟲(chóng)存活率的影響[J]. 湖南農(nóng)業(yè)科學(xué), 2012(9): 77-78.
[57] Kidane D, Yang N W, Wan F H. Effect of cold storage on the biological fitness of Encarsia sophia (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Hemiptera: Aleyrodidae)[J]. European Journal of Entomology, 2015, 112(3): 460.
[58] 閆玉芳, 陳文龍. 冷藏對(duì)菜蚜繭蜂羽化率及壽命的影響研究[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2012, 28(30): 249-253.
[59] Colinet H, Hance T. Interspecific variation in the response to low temperature storage in different aphid parasitoids[J]. Annals of Applied Biology, 2010, 156(1): 147-156.
[60] 孫守慧, 趙利偉, 祁金玉, 等. 白蛾周氏嚙小蜂成蟲(chóng)補(bǔ)充營(yíng)養(yǎng)及低溫貯藏蟲(chóng)期的研究[J].中國(guó)生物防治學(xué)報(bào), 2012, 28(3): 320-325.
[61] 阿克旦·吾外士. 麥蛾柔繭蜂防治棉鈴蟲(chóng)和玉米螟的應(yīng)用技術(shù)研究[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2006.
[62] 麥麥提, 亞 生, 阿克旦, 等. 低溫儲(chǔ)存普通草蛉卵對(duì)其生命力的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2014, 51(2): 264-268.
[63] 宗良炳, 鐘昌珍, 雷朝亮, 等. 南方小花蝽卵的低溫保藏試驗(yàn)[J]. 中國(guó)生物防治, 1987(1): 19.
[64] 稅 玲, 蒲 頗, 李 慶, 等. 低溫貯藏對(duì)加州新小綏螨生物學(xué)特性和捕食能力的影響[J].植物保護(hù)學(xué)報(bào), 2016, 43(5): 759-767.
[65] Yocum G D, Zdárek J, Joplin K H, et al. Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress[J]. Journal of Insect Physiology, 1994, 40(1): 13-21.
[66] Kelty J D, Killian K A, Lee R E. Cold shock and rapid cold-hardening of pharate adult flesh flies (Sarcophaga crassipalpis): effects on behaviour and neuromuscular function following eclosion[J]. Physiological Entomology, 1996, 21(4): 283-288.
[67] Krishnamoorthy A. Effect of cold-storage on the emergence and survival of the adult exotic parasitoid, Leptomastix dactylopii How (Hymenoptera: Encyrtidae)[J]. Entomon, 1989, 14(3-4): 313-318.
[68] Mousapour Z, Askarianzadeh A, Abbasipour H. Effect of cold storage of pupae parasitoid wasp, Habrobracon hebetor (Say)(Hymenoptera: Braconidae), on its efficiency[J]. Archives of Phytopathology and Plant Protection, 2014, 47(8): 966-972.
[69] Chen W L, Leopold R A, Harris M O. Cold storage effects on maternal and progeny quality of Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae)[J]. Biological Control, 2008, 46(2): 122-132.
[70] De Bach P. The effect of low storage temperature on reproduction in certain parasitic Hymenoptera[J]. Pan-Pacific Entomologist, 1943, 19: 112-119.
[71] Colinet H, Hance T. Interspecific variation in the response to low temperature storage in different aphid parasitoids[J]. Annals of Applied Biology, 2010, 156(1): 147-156.
[72] Mahi H, Rasekh A, Michaud J P, et al. Biology of Lysiphlebus fabarum following cold storage of larvae and pupae[J]. Entomologia Experimentalis et Applicata, 2014, 153(1): 10-19.
[73] 王建梅. 傘裙追寄蠅滯育誘導(dǎo)及低溫貯藏研究[D]. 蘭州: 甘肅農(nóng)業(yè)大學(xué), 2014.
[74] Foerster L A, Doetzer A K, Castro L C F. Emergence, longevity and fecundity of Trissolcus basalis and Telenomus podisi after cold storage in the pupal stage[J]. Pesquisa Agropecuaria Brasileira, 2004, 39(9): 841-845.
[75] Hallman G J, Denlinger D L. Temperature sensitivity in insects and application in integrated pest management[M]. Inc: Westview Press, 1998.
[76] Hanna A D. Fertility and tolerance of low temperature in Euchalcidia carybori Hanna (Hymenoptera: Chalcidinae)[J]. Bulletin of Entomological Research, 1935, 26(3): 315-322.
[77] Lacoume S, Bressac C, Chevrier C. Sperm production and mating potential of males after a cold shock on pupae of the parasitoid wasp Dinarmus basalis (Hymenoptera: Pteromalidae)[J]. Journal of Insect Physiology, 2007, 53(10): 1 008-1 015.
[78] 李 敏. 廣聚繭葉甲低溫適應(yīng)性研究[D]. 福州: 福建農(nóng)林大學(xué), 2010.
[79] 渾之英, 王德安, 路子云, 等. 中紅側(cè)溝繭蜂滯育誘導(dǎo)和滯育繭的冷藏[J]. 昆蟲(chóng)學(xué)報(bào), 2005, 48(5): 655-659.
[80] Nadeem S, Ashfaq M, Hamed M, et al. Optimization of short and long term storage duration for Trichogramma chilonis (Ishii) (Hymenoptera: Trichogrammatidae) at low temperatures[J]. Pakistan Journal of Zoology, 2010, 42(1): 63-67.
[81] Hérard F, Keller M A, Lewis W J, et al. Beneficial arthropod behaviour mediated by airborne semiochemicals: III. Influence of age and experience on flight chamber responses of Microplitis demolitor Wilkinson[J]. Journal of Chemical Ecology, 1988, 14(7): 1 583-1 596.
[82] 陳 倩, 梁洪柱, 張秋雙.低溫貯存黃粉蟲(chóng)蛹對(duì)繁育管氏腫腿蜂的影響[J]. 中國(guó)生物防治, 2006, 22(1): 30-32.
[83] van Baaren J, Outreman Y, Boivin G. Effect of low temperature exposure on oviposition behaviour and patch exploitation strategy in parasitic wasps[J]. Animal Behaviour, 2005, 70(1): 153-163.
[84] 王俊清. 枸杞木虱嚙小蜂生物學(xué)特性的研究[D]. 呼和浩特: 內(nèi)蒙古師范大學(xué), 2009.
[85] Luczynski A, Nyrop J P, Shi A. Influence of cold storage on pupal development and mortality during storage and on post-storage performance of Encarsia formosa and Eretmocerus eremicus (Hymenoptera: Aphelinidae)[J]. Biological Control, 2007, 40(1): 107-117.
[86] Amice G, Vernon P, Outreman Y, et al. Variability in responses to thermal stress in parasitoids[J]. Ecological Entomology, 2008, 33(6): 701-708.
[87] Tezze A A, Botto E N. Effect of cold storage on the quality of Trichogramma nerudai (Hymenoptera: Trichogrammatidae)[J]. Biological Control, 2004, 30(1): 11-16.
[88] Mahi H, Rasekh A, Michaud J P, et al. Biology of Lysiphlebus fabarum following cold storage of larvae and pupae[J]. Entomologia Experimentalis et Applicata, 2014, 153(1): 10-19.