李蕾 何秀麗
摘要
通過(guò)向量Lyapunov函數(shù),給隨機(jī)CGNNs以均方估計(jì),研究基于馬氏切換的脈沖時(shí)滯隨機(jī)CohenGrossberg神經(jīng)網(wǎng)絡(luò)模型的均方指數(shù)穩(wěn)定性,并利用數(shù)值例子對(duì)結(jié)論加以證明.關(guān)鍵詞CohenGrossberg網(wǎng)絡(luò)模型;均方指數(shù)穩(wěn)定性;馬氏切換
中圖分類號(hào)O175
文獻(xiàn)標(biāo)志碼A
0引言
在過(guò)去的幾十年里,神經(jīng)網(wǎng)絡(luò)在各個(gè)領(lǐng)域有著廣泛的研究和應(yīng)用,吸引了國(guó)內(nèi)外許多學(xué)者的關(guān)注[15].CohenGrossberg神經(jīng)網(wǎng)絡(luò)模型,由Cohen和Grossberg在1983年首次提出[1],包括著名的細(xì)胞神經(jīng)網(wǎng)絡(luò)模型、Hopfield網(wǎng)絡(luò)模型(HNNs),以及作為其特殊情況的LotkaVolterra競(jìng)爭(zhēng)生態(tài)模型(LVCMs).因?yàn)槠湓诟黝I(lǐng)域的廣泛應(yīng)用,如聯(lián)想記憶、模式分類、并行計(jì)算、機(jī)器人、計(jì)算機(jī)視覺和最優(yōu)化等,近幾年被研究人員廣泛研究和引用.
時(shí)間延遲、脈沖擾動(dòng)是導(dǎo)致神經(jīng)網(wǎng)絡(luò)不穩(wěn)定的因素.在現(xiàn)實(shí)生活中,時(shí)滯對(duì)于神經(jīng)網(wǎng)絡(luò)的研究來(lái)說(shuō)是不可避免的,是CGNNs頻繁振蕩和不穩(wěn)定的來(lái)源,所以研究時(shí)滯CGNNs的穩(wěn)定性具有重要的意義.Xu等[2]研究討論了時(shí)滯隨機(jī)CohenGrossberg網(wǎng)絡(luò)模型的均方穩(wěn)定性.另一方面,脈沖也是必不可免的,脈沖能使穩(wěn)定的系統(tǒng)不穩(wěn)定或者使不穩(wěn)定的系統(tǒng)穩(wěn)定.它應(yīng)用在各個(gè)領(lǐng)域,如生物學(xué)、種群系統(tǒng)等.因此考慮脈沖作用下時(shí)滯隨機(jī)神經(jīng)網(wǎng)絡(luò)系統(tǒng)的均方指數(shù)穩(wěn)定性是很有必要的.越來(lái)越多的研究開始集中在脈沖神經(jīng)網(wǎng)絡(luò)和脈沖時(shí)滯隨機(jī)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析,并取得了一些重要成果[34].
最近幾年研究的脈沖神經(jīng)網(wǎng)絡(luò)模型大多基于標(biāo)量算子穩(wěn)定性分析[513],基于向量算子脈沖神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析的研究很少,例如周偉松等[14].所以基于向量算子研究脈沖CGNNs的均方指數(shù)穩(wěn)定性已成為一個(gè)具有重要的理論和實(shí)踐意義的課題.本文通過(guò)在特定時(shí)刻添加脈沖干擾,將L算子以及伊藤公式結(jié)合起來(lái)應(yīng)用到CGNNs,來(lái)研究帶有馬氏切換的隨機(jī)脈沖CohenGrossberg神經(jīng)網(wǎng)絡(luò)模型的均方指數(shù)穩(wěn)定性.
1預(yù)備知識(shí)
4討論
穩(wěn)定性不僅是神經(jīng)網(wǎng)絡(luò)應(yīng)用的基礎(chǔ),同樣也是神經(jīng)網(wǎng)絡(luò)最基本和重要的問(wèn)題.近年來(lái),有不少學(xué)者對(duì)隨機(jī)神經(jīng)系統(tǒng)的穩(wěn)定性進(jìn)行了大量的研究和應(yīng)用.在此基礎(chǔ)上,得到了隨機(jī)脈沖時(shí)滯系統(tǒng)保持穩(wěn)定性的條件.研究帶有馬氏切換隨機(jī)脈沖時(shí)滯CGNNs的均方指數(shù)穩(wěn)定性突破了傳統(tǒng)只研究沒(méi)有時(shí)滯的隨機(jī)CGNNs的局限性,通過(guò)使用Halanay不等式以及伊藤公式得到了系統(tǒng)均方指數(shù)穩(wěn)定性的充分條件.所討論的隨機(jī)脈沖時(shí)滯CGNNs不僅在理論上有著廣泛的研究,在實(shí)際上也有著很大的發(fā)展前景.
參考文獻(xiàn)
References
[1]Cohen M A,Grossberg S.Absolute stability and global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Transactions on Systems,Man,and Cybernetics,1983,13(5):815826
[2]Xu D Y,Zhou W S,Long S J.Global exponential stability of impulsive integrodifferential equation[J].Nonlinear Analysis(Theory,Methods & Applications),2006,64(12):28052816
[3]Yao F Q,Cao J D,Cheng P,et al.Generalized average dwell time approach to stability and inputtostate stability of hybrid impulsive stochastic differential systems[J].Nonlinear Analysis(Hybrid Systems),2016,22:147160
[4]Xu D Y,Yang Z C.Impulsive delay differential inequality and stability of neural networks[J].Journal of Mathematical Analysis and Applications,2005,305(1):107120
[5]Luo T Q,Long S J.A new inequality of Loperation to stochastic nonautonomous impulsive neural networks with delays[J].Advances in Difference Equations,2016,DOI:101186/s136620150697y
[6]Song Y F,Shen Y,Yin Q.New discrete Halanaytype inequalities and applications[J].Applied Mathematics Letters,2013,26(2):258263
[7]Tang C Q,Wu Y H.Global exponential stability of nonresident computer virus models[J].Nonlinear Analysis:Real World Applications,2017,34:149158
[8]Zhang Y.Global exponential stability of delay difference equations with delayed impulses[J].Mathematics and Computers in Simulation,2016,132:183194
[9]Sun F L,Gao L X,Zhu W,et al.Generalized exponential inputtostate stability of nonlinear systems with time delay[J].Communications in Nonlinear Science & Numerical Simulation,2016,44:352359
[10]王慧.脈沖時(shí)滯神經(jīng)網(wǎng)絡(luò)的全局穩(wěn)定性研究[D].重慶:重慶大學(xué)計(jì)算機(jī)學(xué)院,2007
WANG Hui.Study on global stability of impulsive delayed neural networks[D].Chongqing:College of Computer Science,Chongqing University,2007
[11]彭國(guó)強(qiáng).隨機(jī)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性[D].長(zhǎng)沙:湖南大學(xué)數(shù)學(xué)與計(jì)量經(jīng)濟(jì)學(xué)院,2009
PENG Guoqiang.Stability of stochastic neural networks[D].Changsha:College of Mathematics and Econometrics,Hunan University,2009
[12]Shen Y,Wang J.Almost sure exponential stability of recurrent neural networks with Markovian switching[J].IEEE Transactions on Neural Networks,2009,20(5):840855
[13]Li Z H,Liu L,Zhu Q X.Meansquare exponential inputtostate stability of delayed CohenGrossberg neural networks with Markovian switching based on vector Lyapunov functions[J].Neural Networks,2016,84:3946
[14]Zhou W S,Teng L Y,Xu D Y.Meansquare exponentially inputtostate stability of stochastic CohenGrossberg neural networks with timevarying delays[J].Neurocomputing,2015,153:5461
[15]Wang X H,Guo Q Y,Xu D Y.Exponential pstability of impulsive stochastic CohenGrossberg neural networks with mixed delays[J].Mathematics & Computers in Simulation,2009,79(5):16981710
AbstractFocused on CohenGrossberg neural networks,this paper investigates the meansquare exponential stability by means of the vector Lyapunov function.This method ensures that the impulsive stochastic CohenGrossberg neural network is exponentially stable.Finally,an example is used to illustrate the conclusions.
Key wordsCohenGrossberg networks; meansquare exponential stability; Markovian switching